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Analysis of a Kind of Stochastic Dynamics Model
with Nonlinear Function∗

Zhimin Li1 and Tailei Zhang1,†

Abstract In this paper, we establish stochastic differential equations on the
basis of a nonlinear deterministic model and study the global dynamics. For
the deterministic model, we show that the basic reproduction number <0 de-
termines whether there is an endemic outbreak or not: if <0 < 1, the disease
dies out; while if <0 > 1, the disease persists. For the stochastic model, we
provide analytic results regarding the stochastic boundedness, perturbation,
permanence and extinction. Finally, some numerical examples are carried out
to confirm the analytical results. One of the most interesting findings is that
stochastic fluctuations introduced in our stochastic model can suppress dis-
ease outbreak, which can provide us some useful control strategies to regulate
disease dynamics.
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1. Introduction

Bilinear and standard incidences have been frequently used in many epidemic model-
s [21]. Several different forms of incidences have been proposed by some researchers.
Let S(t) and I(t) be the numbers of susceptible and infective individuals at time t,
respectively. Capasso and Serio [4] introduced a saturated incidence Sf(I) into epi-
demic models to study of the cholera epidemic spread in Bari in 1973. The nonlinear
incidences of the forms βIpSq and βIpS/(1 + aIq) were proposed by Liu et al. [19].
Epidemic models with the incidence βIpSq had also been studied in [14]. An SEIRS
epidemic model with the saturation incidence βSI/(1 + aS) was examined in [8].
Epidemic models with the incidence βIpS/(1 + aIq) had been investigated in [28].
The nonlinear incidences of the form β(I + υIp)S proposed by van den Driessche
and Watmough [7] was used in [29]. The more general forms of nonlinear incidence
were considered in [27, 30]. In view of the fact that the transmission mechanism
of many infectious diseases is not fully known, increasing attention has been paid
to infectious disease models with nonlinear incidence in recent years. In [13], the
global stability of a class of nonlinear epidemic models is considered.
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Stochastic models could be a more appropriate way of modeling epidemics in
many circumstances [3,11,12,15–18,22,25,26,31,32]. For example, stochastic mod-
els are able to take care of randomness of infectious contacts occurring in the latent
and infectious periods [17, 18, 26, 31]. It also has been showed that some stochastic
epidemic models can provide an additional degree of realism in comparison with
their deterministic counterparts [2,6,9]. Many realistic stochastic epidemic models
can be derived based on their deterministic formulations. Allen [1] provided a great
introduction to the methods of the methods of derivation for various types of s-
tochastic models including stochastic differential equation (SDE) epidemic models.
Liu et al. [16] established a deterministic model of nonlinear incidence rate, and
studied the global stability of the model by the basic reproduction number of the
model. Then, a stochastic model is formulated on the basis of the deterministic
model, and the perturbation, persistence and extinction of the stochastic model in
the deterministic model are studied. Britton [2] gave an excellent survey on SDE
epidemic models which presented the exact and asymptotic properties of a simple
stochastic epidemic model, and was illustrated by studying effects of vaccination
and inference procedures for important parameters such as the basic reproduction
number and the critical vaccination coverage. Gray [9] formulated a SDE SIS epi-
demic model, and proved that the model has a unique global positive solution and
established conditions for extinction and persistence of infectious individuals.

There are different possible approaches to including random effects in the model,
and both of which are from a biological and mathematical perspective [20]. The
general stochastic differential equation SIRS model introduced in this manuscript
adopts the approach by Mao et al. [23], which has been pursued in [3, 11, 12, 15–
18, 25, 26, 31, 32], and assume that the parameters involved in the model always
fluctuate around some average value due to continuous fluctuation in the environ-
ment. Following their approach, we will focus on a SDE SIR model with nonlinear
incidence rate.

The rest of this paper is organized as follows: In Section 2, we find deterministic
models from the literature and describe the results of their deterministic models.
Considering the methods mentioned above, a stochastic model is formulated on the
basis of deterministic model. In Section 3, we first prove the existence of global
positive solutions for stochastic models. Secondly, we prove the extinction of dis-
eases. Thirdly, we prove the perturbation of disease-free equilibrium points and the
existence of stationary distribution for stochastic models. Finally, we prove the per-
sistence in mean. In Section 4, the numerical examples are carried out to illustrate
the main theoretical results. In Sections 5, we provide a brief discussion and the
summary of the main results.

2. Model description

2.1. The deterministic SIR model

In [13], Li et al. formulated a nonlinear deterministic epidemiological model in
which the nonlinear incidence Sf(I). The authors assume that f(I) is a real locally
Lipschitz function at least on [0,+∞) which satisfies the following conditions:

(i) f(0) = 0, f(I) > 0 for I > 0;

(ii) f(I)/I is continuous and monotone nonincreasing for I > 0, and lim
I→0+

f(I)/I
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exists, denoted by β(0 < β < +∞);

(iii)
∫ 1

0+ 1/f(u)du = +∞. Further, establish an SIR epidemic model with the
nonlinear incidence Sf(I) as follows:



dS

dt
= µA− µS − Sf(I),

dI

dt
= Sf(I)− (µ+ γ + α)I,

dR

dt
= γI − µR,

(2.1)

where function f(I) satisfies above conditions. Moreover, S = S(t), I = I(t) and
R = R(t) represent the numbers of individuals in the susceptible, infected and re-
moved compartments at time t, respectively. µ denotes the per capita natural death
rate, µA denotes the recruitment of susceptible individuals, γ denotes the recovery
rate of an infected individual and α denotes the per capita disease-induced mortality
rate. The basic reproduction number is <0 = βA

µ+γ+α . Its disease-free equilibrium

point is E0 = (A, 0, 0) and endemic equilibrium point is E∗ = (S∗, I∗, R∗), where

S∗ = (µ+γ+α)I∗
f(I∗) , R∗ = γI∗

µ , I∗ ∈ (0, A).

For the model, the authors obtain the following results (see [13]). The disease-
free equilibrium is globally stable in the feasible region as the basic reproduction
number is less than or equal to unity, and the endemic equilibrium is globally stable
in the feasible region as the basic reproduction number is greater than unity.

