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Regional Prediction of COVID-19 in the United
States Based on the Difference Equation Model∗

Ceyu Lei1 and Xiaoling Han1,†

Abstract The novel coronavirus pneumonia 2019 (COVID-19) has swept the
globe in just a few months with negative social and psychological consequences
for public health. So far, the United States has been one of the countries most
affected by the epidemic. In this study, 51 states in the United States are
divided into 10 state clusters according to relevant factors, and a difference
equation model with spatio-temporal dynamic characteristics is established to
predict the transmission dynamics of COVID-19 in the 10 state clusters and
obtain data on regional aggregation levels (the United States). The study
showed that the Pearson Correlation Coefficient between the actual data and
the predicted data in the 10 state clusters is between 0.6 and 0.96 (mean
R2=0.8448), and the mean absolute error (MAE) of the newly confirmed cases
in each cluster is between 300 and 1650 (mean MAE=878) and the average
forecasting error rate (AFER) of the total confirmed cases in each cluster is
between 0.9% and 3% (mean AFER=1.57%). These results show that the
difference equation model can well predict the changes in the recent confirmed
cases of infectious diseases such as COVID-19.

Keywords COVID-19, Prediction, Difference equation, Modeling, Mean ab-
solute error.
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1. Introduction

Since the first case appeared in Wuhan, China in December 2019, the COVID-19 has
aroused people’s attention. Since March 2020, the COVID-19 has rapidly spread
around the world. As of December 2020, more than 200 countries and regions
have been affected by the COVID-19. Among them, the United States, India,
Brazil, Russia and France are the five countries affected by the pandemic most. In
particular, the United States has become the center of the global pandemic with
about 100,000 newly confirmed cases every day. The COVID-19 is disrupting the
lives of people around the world in a variety of ways, and has a negative impact on
global economic development. However, in the process of epidemic prevention and
control, the prediction of COVID-19 is particularly important.
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With the development of the dynamic theory of infectious diseases, the methods
and theories for studying infectious diseases are becoming more abundant, such as
SI model, SIR model, SEIR model, partial differential equation model, machine
learning technology and other methods. In the process of the continuous spread
of COVID-19, many scholars in the world have used different methods to obtain
abundant and classic research results [1, 2, 4–13, 15–20, 23, 27]. Tang et al,. [21]
established a random discrete epidemic model with case input, analyzed the effec-
tiveness of China’s Shaanxi Province epidemic prevention policy and conducted a
predictive analysis of multiple outbreaks caused by economic recovery. Wang et
al,. [24] predicted the epidemic in Arizona, the United States by establishing a
partial differential equation model with temporal and spatial factors, and analyzed
the impact of human preventive measures on the reduction of COVID-19 cases. O.
Torrealba-Rodriguez et al,. [22] studied the outbreak in Mexico by using the Gom-
pertz, Logistic and artificial neural network models, the results showed that these
models had good predictive performance and the R2 of each model was 0.9998,
0.9996 and 0.9999 respectively.

This work aims to explore the spread of COVID-19 between state clusters and
to make further predictions of the changes in the epidemic. Specifically, we di-
vided the United States as a whole into 10 different state clusters according to
the relevant regulations of the United States, and abstractly divided the spread of
COVID-19 into two processes: local spread and global spread. On this basis, we
established a difference equation model with time and space factors is used to de-
scribe the spatiotemporal dynamic propagation process of COVID-19 and predict
the development of the epidemic. The results show that the model not only has
good predictive ability, but also provides a policy introduction to a certain extent,
and provide a more scientific theoretical basis for controlling the development of
the epidemic.

The rest of this article is structured as follows: In Section 2, the data sources
are introduced in details, and the established model is described in details. Section
3 gives experiments and results analysis. Finally, the results of our research are
discussed in Section 4.

2. Methods

2.1. Data set

We use the motif clustering algorithm in [3] to divide the United States into several
clusters, and then use the difference equation model to predict the confirmed cases of
each cluster of COVID-19. To make modeling and reporting more feasible and easier
for the public to understand the situation in the United States according to the defi-
nition of the U.S. Department of Health and Human Services (HHS), 51 states in the
United States are divided into 10 regions [25,26], as shown in Figure 1. The COVID-
19 data repository adopted in this study is obtained from the World Health Organi-
zation (WHO) website (https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/situation-reports). In this study, the number of confirmed cases and the num-
ber of deaths in 51 states in the United States from 10 March, 2020 to 24 November,
2020 for a total of 260 days are used. We calculated the relevant data of 10 clusters
based on the collected data of each state, as is shown in Figure 2.

