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Dynamical Analysis of a Delayed SIQS Epidemic
Model on Scale-free Networks∗

Rundong Zhao1 and Qiming Liu1,†

Abstract In this paper, we establish a novel delayed SIQS epidemic model on
scale-free networks, where time delay represents the average quarantine period.
Through mathematical analysis, we present the basic reproduction number
R0. Then, we provide the global asymptotical stability of the disease-free
equilibrium and the local asymptotical stability of the endemic equilibrium.
Finally, we perform numerical simulations to verify the correctness of the main
results and analyze the sensitivity of parameters. Our research shows that
when R0 > 1, lengthening the quarantine period can slow the spread of the
disease and reduce the number of infected individuals.
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1. Introduction

Infectious diseases have always been the great enemy of human health. Through
out the history, the epidemics of infectious diseases have brought great disasters
to human survival and national economy. To study the propagation dynamics and
curb strategies of infectious diseases, the mathematical compartmental model is an
important method [1].

In recent years, with the development of global transportation network [4], hu-
man behavior and social interpersonal communication are heterogeneous. Thus, it
is necessary and reasonable to construct epidemic models on complex networks. In
the field of complex networks, a research [2] showed that many networks, such as
contact networks, have the property of being scale-free. For example, the distri-
bution of connectivity degrees follows the power-law p(k) = Ck−γ (2 < γ ≤ 3).
In 2001, Pastor-Satorras et al. first denied an SIS model on scale-free networks,
and concluded the absence of an epidemic threshold on a wide range of scale-
free networks [22]. Moreno et al. studied an SIR epidemic model on two com-
plex networks [20]. These results have attracted more researchers to study this
field [3, 8–10,12,13,15–18,25,27,28].

After the disease breaks out, how to control the spread of disease effectively is
an important issue. One effective method is quarantine, which has long been widely
used to control the spread of disease. By cutting off contact between individuals,
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epidemics are often brought under control. In 2014, Li et al. proposed an SIQRS
epidemic model on scale-free networks and proved the stability of disease-free equi-
librium and the permanence of the disease [13]. Then, Huang et al. investigated a
novel SIQRS epidemic model with demographics and analyzed the global epidemic
behavior [8]. In 2019, Li et al. introduced an SIQS model on complex networks with
birth and death mechanism, and introduced its optimal control [12]. Chen et al.
established two epidemic models including variable population size, degree-related
imperfect vaccination and quarantine on scale-free networks and proved the global
stability of disease-free and endemic equilibrium [3].

To reflect the propagation process of the epidemic more realistically, many re-
searchers analyzed delayed compartment models on complex networks. Time delays
in the models represent average infectious period of the disease [15,16,28], average
incubation period [9, 25] and the immunity period of recovery [17]. However, few
researchers studied the effects of quarantine period on the spread of diseases. In
this paper, we focus on the effectiveness of quarantine period on epidemics and
construct a novel delayed SIQS epidemic model on scale-free networks.

In the delayed SIQS model, infected individuals may be quarantined and treated
for a period of time, and become full susceptibility to the infection again. The
primary purpose of this paper is to investigate the dynamical behavior of this model.
In Section 2, we present the delayed SIQS model on scale-free networks. In Section
3, we define the basic reproduction number and analyze the dynamical behavior.
In Section 4, we give numerical simulations to demonstrate the main results. In
Section 5, we summarize this work.

2. Model

Let us make following assumptions:

(H1) Each node on the network represents an individual. All nodes on the
networks can be classified into one of three categories: susceptible(S), infected(I)
and quarantined(Q).

(H2) A susceptible node can be infected by contact with every infected node.

(H3) Every infected node will become susceptible to infection again after a period
of quarantine.

(H4) Similar to [11,12], we suppose the total nodes on the network is a constant.
For example, the number of birth nodes is equal to the number of natural death
nodes.

(H5) Every new birth node is susceptible.