2.2. Stochastic differential equation SIR model

Now, we turn to a continuous time SIR model, which takes random effects into
account. In SIR models, the recovery rate of an infected individual γ is one of the
key parameters to disease transmission. May [24] pointed out that all the param-
eters involved in the population model exhibit random fluctuation as the factors
controlling them are not constant. Further, in the real situation, the recovery rate
of an infected individual γ always fluctuate around some average value due to con-
tinuous fluctuation in the environment. Consequently, many researchers introduced
stochastic perturbations into deterministic models to reveal the effects of environ-
mental noise on the epidemic models [12, 17, 18, 26, 32]. As an extension of system
(2.1), we introduce stochastic perturbations into system (2.1). Then, we obtain the
following SIR epidemic model with nonlinear incidence:

dS = (µA− µS − Sf(I)) dt− σ1SdB1(t),

dI = (Sf(I)− (µ+ γ + α)I) dt− σ2IdB2(t)− σ4IdB4(t),

dR = (γI − µR) dt− σ3RdB3(t) + σ4IdB4(t),

(2.2)

where Bi(t) represents a standard Brownian motion with Bi(0) = 0 and σi > 0
denotes the intensity of the white noise, i = 1, 2, 3, 4. Specifically, for the intro-
duction of stochastic terms from (2.1), there are two cases, x′i = f(xi) → dxi =
f(xi)dt− σixidBi(t), (i = 1, 2, 3) and γ → γ + σ4B

′
4(t).
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3. The stochastic model (2.2)

3.1. Preliminaries

First, we introduce some lemmas and notations, which will be used in the following
parts. For the d-dimensional stochastic differential equation can be expressed as
follows:

dX(t) = f(t,X(t))dt+ g(t,X(t))dB(t), (3.1)

where f(t,X(t)) is a function in Rd defined in [t0,+∞] × Rd and g(t,X(t)) is a
d×m matrix, f, g are locally Lipschitz functions in X(t). B(t) is an m-dimensional
standard Brownian motion defined on the above probability space. The differential
operator L of system (3.1) is defined by [23].

L =
∂

∂t
+

d∑
i=1

fi(t)
∂

∂xi
+

1

2

d∑
i,j=1

[gT (x, t)g(x, t)]ij
∂2

∂xi∂xj
. (3.2)

If L acts on a function V ∈ C2,1(Rd × [t0,+∞];R+), then

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trace[gT (x, t)g(x, t)], (3.3)

where Vt(x, t) = ∂V
∂t , Vx(x, t) = ( ∂V∂x1

, · · · , ∂V∂xd
), Vxx = ( ∂2V

∂x1∂xj
)d×d. In view of Itô’s

formula, if x(t) ∈ Rd, then dV (x, t) = LV (x, t)dt+ Vx(x, t)g(x, t)dB(t).

Lemma 3.1. [23] Let X(t) be a regular time-homogeneous Markov process in Rn+
described by the following stochastic differential equation:

dX(t) = b(X)dt+

k∑
r=1

σr(X)dBr(t). (3.4)

The diffusion matrix is defined as follows:

A(X) = (aij(x)), (aij(x)) =

k∑
r=1

σir(x)σjr(x). (3.5)

Lemma 3.2. [10] The Markov process X(t) has a unique ergodic stationary distri-
bution π(·), if there exists a bounded domain U ⊂ Ed with regular boundary Γ and

(i) there is a positive number M such that
∑d
i,j=1 aij(x)ξiξj >M |ξ|2 , x ∈ U, ξ ∈ Rd.

(ii) there exists a nonnegative C2-function V such that LV is negative for any Ed\U.
Then,

Px

{
lim
T→∞

1

T

∫ T

0

f(X(t))dt =

∫
Ed

f(x)π(dx)

}
= 1 (3.6)

for all x ∈ Ed, where f(·) is a function integrable with respect to the measure π.

Lemma 3.3. [33] Let A(t) and U(t) be two continuous adapted increasing process
on t > 0 with A(0) = U(0) = 0 a.s. Let M(t) be a real-valued continuous local
martingale with M(0) = 0 a.s. Let X(0) be a nonnegative F0-measurable random
variable such that E (X(0)) < ∞. Define X(t) = X(0) + A(t) − U(t) + M(t) for
all t > 0. If X(t) is nonnegative, then limt→∞A(t) < ∞ implies limt→∞ U(t) <
∞, limt→∞X(t) <∞ and −∞ < limt→∞M(t) <∞ hold with probability one.
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Lemma 3.4. [5,33] Let M(t), t > 0 be a local martingale vanishing at time 0 and
define

ρM (t) :=

∫ t

o

d [M,M ] (s)

(1 + s)2
, t > 0, (3.7)

where [M,M ] (t) is Meyers angle bracket process. Then, lim
t→∞

M(t)
t = 0 a.s. provided

that lim
t→∞

ρM (t) <∞ a.s.

Lemma 3.5. For the solution (S(t), I(t), R(t)) of system (2.2) with any initial
value (S(0), I(0), R(0)) ∈ R3

+, we have

lim sup
t→∞

(S(t) + I(t) +R(t)) <∞ a.s. (3.8)

Moreover,

lim
t→+∞

1

t

∫ t

0

σiS(θ)dBi(θ) = 0, lim
t→+∞

1

t

∫ t

0

σiI(θ)dBi(θ) = 0,

lim
t→+∞

1

t

∫ t

0

σiR(θ)dBi(θ) = 0, lim
t→+∞

1

t

∫ t

0

σidBi(θ) = 0, (i = 1, 2, 3, 4) a.s.

(3.9)

Proof. From (2.2), we get

d(S+I+R) = [µA− µ(S + I +R)− αI] dt−σ1SdB1(t)−σ2IdB2(t)−σ3RdB3(t).
(3.10)

This equation has the solution of the form

S(t) + I(t) +R(t)

= A+ [(S(0) + I(0) +R(0))−A] e−µt − α
∫ t

0

e−µ(t−s)I(s)ds+M(t)

6 A+ [(S(0) + I(0) +R(0))−A] e−µt +M(t),

(3.11)

where

M(t) = −σ1

∫ t

0

e−µ(t−s)S(s)dB1(s)− σ2

∫ t

0

e−µ(t−s)I(s)dB2(s)

−σ3

∫ t

0

e−µ(t−s)R(s)dB3(s)

is a continuous local martingale with M(0) = 0 a.s. Define

X(t) = X(0) +A(t)− U(t) +M(t), (3.12)

with X(0) = (S(0) + I(0) + R(0)), A(t) = A(1− e−µt) and U(t) = (S(0) + I(0) +
R(0))(1−e−µt) for all t > 0. Since the stochastic comparison theorem, S(t)+I(t)+
R(t) 6 X(t) a.s. It is easy to check that A(t) and U(t) are continuous adapted
increasing processes on t > 0 with A(0) = U(t) = 0. By Lemma 3.3, we have that
limt→∞X(t) <∞ a.s. Thus, we complete the proof of (3.8).
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For the sake of convenience, we denote

M1(t) = σ1

∫ t

0

S(s)dB1(s),M2(t) = σ2

∫ t

0

S(s)dB2(s),M3(t) = σ4

∫ t

0

S(s)dB4(s),

M4(t) = σ2

∫ t

0

I(s)dB2(s),M5(t) = σ4

∫ t

0

I(s)dB4(s),

M6(t) = σ2

∫ t

0

dB2(s),M7(t) = σ4

∫ t

0

dB4(s).

(3.13)

Compute that [M,M ] (t) = σ2
1

∫ t
0
S2(s)ds and by (3.8), we obtain

lim
t→∞

ρ1(t) = lim
t→∞

∫ t

0

σ2
1S

2(s)ds

(1 + s)2
6 σ2

1 sup
t>0

{
S2(t)

}
<∞. (3.14)

Then, by Lemma 3.4, limt→∞
1
t

∫ t
0
σ1S(s)dB1(s) = 0. The left can be proved simi-

larly. The proof is complete.