The states contained in each cluster are as follows:
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• Cluster 1 = [Massachusetts, Connecticut, New Hampshire, Maine, Rhode
Island, Vermont];
• Cluster 2 = [New York, New Jersey];
• Cluster 3 = [Pennsylvania, Washington District of Columbia (Washington,

D. C.), Maryland, Virginia, Delaware, West Virginia];
• Cluster 4 = [Florida, North Carolina, Tennessee, Georgia, Alabama, Missis-

sippi, South Carolina, Kentucky];
• Cluster 5 = [Illinois, Michigan, Ohio, Indiana, Minnesota, Wisconsin];
• Cluster 6 = [Texas, Louisiana, New Mexico, Oklahoma, Arkansas];
• Cluster 7 = [Missouri, Iowa, Nebraska, Kansas];
• Cluster 8 = [Utah, Colorado, South Dakota, North Dakota, Wyoming, Mon-

tana];
• Cluster 9 = [California, Nevada, Arizona, Hawaii];
• Cluster 10 = [Alaska, Idaho, Oregon, Washington].

Figure 1. National Center for Chronic Disease Prevention and Health Promotion regions 1-10 represent
10 different CDC regions in the United States.

2.2. Embedding

In order to use the difference equation to model the spread of COVID-19, the
corresponding graph must be embedded in the Euclidean space [26], as is shown in
Figure 3. We embed 10 clusters on the x-axis from east to west, where x = i(i =
1, 2, · · ·, 10) represents the position of cluster i on the x-axis. When we embed the
entire study area into the x-axis, the x-axis will be divided into three parts. We
define the middle part as x = 1, 2, · · ·, 10, the right side as x = 0, and the left side
as x = 11. That is, the right and left are the parts outside the study area.

2.3. Data preprocessing

The data collected are preprocessed to improve the prediction accuracy of the model.
When the level difference between the data in the collected original data set is large,
if the original data value is directly used for analysis, the role of the data with higher
value in the comprehensive analysis will be highlighted, and the role of the data with



550 C. Lei & X. Han

(a) Total confirmed cases per cluster (b) Proportion of confirmed cases

(c) Number of deaths per cluster (d) Percentage of deaths

Figure 2. Changes in total confirmed cases and deaths in each cluster, and their proportions

Figure 3. Embedding of clusters into the x-axis

lower value will be relatively weakened. Therefore, in order to ensure the reliability
of the results, it is necessary to standardize the original index data.

Furthermore, to accelerate the convergence of the model and reduce the impact
of outliers, the features in the data records are normalized as follows:

f∗
i =

fi
10j

where fi is raw data, f∗
i is standardized data and j is the smallest integer such

that max|f∗
i | < 1. In this study, we assume j = 7.

2.4. Modeling analysis

As is shown in Figure 4, the source of infection in each state cluster has the greatest
impact on the cluster (local process), and different state clusters also influence
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each other through factors such as population flow or food flow (global process).
Therefore, this paper proposes a difference equation model with time and space
factors to describe the dynamic spread of infectious diseases. For a state cluster, the
virus carriers in the cluster move in the cluster and spread the virus to people inside
the cluster, which can be regarded as local process. This can be considered global
process when a carrier brings the virus into another cluster through population
movements, or when an item carrying the virus enters a cluster and sickens an
individual in the cluster. Local process reflects the diffusion of the internal and
underlying network structure of the cluster, and is directly related to the cluster.
Global process is the spread of viruses between clusters caused by other factors such
as population, air, and the movement of goods (usually manifested as more or less
random walking). This method will extend our analysis of the results of difference
equation modeling.

Figure 4. Embedding of ten regions into the x-axis and two spreading processes

The following is the description of the difference equation model:

4ut(x, t) = D(x)[∇(4ux(x, t))] + r(t)u(x, t)[1− u(x, t)

K
],

u(x, 1) = ϕ(x), 1 ≤ x ≤ 10,

∇ux(1, t) = 4ux(10, t) = 0, t > 1,

where

• u(x, t): representing the total number of confirmed cases in the area x at time
t.

• 4ut(x, t): representing the first-order forward difference of u(x, t) with respect
to time t i.e. 4ut(x, t) = u(x, t + 1)− u(x, t). It describes the amount of change in
the confirmed cases of cluster x in unit time t.

• D(x)[∇(4ux(x, t))]: representing the regional spreading (global process) of
infectious disease between different clusters. Where ∇(4ux(x, t)) = u(x + 1, t) −
2u(x, t) + u(x− 1, t).

(1) D(x): representing the spread of infectious diseases between different re-
gions, so a piecewise function is used to represent D(x), the value of each segment
needs to be determined according to the actual situation.
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• r(t)u(x, t)[1 − u(x,t)
K ]: representing the spread process (local process) within

a cluster. This mathematical expression has been used to describe and predict the
dynamics of various populations, such as the growth of bacteria and tumors [14].