Lemma 3.6. For the solution (S(t), I(t), R(t)) of system (2.2) with any initial
value (S(0), I(0), R(0)) ∈ R3

+, we have

lim sup
t→∞

〈S(t) + I(t) +R(t)〉 6 A a.s. (3.15)

Proof. We set

Ma(t) =

∫ t

0

S(s)dB1(s), M∗a (t) =

∫ t

0

e−µ(t−s)S(s)dB1(s),

Mb(t) =

∫ t

0

I(s)dB2(s), M∗b (t) =

∫ t

0

e−µ(t−s)I(s)dB2(s),

Mc(t) =

∫ t

0

R(s)dB3(s), M∗c (t) =

∫ t

0

e−µ(t−s)R(s)dB3(s).

(3.16)

By Lemma 3.5, we have

lim
t→∞

1

t
Ma(t) = 0, lim

t→∞

1

t
M∗a (t) = 0,

lim
t→∞

1

t
Mb(t) = 0, lim

t→∞

1

t
M∗b (t) = 0,

lim
t→∞

1

t
Mc(t) = 0, lim

t→∞

1

t
M∗c (t) = 0 a.s.

(3.17)
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From (3.11), since

〈M(t)〉 = −σ1

t

∫ t

0

∫ s

0

e−µ(s−u)S(u)dB1(u)ds

−σ2

t

∫ t

0

∫ s

0

e−µ(s−u)I(u)dB2(u)ds

−σ3

t

∫ t

0

∫ s

0

e−µ(s−u)R(u)dB3(u)ds

= −σ1

t

(∫ t

0

S(u)dB1(u)−
∫ t

0

e−µ(t−u)S(u)dB1(u)

)
−σ2

t

(∫ t

0

I(u)dB2(u)−
∫ t

0

e−µ(t−u)I(u)dB2(u)

)
−σ3

t

(∫ t

0

R(u)dB3(u)−
∫ t

0

e−µ(t−u)R(u)dB3(u)

)
.

(3.18)

By (3.17), we obtain limt→∞ 〈M(t)〉 = 0. Since

lim
t→∞

1

t

∫ t

0

[S(0) + I(0) +R(0)−A]e−µsds

= lim
t→∞

1

µt

{
[S(0) + I(0) +R(0)−A] (1− e−µt)

}
= 0,

(3.19)

from (3.11). By (3.11), (3.18) and (3.19), we obtain

lim sup
t→∞

〈S(t) + I(t) +R(t)〉 6 A a.s.

This completes the proof.

3.2. Existence of the global and positive solution

In this section, by using Lyapunov method, we show the solution of system (2.2) is
positive and global.

Theorem 3.1. For any given initial value (S(0), I(0), R(0)) ∈ R3
+, there exists a

unique positive solution (S(t), I(t), R(t)) to system (2.2) on t > 0 and the solution
will remain in R3

+ with probability one. That is to say, (S(t), I(t), R(t)) ∈ R3
+ for

all t > 0 almost definite.

Proof. Since the coefficients of system (2.2) are locally Lipschitz continuous, for
any given initial value (S(0), I(0), R(0)) ∈ R3

+, there exists a unique local solution
(S(t), I(t), R(t)) on t ∈ [0, τe), where τe denotes the explosion time [6]. To verify
that this solution is global, we only need to prove τe = +∞ a.s.

Let k0 > 0 be enough large such that each component of (S(0), I(0), R(0)) is no
large than k0. For each integer k > k0, define the stopping time

τk = inf {t ∈ [0, τe) : S(t) > k, I(t) > k,R(t) > k} ,

where throughout this paper we set inf ∅ = +∞. Obviously, τk is increasing as
k →∞. Set τ∞ = limk→∞ τkthen we can get τ∞ 6 τe a.s.
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Define a C2-function V : R3
+ → R+ by

V (X) = S + I +R. (3.20)

By Itô’s formula, we get

dV (X) = (µA− µS − µI − αI − µR) dt− σ1SdB1(t)− σ2IdB2(t)− σ3RdB3(t)

, LV dt− σ1SdB1(t)− σ2IdB2(t)− σ3RdB3(t),
(3.21)

where
LV (t) = µA− µS − µI − αI − µR 6 µA , K.

For any k > k0, there exists T > 0 such that τk ∈ (0, T ∧ τk]. By the generalized
Itô’s formula, for any t ∈ (0, T ∧ τk], we have

EV (X(T ∧ τk)) = EV (X(S(0), I(0), R(0))) + E

∫ T∧τk

0

LV (X(s))ds

6 EV (X(S(0), I(0), R(0))) +KT.

(3.22)

Let k → ∞, then t → ∞, it follows that limk→∞ P (τk 6 T ) = 0. Therefore,
P (τ∞ 6 T ) = 0. Since T > 0 is arbitrary, it results in

P (τ∞ <∞) = 0, P (τ∞ =∞) = 1. (3.23)

Consequently, the proof of Theorem 3.1 is completed.

3.3. Extinction of the disease

In deterministic model (2.1), the value of the basic reproduction number <0 guaran-
tees persistence or extinction of the disease. If <0 6 1, then the disease will become
extinct; if <0 > 1, then the disease will be persistent. However, we will verify that
if the white noise is large enough. Then, the disease will die out, although it may
be persistent for deterministic case. The following theorem establishes a criterion
for the extinction of a disease.

Define a parameter as follows:

<∗ =
2βA(µ+ γ + α)2{[

(µ+ γ + α)2µ+ 1
2σ

2
3(µ+ γ + α)2

]
∧
[

1
2σ

2
2γ

2 + 1
2σ

2
4(µ+ α)2

]} . (3.24)

Theorem 3.2. Let (S(t), I(t), R(t)) be the solution of system (2.2) with any ini-
tial value (S(0), I(0), R(0)) ∈ R3

+. If <∗ < 1, then the solution (S(t), I(t), R(t)) of
system (2.2) has the following property

lim
t→∞

〈S〉t = A a.s. (3.25)

and

lim sup
t→∞

1

t
ln [γI + (µ+ γ + α)R] 6 βA− 1

2(µ+ γ + α)2
Q < 0 a.s., (3.26)

where

Q =

{[
(µ+ γ + α)2µ+

1

2
σ2

3(µ+ γ + α)2

]
∧
[

1

2
σ2

2γ
2 +

1

2
σ2

4(µ+ α)2

]}
.
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Proof. Let Q = γI + (µ+ γ + α)R. An application of the Itô’s formula, we have

d lnQ

=

[
γSf(I)− µ(µ+ γ + α)R

γI + (µ+ γ + α)R
− 1

2

σ2
2I

2γ2 + σ2
3R

2(µ+ γ + α)2 + σ2
4I

2(µ+ α)2

(γI + (µ+ γ + α)R)2

]
dt

− σ2γI

γI + (µ+ γ + α)R
dB2(t)− σ3R(µ+ γ + α)

γI + (µ+ γ + α)R
dB3(t) +

σ4I(µ+ α)

γI + (µ+ γ + α)R
dB4(t)

6
Sf(I)

I
dt− 1

(γI + (µ+ γ + α)R)2

{[
(µ+ γ + α)2µ+

1

2
σ2
3(µ+ γ + α)2

]
R2

+

[
1

2
σ2
2γ

2 +
1

2
σ2
4(µ+ α)2

]
I2
}

dt− σ2γI

γI + (µ+ γ + α)R
dB2(t)

− σ3R(µ+ γ + α)

γI + (µ+ γ + α)R
dB3(t) +

σ4I(µ+ α)

γI + (µ+ γ + α)R
dB4(t)

6 βSdt− σ2γI

γI + (µ+ γ + α)R
dB2(t)

− σ3R(µ+ γ + α)

γI + (µ+ γ + α)R
dB3(t) +

σ4I(µ+ α)

γI + (µ+ γ + α)R
dB4(t)

− 1

2(µ+ γ + α)2

{[
(µ+ γ + α)2µ+

1

2
σ2
3(µ+ γ + α)2

]
∧
[

1

2
σ2
2γ

2 +
1

2
σ2
4(µ+ α)2

]}
dt,

(3.27)

on account of

Q− 1

(ax+ (a+ b)y)
2

{
cx2 + dy2

}
6 Q− 1

(a+ b)2(x+ y)2
(c ∧ d)

(
x2 + y2

)
6 Q− 1

2(a+ b)2
(c ∧ d) ,

with

2(x+ y)2 >
(
x2 + y2

)
.

By system (2.2), one can see that

d(S+I+R) = [µA− µ(S + I +R)− αI] dt−σ1SdB1(t)−σ2IdB2(t)−σ3RdB3(t).
(3.28)

Integrating the both sides of (3.28) from 0 to t, by Lemma 3.6, we have

lim sup
t→∞

〈S(t) + I(t) +R(t)〉 6 A a.s. (3.29)

Integrating the both sides of (3.27) from 0 to t, together with (3.29), and noting
that <∗ < 1, one can get that

lim sup
t→∞

lnQ(t)

t
6 βA− 1

2(µ+ γ + α)2

{[
(µ+ γ + α)2µ+

1

2
σ2

3(µ+ γ + α)2

]
∧
[

1

2
σ2

2γ
2 +

1

2
σ2

4(µ+ α)2

]}
< 0 a.s.,

(3.30)
which implies that

lim
t→+∞

I(t) = 0, lim
t→+∞

R(t) = 0 a.s. (3.31)
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On the other hand, according to (3.28), we have

S(t)− S(0)

t
+
I(t)− I(0)

t
+
R(t)−R(0)

t
= µA− µ 〈S〉t − µ 〈I〉t − µ 〈R〉t − α 〈I〉t

−
σ1

∫ t
0
S(s)dB1(s)

t
−
σ2

∫ t
0
I(s)dB2(s)

t
−
σ3

∫ t
0
R(s)dB3(s)

t
.

(3.32)

By Lemma 3.5, Lemma 3.6 and (3.31), it implies that

lim
t→+∞

〈S〉 = A a.s.

Thus, the proof of Theorem 3.2 is completed.

3.4. Asymptotic behavior around the disease-free equilibrium
E0.

As mentioned in model (2.1), if <0 6 1, then the disease-free equilibrium E0 of
system (2.1) is always globally asymptotically stable, which indicates that the dis-
ease will go to extinction with the advancement of time. Noticing that E0 is not
an equilibrium of system (2.2), it is of great interest to study whether the disease
will die out in the population. Now, we are in the position to investigate how the
solution of system (2.2) spirals closely around E0.

Theorem 3.3. Suppose that <0 6 1. Then, for any solution (S(t), I(t), R(t))
of model (2.2) with initial value (S(0), I(0), R(0)) ∈ R3

+, if σ2
1 < µ, 1

2σ
2
2 + σ2

4 <

µ+ γ + α− γ2

2µ and σ2
3 < µ. Then, we obtain

lim sup
t→∞

1

t
E

∫ t

0

[(S(u)−A)2 + I2(u) +R2(u)]du 6
σ2

1A
2

m
,

where m = min
{

(µ− σ2
1), (µ+ γ + α− 1

2σ
2
2 − σ2

4 −
γ2

2µ ), (µ2 −
1
2σ

2
3)
}
.

Proof. Define V : R3
+ → R+ by

V (t) = V1(t) +
2µ+ γ + α

β
V2(t) + V3(t), (3.33)

where

V1(t) =
1

2
(S(t)−A+ I(t))2, V2(t) = I(t), V3(t) =

1

2
(R(t))2. (3.34)

Along the trajectories of model (2.2), one can obtain that

dV (t) = dV1(t) +
2µ+ γ + α

β
dV2(t) + dV3(t). (3.35)

In details,

dV1 = LV1dt− (S −A+ I)(σ1SdB1(t) + σ2IdB2(t) + σ4IdB4(t)),

dV2 = LV2dt− σ2IdB2(t)− σ4IdB4(t),
(3.36)
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and
dV3 = LV3dt− σ3R

2dB3(t) + σ4IRdB4(t), (3.37)

where

LV1 = (S −A+ I)(µA− µS − (µ+ γ + α)I) +
1

2
(σ2

1S
2 + σ2

2I
2 + σ2

4I
2),

LV2 = Sf(I)− (µ+ γ + α)I,

LV3 = γIR− µR2 +
1

2
(σ2

3R
2 + σ2

4I
2).

(3.38)

By (3.38), one can see that

LV1 = (S −A+ I)(−µ(S −A)− (µ+ γ + α)I)

+
1

2
(σ2

1(S −A+A)2 + σ2
2I

2 + σ2
4I

2)

= −µ(S −A)2 − (2µ+ γ + α)(S −A)I − (µ+ γ + α)I2

+
1

2
(σ2

1(S −A+A)2 + σ2
2I

2 + σ2
4I

2)

= −µ(S −A)2 − (2µ+ γ + α)(S −A)I − (µ+ γ + α)I2

+σ2
1(S −A)2 + σ2

1A
2 +

1

2
(σ2

2 + σ2
4)I2

6 −(µ− σ2
1)(S −A)2 − (2µ+ γ + α)(S −A)I

−(µ+ γ + α− 1

2
σ2

2 −
1

2
σ2

4)I2 + σ2
1A

2,

(3.39)

where in the last step we have used the elementary inequalities (a+b)2 6 2a2 +2b2.
Analogously, by (3.38) and 2ab 6 a2 + b2, <0 = βA

µ+γ+α < 1, we get

LV2 = (S −A+A)f(I)− (µ+ γ + α)I = (S −A)f(I) +Af(I)− (µ+ γ + α)I

6 (S −A)βI +AβI − (µ+ γ + α)I = (S −A)βI + (Aβ − (µ+ γ + α))I

6 (S −A)βI,
(3.40)

and

LV3 = γIR− µR2 +
1

2
(σ2

3R
2 + σ2

4I
2)

6
γ2

2µ
I2 +

µ

2
R2 − µR2 +

1

2
(σ2

3R
2 + σ2

3I
2) = −(

µ

2
− 1

2
σ2

3)R2 + (
γ2

2µ
+

1

2
σ2

4)I2.