(1) r(t): the growth rate with time t in local process. Therefore, the form r(t)
can be expressed as r(t) = A + e−B(t−C), A,B,C are parameters and A,B,C > 0.
Their optimal value will be determined by the actual data collected by us.

(2) K: the carrying capacity (the maximum possible volume of u at a given
location x).
• u(x, 1) = ϕ(x): The initial function (number of confirmed cases at time t = 1

to be ϕ(x), which specifies that the initial function has to be always ≥ 0).
• ∇ux(1, t) = 4ux(10, t) = 0: is the Neumann boundary condition. For sim-

plicity, we assume no infectious disease spread across the boundaries at x = 1, 10.
That is, there is no movement of infected persons between the area corresponding
to x = 0 and x = 11 and the study area, which is an ideal condition.

2.5. Evaluation indices

2.5.1 Error evaluation indices

In order to comprehensively evaluate the performance of the prediction model,
we use the following two evaluation indicators to estimate the prediction error: the
mean absolute error (MAE) and the average forecasting error rate (AFER). These
indicators are calculated as follows:

MAE =
1

n

n∑
t=1

|x(t)− y(t)|,

AFER =
1

n

n∑
t=1

|x(t)− y(t)|
x(t)

× 100%,

where x(t) is the actual number of confirmed cases, y(t) is the predict number
of confirmed cases and n is the number of samples in the data set.

2.5.2 Pearson’s linear correlation coefficient

The Pearson correlation coefficient is a measure of the degree of correlation
between two variables X and Y . It is a value between 1 and -1, and a coefficient
value of 1 means that X and Y can be well described by the equation of a line,
and all the data points fall well on a line, and Y increases as X increases. A
coefficient value of -1 means that all data points fall on the line, and Y decreases as
X increases. A coefficient of 0 means that there is no linear relationship between
the two variables. It can be calculated as follows:

R2 =

n∑
t=1

(x(t)− x(t))(y(t)− y(t))√
n∑

t=1
(x(t)− x(t))2 ·

√
n∑

t=1
(y(t)− y(t))2

where x(t) is the actual number of newly confirmed cases per day, x(t) is the
actual average number of newly confirmed cases, y(t) is the forecast of the number
of newly confirmed cases per day, y(t) is the predicted average number of newly
confirmed cases and n is the number of samples in the data set.
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3. Results

Using the difference model proposed in this paper, the real-time prediction effect of
the model was verified using the cumulative 260-day consecutive the total confirmed
cases and the newly confirmed cases in the United States since 10 March, 2020.

3.1. Predicted results based on the difference equation model

After collecting COVID-19 data from throughout the United states, we conclude the
prediction process as follows: First, we normalize the data, reduce the experimental
error and calculate the newly confirmed and total confirmed COVID-19 cases per
cluster. Then, the 5-day training data set is applied to predict the confirmed cases
of COVID-19 the next day. we use Days 1-5, 2-6, 3-7,...as training data and predict
the next day 6, 7, 8,...correspondingly and record the prediction accuracy for all 10
regions on the Day 6, 7, 8,.... Specifically, we give the detailed prediction process
for Day 6 as an instance. The first day’s data are used to build the initial function.
Next, 1-5 days’ data is used to calculate the parameters in the model through
the Lsqcurvefit function in MATLAB. Finally, we use the obtained parameters to
predict the data on Day 6.

Figure 5 shows the prediction results of the total confirmed cases in the 1-10
regions from 10 March, 2020 to 24 November, 2020. By observing the image, we
find that difference equation model can predict confirmed cases effectively. The
forecast curve (red line) is highly similar to the actual curve (black line), and the
two curve almost overlap. The green line is the 95% confidence interval, and we
can also find that all the prediction curve are within in the 95% confidence interval.
Therefore, the difference equation model in this article accurately estimates the
alteration trend of the total confirmed cases, and the predicted trend is basically
consistent with the actual trend of change.

3.2. Correlation and mean absolute error

Figure 6 shows the actual number of newly confirmed cases and the predicted num-
ber of newly confirmed cases in 10 state clusters for 259 days. The actual number
of newly confirmed cases on the first day is equal to the total number of confirmed
cases on the second day minus the total number of confirmed cases on the first
day, and the corresponding projected number of newly confirmed cases is equal to
the projected total number of confirmed cases on the second day minus the pre-
dicted total number of confirmed cases on the first day. By observing the images,
it is found that the number of newly confirmed cases each day estimated by the
difference equation model is very close to the actual number of newly confirmed
cases.