(3.41)
By (3.39), (3.40) and (3.41), one can derive that

LV 6 −(µ− σ2
1)(S −A)2 − (2µ+ γ + α)(S −A)I

−(µ+ γ + α− 1

2
σ2

2 −
1

2
σ2

4)I2 + σ2
1A

2

+
2µ+ γ + α

β
(S −A)βI − (

µ

2
− 1

2
σ2

3)R2 + (
γ2

2µ
+

1

2
σ2

4)I2

= −(µ− σ2
1)(S −A)2 − (µ+ γ + α− 1

2
σ2

2 − σ2
4 −

γ2

2µ
)I2

−(
µ

2
− 1

2
σ2

3)R2 + σ2
1A

2.

(3.42)
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Integrating (3.35) from 0 to t on both sides, then taking expectation and combining
with (3.42) leads to

EV (t)− V (0) 6 −(µ− σ2
1)E

∫ t

0

(S(u)−A)2du

−(µ+ γ + α− 1

2
σ2

2 − σ2
4 −

γ2

2µ
)E

∫ t

0

I2(u)du

−(
µ

2
− 1

2
σ2

3)E

∫ t

0

R2(u)du+ σ2
1A

2t.

(3.43)

Therefore,

lim sup
t→∞

1

t
E

∫ t

0

Qdu 6 σ2
1A

2, (3.44)

where
Q =

[
(µ− σ2

1)(S(u)−A)2 + (µ+ γ + α− 1
2σ

2
2 − σ2

4 −
γ2

2µ )I2(u) + (µ2 −
1
2σ

2
3)R2(u)

]
.

Let m = min
{

(µ− σ2
1), (µ+ γ + α− 1

2σ
2
2 − σ2

4 −
γ2

2µ ), (µ2 −
1
2σ

2
3)
}

, then by (3.44),

we can obtain

lim sup
t→∞

1

t
E

∫ t

0

[
(S(u)−A)2 + I2(u) +R2(u)

]
du 6

σ2
1A

2

m
.

Thus, the proof of Theorem 3.3 is completed.
Noting that when σ1 = 0, E0 is also the disease-free equilibrium of system (2.2)

and (3.42) reduces to the following from

LV 6 −µ(S −A)2 − (µ+ γ + α− 1

2
σ2

2 − σ2
4 −

γ2

2µ
)I2 − (

µ

2
− 1

2
σ2

3)R2, (3.45)

which shows that LV is negative definite as long as 1
2σ

2
2 + σ2

4 < µ+ γ +α− γ2

2µ and

σ2
3 < µ. Consequently, we have the following corollary.

Corollary 3.1. Suppose that <0 6 1 and σ1 = 0. Then, the disease-free equilibrium
E0 of system (2.2) is stochastically asymptotically stable in the large provided 1

2σ
2
2 +

σ2
4 < µ+ γ + α− γ2

2µ and σ2
3 < µ.

3.5. Existence of the stationary distribution

In this subsection, we consider the existence of a unique stationary distribution of
system (2.2).

Theorem 3.4. Assume that <0 > 1, and the following conditions hold

0 < F < min
{
η1S

2
∗ , η2I

2
∗ , η3R

2
∗
}
, (3.46)

where

η1 = µ− σ2
1 , η2 = µ+ γ + α− σ2

2 − 2σ2
4 −

γ2

2µ
, η3 =

µ

2
− σ2

3 ,

F = σ2
3R

2
∗ + σ2

4I
2
∗ +

(2µ+ γ + α)I2
∗

2f(I∗)
(σ2

2 + σ2
4).

(3.47)
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Then, for any solution (S(t), I(t), R(t)) of model (2.2) with initial value (S(0), I(0), R(0)) ∈
R3

+, there is a stationary distribution π for system (2.2). Especially, we obtain

lim sup
t→∞

1

t
E

∫ t

0

[η1(S(u)− S∗)2 + η2(I(u)− I∗)2 + η3(R(u)−R∗)2]du 6 F, (3.48)

where (S∗, I∗, R∗) is the unique endemic equilibrium of system (2.1).

Proof. Since <0 > 1, then there is an equilibrium E∗ = (S∗, I∗, R∗) of system
(2.2) and

µA = µS∗ + S∗f(I∗), S∗f(I∗) = (µ+ γ + α)I∗, γI∗ = µR∗. (3.49)

Now, we define Φ : R3
+ → R+ by

Φ(S(t), I(t), R(t)) = Φ1(R(t)) +
(2µ+ γ + α)I∗

f(I∗)
Φ2(I(t)) + Φ3(S(t), I(t)), (3.50)

where

Φ1(R(t)) =
1

2
(R−R∗)2,Φ2(I(t)) = I − I∗ − I∗ ln

I

I∗
,

Φ3(S(t), I(t)) =
1

2
(S + I − S∗ − I∗)2.

(3.51)

By Itô’s formula, one can obtain

dΦ(S(t), I(t), R(t)) = dΦ1(R(t)) +
(2µ+ γ + α)I∗

f(I∗)
dΦ2(I(t)) + dΦ3(S(t), I(t)),

(3.52)
In details,

dΦ1(R(t)) = LΦ1dt− (R−R∗)(σ3RdB3(t)− σ4IdB4(t)),

dΦ2(I(t)) = LΦ2dt− (I − I∗)σ2dB2(t)− (I − I∗)σ4dB4(t),

dΦ3(S(t), I(t)) = LΦ3dt− (S + I − S∗ − I∗)(σ1SdB1(t) + σ2IdB2(t) + σ4IdB4(t),
(3.53)

where

LΦ1 = (R−R∗)(γI − µR) +
1

2
(σ2

3R
2 + σ2

4I
2),

LΦ2 = (1− I∗
I

)(Sf(I)− (µ+ γ + α)I) +
I∗
2

(σ2
2 + σ2

4),

LΦ3 = (S + I − S∗ − I∗)(µA− µS − (µ+ γ + α)I) +
1

2
(σ2

1S
2 + σ2

2I
2 + σ2

4I
2).

(3.54)
Making use of (3.49) and the elementary inequalities (a + b)2 6 2a2 + 2b2, 2ab 6
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a2 + b2 and by (3.54), one can obtain that

LΦ1 = (R−R∗)(γ(I − I∗)− µ(R−R∗)) +
1

2
σ2

3(R−R∗ +R∗)
2 +

1

2
σ2

4(I − I∗ + I∗)
2

6 γ(R−R∗)(I − I∗)− µ(R−R∗)2 + σ2
3(R−R∗)2 + σ2

3R
2
∗ + σ2

4(I − I∗)2 + σ2
4I

2
∗

=
γ
√
µ

(R−R∗)
√
µ(I − I∗)− µ(R−R∗)2

+σ2
3(R−R∗)2 + σ2

3R
2
∗ + σ2

4(I − I∗)2 + σ2
4I

2
∗

6
γ2

2µ
(I − I∗)2 − (

µ

2
− σ2

3)(R−R∗)2 + σ2
4(I − I∗)2 + σ2

3R
2
∗ + σ2

4I
2
∗

= (
γ2

2µ
+ σ2

4)(I − I∗)2 − (
µ

2
− σ2

3)(R−R∗)2 + σ2
3R

2
∗ + σ2

4I
2
∗ .