Figure 7 shows a cross-validation diagram of actual and predicted newly con-
firmed cases. As can be seen from Figure 7, all data points are clustered near the
linear regression equation, and the minimum and maximum Pearson correlation
coefficients of the 10 clusters can be calculated to be 0.6057 and 0.9573. Hence, we
can get a high degree of similarity between the actual value and the predicted value.
In addition, Table 1 shows the actual confirmed cases and predicted confirmed case
performance indicators for each day from 10 solstice March 2020 to 24 November,
2020 for the 10 clusters. In the chart, MAE-T represents the mean absolute error
of total confirmed cases and MAE-N represents the mean absolute error of newly
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confirmed cases. According to this table, we find that the minimum and maximum
MAE-T values are 332 and 3556, and the average MAE-T values of the 10 clusters
are 1327. The minimum value and maximum value of MAE-N are 331 and 1648
respectively, and the average MAE-N value is 878. The minimum AFER value is
0.91%, the maximum value is 2.67%, and the average AFER value is 1.57%. In
addition, we found an average R2 value of 0.8448 for the 10 clusters. These results
demonstrate the success of the difference equation model in predicting the number
of COVID-19 cases per day in the recent past.

In the overall evaluation of the research results, the above results can be ob-
tained. The difference equation model with temporal and spatial characteristics
can accurately predict the spread of infectious diseases when they come.

Table 1. Evaluation indicators between actual confirmed cases and predicted confirmed cases in each
cluster from 10 March to 24 November 2020.

Regions Days MAE-T MAE-N AFER R2 Linear regression
equation

Cluster 1 260 529 558 1.06% 0.6057 y = 0.7956x + 333.1

Cluster 2 260 965 560 0.91% 0.9337 y = 9678x + 100.61

Cluster 3 260 488 448 1.57% 0.9361 y = 0.9941x + 31.35

Cluster 4 260 3556 1648 2.67% 0.869 y = 0.9297x + 761.5

Cluster 5 260 2112 1376 1.67% 0.9485 y = 1.0006x + 64.749

Cluster 6 260 2239 1418 2.65% 0.8159 y = 0.8855x + 782.66

Cluster 7 260 852 1157 1.20% 0.6618 y = 0.8325x + 532.08

Cluster 8 260 580 336 1.05% 0.9573 y = 1.0034x + 15.749

Cluster 9 260 1622 955 1.47% 0.8981 y = 0.9267x + 428.72

Cluster 10 260 332 331 1.46% 0.8226 y = 0.9107x + 122.48

Mean 1327 878 1.57% 0.8448

4. Conclusions

As can be seen from Figure 2(a,b), clusters 4, 5, 6 and 9 have the largest number
of confirmed cases, accounting for 56% of the total confirmed cases in the United
States, and it can be clearly found that the growth rate of confirmed cases in these 4
clusters is significantly higher than the other 6 clusters. From Figure 2(c,d), it can
be seen that the death toll of the five clusters 2, 4, 5, 6 and 9 is significantly higher
than that of the other clusters, accounting for 78% of the total deaths. Therefore,
in terms of epidemic prevention and control, the government should focus on the 4,
5 and 6 city clusters.

This paper establishes a difference equation model with temporal and spatial
characteristics to predict the spread of COVID-19. The results of the model show
that there is a good fit between the actual total confirmed cases and the predicted
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Figure 5. The prediction curve of the total confirmed cases in 10 different clusters from 10 March, 2020
to 24 November, 2020. The black line represents the actual value, the red line represents the predicted
value and the green line represents the 95 confidence interval line.

total confirmed case data. In addition, the Pearson correlation coefficients between
the actual newly confirmed cases and the predicted newly confirmed cases in the
10 clusters are: 0.6057, 0.9337, 0.9361, 0.869, 0.9485, 0.8159, 0.6618, 0.9573, 0.8981
and 0.8226 respectively, the average R2 value is 0.8448, and the mean absolute error
of the total confirmed cases and newly confirmed cases in 10 clusters is 1327 and 878.
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Figure 6. The predicted value of newly confirmed cases in 10 different clusters from 10 March, 2020
to 24 November, 2020. The blue line represents the actual value, the red line represents the predicted
value.
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Figure 7. The cross-validation graph of the actual newly-confirmed cases and the predicted value of
newly-confirmed cases in 10 clusters in 259 days, and the corresponding linear regression equation.
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Therefore, the actual value is highly similar to the predicted value. The prediction
results of this study show that the outbreak in the United States is still in the stage
of large-scale outbreak, and our quantitative analysis can estimate the progress of
the epidemic in different regions of the United States, which will help scientific
research and policy makers to understand the different dynamics and situations in
different regions of the United States in a simple and transparent way. However,
due to different time periods and different policies implemented by the government,
the forecast results of the model at the later stage may not be consistent with the
actual results.
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