(3.55)
Next, one can get that

LΦ2 = (I − I∗)
(
Sf(I)

I
− (µ+ γ + α)

)
+
I∗
2

(σ2
2 + σ2

4)

= (I − I∗)
(
Sf(I)

I
− S∗f(I∗)

I∗

)
+
I∗
2

(σ2
2 + σ2

4)

= (I − I∗)
(
S(
f(I)

I
− f(I∗)

I∗
) +

f(I∗)(S − S∗)
I∗

)
+
I∗
2

(σ2
2 + σ2

4).

(3.56)

By condition (ii), we know that f(I)/I is continuous and monotone nonincreasing

for I > 0. Therefore, we obtain (I − I∗)S
(
f(I)
I −

f(I∗)
I∗

)
6 0. Then, we have

LΦ2 6 (I− I∗)
f(I∗)(S − S∗)

I∗
+
I∗
2

(σ2
2 +σ2

4) =
f(I∗)

I∗
(I− I∗)(S−S∗) +

I∗
2

(σ2
2 +σ2

4).

(3.57)
Now, we compute

LΦ3 = ((S − S∗) + (I − I∗)) (−µ(S − S∗)− (µ+ γ + α)(I − I∗))

+
1

2
σ2

1(S − S∗ + S∗)
2 +

1

2
σ2

2(I − I∗ + I∗)
2 +

1

2
σ2

4(I − I∗ + I∗)
2

= −µ(S − S∗)2 − (µ+ γ + α)(I − I∗)2 − (2µ+ γ + α)(I − I∗)(S − S∗)
+σ2

1(S − S∗)2 + σ2
1S

2
∗ + σ2

2(I − I∗)2 + σ2
2I

2
∗ + σ2

4(I − I∗)2 + σ2
4I

2
∗

= −(µ− σ2
1)(S − S∗)2 − (µ+ γ + α− σ2

2 − σ2
4)(I − I∗)2

−(2µ+ γ + α)(I − I∗)(S − S∗) + σ2
1S

2
∗ + σ2

2I
2
∗ + σ2

4I
2
∗ .

(3.58)
From (3.52), we can derive

LΦ(S(t), I(t), R(t)) = LΦ1(R(t)) +
(2µ+ γ + α)I∗

f(I∗)
LΦ2(I(t)) + LΦ3(S(t), I(t)).

(3.59)
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Substituting (3.55)-(3.58) into (3.59) leads to

LΦ(S(t), I(t), R(t))

6 (
γ2

2µ
+ σ2

4)(I − I∗)2 − (
µ

2
− σ2

3)(R−R∗)2 + σ2
3R

2
∗ + σ2

4I
2
∗

+
(2µ+ γ + α)I∗

f(I∗)

(
f(I∗)

I∗
(I − I∗)(S − S∗) +

I∗
2

(σ2
2 + σ2

4)

)
−(µ− σ2

1)(S − S∗)2 − (µ+ γ + α− σ2
2 − σ2

4)(I − I∗)2

−(2µ+ γ + α)(I − I∗)(S − S∗) + σ2
1S

2
∗ + σ2

2I
2
∗ + σ2

4I
2
∗

= −(µ− σ2
1)(S − S∗)2 − (µ+ γ + α− σ2

2 − 2σ2
4 −

γ2

2µ
)(I − I∗)2

−(
µ

2
− σ2

3)(R−R∗)2 + σ2
3R

2
∗ + σ2

4I
2
∗ +

(2µ+ γ + α)I2
∗

2f(I∗)
(σ2

2 + σ2
4)

, −η1(S − S∗)2 − η2(I − I∗)2 − η3(R−R∗)2 + F,

(3.60)

where η1, η2, η3 and F are defined respectively in Theorem 3.4.
Consequently, we have

dΦ(S(t), I(t), R(t)) 6 −η1(S − S∗)2 − η2(I − I∗)2 − η3(R−R∗)2 + F

−(R−R∗)(σ3RdB3(t)− σ4IdB4(t))

− (2µ+ γ + α)I∗
f(I∗)

((I − I∗)σ2dB2(t) + (I − I∗)σ4dB4(t))

−(S + I − S∗ − I∗)(σ1SdB1(t) + σ2IdB2(t) + σ4IdB4(t).
(3.61)

Integrating (3.61) from 0 to t on both sides results in

Φ(S(t), I(t), R(t))− Φ(S(0), I(0), R(0))

6
∫ t

0

[
−η1(S(u)− S∗)2 − η2(I(u)− I∗)2 − η3(R(u)−R∗)2

]
du+ Ft+M(t),

(3.62)
where M(t) is a local martingale defined by

M(t)

= −
∫ t

0

(S(u) + I(u)− S∗ − I∗) (σ1S(u)dB1(u) + σ2I(u)dB2(u) + σ4I(u)dB4(u))

− (2µ+ γ + α)I∗
f(I∗)

∫ t

0

(I(u)− I∗) (σ2dB2(u) + σ4dB4(u))

−
∫ t

0

(R(u)−R∗) (σ3R(u)dB3(u)− σ4I(u)dB4(u)).

(3.63)
Taking expectation on both sides of (3.62) leads to

EΦ(S(t), I(t), R(t))− EΦ(S(0), I(0), R(0))

6 E

∫ t

0

[
−η1(S(u)− S∗)2 − η2(I(u)− I∗)2 − η3(R(u)−R∗)2

]
du+ Ft.

(3.64)
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Therefore, we have

lim sup
t→∞

1

t
E

∫ t

0

[
η1(S(u)− S∗)2 + η2(I(u)− I∗)2 + η3(R(u)−R∗)2

]
du 6 F. (3.65)

Noting that if 0 < F < min
{
η1S

2
∗ , η2I

2
∗ , η3R

2
∗
}

, then the ellipsoid

−η1(S(t)− S∗)2 − η2(I(t)− I∗)2 − η3(R(t)−R∗)2 + F = 0 (3.66)

lies entirely in R3
+. We can take U to be any neighborhood of the ellipsoid such

Ū ⊂ R3
+, where Ū denotes the closure of U . Thereby, we can get LΦ(S, I,R) < 0

for (S, I,R) ∈ R3
+\U , which shows that condition in Lemma 3.2 holds.

On the other hand, we can rewrite system (2.2) as the form of (3.1):

d

S(t)

I(t)

R(t)

 =

µA− µS − Sf(I)

Sf(I)− (µ+ γ + α)I

γI − µR

dt+

−σ1S

0

0

 dB1(t) +

 0

−σ2I

0

dB2(t)

+

 0

0

−σ3R

dB3(t) +

 0

−σ4I

+σ4I

dB4(t).

(3.67)
By Lemma 3.1, we obtain the diffusion matrix is

A =


σ2

1S
2
∗ 0 0

0 σ2
2I

2
∗ + σ2

4I
2
∗ −σ2

4I
2
∗

0 −σ2
4I

2
∗ σ2

3R
2
∗ + σ2

4I
2
∗

 . (3.68)

There exists a positive number M = min
{
σ2

1S
2, σ2

2I
2, σ2

3R
2
}

such that for all
(x1, x2, x3) ∈ Ū and ξ ∈ R3

+, we have

3∑
i,j=1

aijξiξj =
(
σ2

1S
2
)
ξ2
1 +

(
σ2

2I
2 + σ2

4I
2
)
ξ2
2 − 2σ2

4I
2ξ2ξ3 +

(
σ2

3R
2 + σ2

4R
2
)
ξ2
3

= σ2
1S

2ξ2
1 + σ2

2I
2ξ2

2 + σ2
3R

2ξ2
3 + σ2

4I
2 (ξ2 − ξ3)

2

> σ2
1S

2ξ2
1 + σ2

2I
2ξ2

2 + σ2
3R

2ξ2
3

> min
{
σ2

1S
2, σ2

2I
2, σ2

3R
2
}
|ξ|2

= M |ξ|2 ,
(3.69)

which implies that condition in Lemma 3.2 also holds. Consequently, we can
conclude that system (2.2) has a stationary distribution π(·). Thus, the proof of
Theorem 3.4 is completed.

3.6. Persistence in mean

Considering that the first two equations of the system (2.2) do not contain variable
R, we obtain the equivalent system as follows:{

dS = (µA− µS − Sf(I)) dt− σ1SdB1(t),

dI = (Sf(I)− (µ+ γ + α)I) dt− σ2IdB2(t)− σ4IdB4(t),
(3.70)
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The conditions of the extinction for system (3.70) have been obtained. In this
subsection, we investigate the conditions which lead to the persistence by mean-
s of epidemic system (3.70) under the stochastic disturbances, which implies the
infectious disease is prevalent.

Theorem 3.5. Let (S(t), I(t), R(t)) be the solution of system (3.70) with any initial

value (S(0), I(0), R(0)) ∈ R3
+. When both the conditions f(A)

A > µ and

<̃ =
2 (f(A)− (µ+ γ + α))

σ2
2 + σ2

4

> 1 (3.71)

hold, then the epidemic disease I(t) is persistent in mean. In other words,

0 <
Aµ
(
σ2

2 + σ2
4

)
2f(A)(µ+ γ + α)

(
<̃ − 1

)
6 lim inf

t→∞
〈I(t)〉 6 lim sup

t→∞
〈I(t)〉 6 A. (3.72)

Proof. For system (3.70), computing the sum of two equations yields

d (S(t) + I(t)) = [µA− µS(t)− (µ+ γ + α)I(t)] dt

−σ1S(t)dB1(t)− σ2I(t)dB2(t)− σ4I(t)dB4(t).
(3.73)

Integrating both sides of inequality (3.73) from 0 to t and dividing both sides by t,
we obtain

1

t
[S(t)− S(0) + I(t)− I(0)]

= µA− µ 〈S(t)〉 − (µ+ γ + α) 〈I(t)〉 − M1(t)

t
− M4(t)

t
− M5(t)

t
,

(3.74)

where

M1(t) =

∫ t

0

σ1S(θ)dB1(θ),M4(t) =

∫ t

0

σ2I(θ)dB2(θ),M5(t) =

∫ t

0

σ4I(θ)dB4(θ).

(3.75)
Taking the limit of both sides of inequality (3.74) and by Lemma 3.5, we can get

0 = µA− µ lim
t→+∞

〈S(t)〉 − (µ+ γ + α) lim
t→+∞

〈I(t)〉 , (3.76)

i.e.,

lim
t→+∞

〈S(t)〉 = A− (µ+ γ + α)

µ
lim

t→+∞
〈I(t)〉 . (3.77)

Next, we define C2-function V : R2
+ → R+ by

V (S(t), I(t)) = ln I(t) + I(t) + S(t). (3.78)

Applying Itô’s formula results in

dV (S(t), I(t)) = LV dt−σ2dB2(t)−σ4dB4(t)−σ1SdB1(t)−σ2IdB2(t)−σ4IdB4(t),
(3.79)

where

LV =

[
Sf(I)

I
− (µ+ γ + α)− 1

2
(σ2

2 + σ2
4)

]
+ µA− µS − (µ+ γ + α)I

>

[
f(A)

A
S − (µ+ γ + α)− 1

2
(σ2

2 + σ2
4)

]
+ µA− µS − (µ+ γ + α)I

=

[
µA− (µ+ γ + α)− 1

2
(σ2

2 + σ2
4)

]
+

(
f(A)

A
− µ

)
S − (µ+ γ + α)I.

(3.80)
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Integrating both sides of inequality (3.79) from 0 to t and dividing both sides by t,
we get

1

t
(ln I(t) + I(t) + S(t))

>

[
µA− (µ+ γ + α)− 1

2
(σ2

2 + σ2
4)

]
+

(
f(A)

A
− µ

)
〈S(t)〉

−(µ+ γ + α) 〈I(t)〉 − M1(t)

t
− M4(t)

t
− M5(t)

t
− M6(t)

t
− M7(t)

t

+
1

t
(ln I(0) + I(0) + S(0)) ,

(3.81)

i.e.

(µ+ γ + α) 〈I(t)〉

>

[
µA− (µ+ γ + α)− 1

2
(σ2

2 + σ2
4)

]
+

(
f(A)

A
− µ

)
〈S(t)〉 − M1(t)

t
− M4(t)

t

−M5(t)

t
− M6(t)

t
− M7(t)

t
− ln I(t)− ln I(0)

t
− I(t)− I(0)

t
− S(t)− S(0)

t
,

(3.82)
where

M1(t) =

∫ t

0

σ1S(θ)dB1(θ),M4(t) =

∫ t

0

σ2I(θ)dB2(θ),M5(t) =

∫ t

0

σ4I(θ)dB4(θ),

M6(t) =

∫ t

0

σ2dB2(θ),M7(t) =

∫ t

0

σ4dB4(θ).

(3.83)
Taking the limit of both sides of inequality (3.82), by Lemma 3.5, we have

(µ+ γ + α) lim
t→+∞

〈I(t)〉

>

[
µA− (µ+ γ + α)− 1

2
(σ2

2 + σ2
4)

]
+

(
f(A)

A
− µ

)
lim

t→+∞
〈S(t)〉 .

(3.84)

From inequality (3.77) and inequality (3.84), and assuming that the condition
f(A)
A > µ holds, then we can obtain

(µ+ γ + α) lim
t→+∞

〈I(t)〉 >
[
µA− (µ+ γ + α)− 1

2
(σ2

2 + σ2
4)

]
+

(
f(A)

A
− µ

)(
A− µ+ γ + α

µ
lim

t→+∞
〈I(t)〉

)
= −(µ+ γ + α)− 1

2
(σ2

2 + σ2
4) + f(A)

−
[
f(A)

A

µ+ γ + α

µ
− (µ+ γ + α)

]
lim

t→+∞
〈I(t)〉 ,

(3.85)
i.e.
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lim
t→+∞

〈I(t)〉 > µA

f(A)(µ+ γ + α)

[
f(A)− (µ+ γ + α)− 1

2
(σ2

2 + σ2
4)

]
=

µA(σ2
2 + σ2

4)

2f(A)(µ+ γ + α)

[
2 (f(A)− (µ+ γ + α))

(σ2
2 + σ2

4)
− 1

]
,

µA(σ2
2 + σ2

4)

2f(A)(µ+ γ + α)

(
<̃ − 1

)
.

(3.86)

When the condition <̃ = 2(f(A)−(µ+γ+α))
(σ2

2+σ2
4)

> 1 holds, taking the inferior limit of

both sides of (3.86) yields

lim
t→+∞

inf 〈I(t)〉 > µA(σ2
2 + σ2

4)

2f(A)(µ+ γ + α)

(
<̃ − 1

)
> 0. (3.87)

From Lemma 3.6, we know lim sup
t→∞

〈I(t)〉 6 A. Therefore, we get

0 <
Aµ
(
σ2

2 + σ2
4

)
2f(A)(µ+ γ + α)

(
<̃ − 1

)
6 lim inf

t→∞
〈I(t)〉 6 lim sup

t→∞
〈I(t)〉 6 A. (3.88)

This completes the proof of Theorem 3.5.

4. Numerical examples

In this section, we further analyze the stochastic model (2.2) by means of the
numerical examples.

0 500 1000 1500

Time t

0

1

2

3

4

5

6

7

8

9

10

I(
t)

Deterministic
Stochastic

Figure 1. When <∗ < 1, the infective I(t) will be extinct.

Example 4.1. In model (2.2), we define function f(I) = β
/

(1 + aI0.5), which
obviously satisfies condition (i-iii). Then, we take the parameters a = 0.01, µ =
0.15, A = 0.5, β = 0.2, γ = 0.1, α = 0.15 and σ1 = 0.82, σ2 = 0.82, σ3 =
0.82, σ4 = 0.82, we obtain <∗ = 0.9518 < 1. Here, we choose initial value S(0) =
6, I(0) = 4, R(0) = 3. From the numerical simulation given in Figure 1, we can
see that the infective I(t) will be extinct (see Theorem 3.2).
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Figure 2. When <̃ > 1 and
f(A)
A > µ, the infective I(t) will be persistent in mean.
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Figure 3. The infected I(t) of deterministic differential equation model (2.1) and stochastic differential
equation model (2.2) are extinct, and the solution of (2.2) fluctuates near the solution of (2.1).
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Figure 4. The infected I(t) of deterministic differential equation model (2.1) and stochastic differential
equation model (2.2) are persistent in mean, and the solution of (2.2) fluctuates near the solution of
(2.1).
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Example 4.2. In model (2.2), we take the parameters a = 0.01, µ = 0.15, A =
2, β = 0.5, γ = 0.05, α = 0.1 and σ1 = 0.1, σ2 = 0.1, σ3 = 0.1, σ4 = 0.1, we have

<̃ > 1 and f(A)
A > µ. Here, we choose initial value S(0) = 6, I(0) = 4, R(0) = 3.

From the numerical simulation given in Figure 2, we can see that the infective I(t)
will be persistent in mean (see Theorem 3.5).

Example 4.3. In model (2.2), we take the parameters a = 0.01, µ = 0.18, A =
0.3, β = 0.4, γ = 0.1, α = 0.1 and σ1 = 0.4, σ2 = 0.4, σ3 = 0.4, σ4 = 0.4. Then,
<0 = 0.3158 < 1 and the parameters satisfy the condition of Theorem 3.3. Here, we
choose initial value S(0) = 6, I(0) = 4, R(0) = 3. From the numerical simulation
given in Figure 3, we can see that the infected I(t) of deterministic differential
equation model (2.1) and stochastic differential equation model (2.2) will be extinct,
and the solution of stochastic differential equation model (2.2) will fluctuate near
the solution of deterministic model (2.1) (see Theorem 3.3). On the other hand, we
take the parameters a = 0.01, µ = 0.2, A = 2, β = 0.8, γ = 0.1, α = 0.1 and σ1 =
0.1, σ2 = 0.1, σ3 = 0.08, σ4 = 0.1, then <0 = 4 > 1. Here, we choose initial value
S(0) = 6, I(0) = 4, R(0) = 3, we have S∗ = 0.5043, I∗ = 0.7478, R∗ = 0.3739
and η1S

2
∗ = 0.0483, η2I

2
∗ = 0.1929, η3R

2
∗ = 0.0131, F = 0.0101, which satisfies the

condition <0 > 1 and 0 < F < min
{
η1S

2
∗ , η2I

2
∗ , η3R

2
∗
}

of Theorem 3.4. Thus, we
can conclude that model (2.2) has a unique endemic stationary distribution. From
the numerical simulation given in Figure 4, we can see that the infected I(t) of
deterministic differential equation model (2.1) and stochastic differential equation
model (2.2) will be persistent in mean, and the solution of stochastic differential
equation model (2.2) will fluctuate near the solution of deterministic model (2.1)
(see Theorem 3.4).

5. Discussions

In terms of human diseases, the nature of epidemic spread and growth is inherently
random due to the unpredictability of person-to-person contacts [22]. Hence, the
variability and randomness of the environment is fed through to the state of the
epidemic. In this paper, we establish stochastic differential equations (2.2) on the
basis of a nonlinear deterministic model (2.1) and study the global dynamics. In our
model (2.2), we suppose that stochastic environmental factor acts simultaneously
on each individual in the population, and assume that the stochastic perturbation
is a white noise type that is influenced on the recovery rate γ. The value of our
study is to provide the analytic results on the existence of global positive solution,
stochastic boundedness, permanence, extinction, asymptotic stability and ergodic
property of the solution of the SDE model (2.2). We summarize our main findings
as follows:

(1) Noise can restrain the disease outbreak, as Theorem 3.2 indicates that the
extinction of disease in the stochastic model (2.2) occurs if <∗ < 1 holds. It is
easy to see that <∗ is decreasing in σ2

2 , σ
2
3 and σ2

4 . Hence, the disease will die out
exponentially as long as σ2

2 , σ
2
3 and σ2

4 are sufficiently large such that <∗ < 1. This
implies that large environment fluctuations in I-class and R-class can suppress the
outbreak of disease.

(2) The epidemic disease is persistent in mean, as Theorem 3.5 indicates that
the epidemic disease I(t) is persistent in mean in the stochastic model (2.2) occurs,

if f(A)
A > µ and <̃ = 2(f(A)−(µ+γ+α))

σ2
2+σ2

4
> 1 hold.
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