Based on above assumptions, we consider a delayed SIQS epidemic model on
scale-free networks. Let Sk(t), Ik(t) and Qk(t) represent the relative density of
susceptible nodes, infected nodes and quarantined nodes respectively with degree
k (k = 1, 2, ..., n) at time t. The SIQS epidemic model is as follows:

dSk(t)

dt
= µ− λ(k)Sk(t)Θ(t) + γIk(t− τ)e−µτ − µSk(t),

dIk(t)

dt
= λ(k)Sk(t)Θ(t)− (µ+ γ)Ik(t),

dQk(t)

dt
= γIk(t)− γIk(t− τ)e−µτ − µQk(t),

(2.1)
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where parameters λ(k), γ, and µ are positive. The λ(k) (such as λk [23], λc(k) [21])
is the correlated rate when susceptible nodes come into contact with infected nodes.
γ is the rate when infective nodes move into quarantine. µ denotes the birth rate,
which is equal to the per capita natural mortality rate. τ represents the average
quarantine period, which refers to the period during which an infected node becomes
a susceptible node after quarantine. Θ(t) denotes the probability rate that any link
points to an infected node, and

Θ(t) =
1

〈k〉

n∑
k=1

ϕ(k)p(k)Ik(t). (2.2)

Here, 〈k〉 is the average degree of the network, i.e., 〈k〉 =
∑n
k=1 kp(k). ϕ(k) =

akα/ (1 + bkα) [26] denotes the infectivity of a node with degree k, where 0 ≤ α ≤ 1,
a > 0 and b ≥ 0 . If b 6= 0, ϕ(k) is monotonically increasing with k, and it has an
upper bound, i.e., limk→+∞ ϕ(k) = a/b.

Suppose that the initial condition of the system (2.1) takes the form

Sk(η) = φk1(η), Ik(η) = φk2(η), Qk(η) = φk3(η), (2.3)

where

φki (η) ≥ 0, (η ∈ [−τ, 0], i = 1, 2, 3, k = 1, 2, ..., n).

By the theory of functional differential equations [7], system (2.1) has a unique
solution (Sk(t), Ik(t), Qk(t)) satisfying the initial conditions (2.3). It also proves
that when t ≥ 0, the solutions of the system (2.1) with the above initial conditions
are all positive.

3. Dynamical behavior of the model

In this section, we will give our main conclusions.

Denote

R0 =
〈λ(k)ϕ(k)〉
(µ+ γ)〈k〉

, (3.1)

where 〈λ(k)ϕ(k)〉 =
∑n
k=1 λ(k)ϕ(k)p(k) and 〈k〉 =

∑n
k=1 kp(k).

Theorem 3.1. Consider system (2.1), we have the following assertions.
(1) System (2.1) always has a disease-free equilibrium E0, where E0 = (S0

1 , I
0
1 , Q

0
1, S

0
2 ,

I0
2 , Q

0
2, · · · , S0

n, I
0
n, Q

0
n), in which S0

k = 1, I0
k = 0, Q0

k = 0, k = 1, 2, ..., n.
(2) System (2.1) has a unique endemic equilibrium E∗ when R0 > 1, where E∗ =
(S∗1 , I

∗
1 , Q

∗
1, S
∗
2 , I
∗
2 , Q

∗
2, · · · , S∗n, I∗n, Q∗n) .

Proof. We can find that

Ω =
{

(S1, I1, Q1, ..., Sn, In, Qn) ∈ R3n
+ : 0 ≤ Sk, Ik, Qk ≤ 1, k = 1, 2, ..., n

}
is a positively invariant set for system (2.1). It is clear that E0 is always an equi-
librium of system (2.1). Then, the equilibrium E∗ of system (2.1) satisfies
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µ− λ(k)S∗kΘ∗ + γI∗ke

−µτ − µS∗k = 0,

λ(k)S∗kΘ∗ − (µ+ γ)I∗k = 0,

γI∗k − γI∗ke−µτ − µQ∗k = 0,

(3.2)

where

Θ∗ =
1

〈k〉

n∑
k=1

ϕ(k)p(k)I∗k . (3.3)

Solving the three equations of (3.2), it yields that

I∗k =
λ(k)Θ∗µ

λ(k)Θ∗(µ+ γ − γe−µτ ) + µ(µ+ γ)
. (3.4)

Substituting I∗k into (3.3), we can obtain the self-consistency equation about Θ∗ as
follows:

Θ∗ =
1

〈k〉

n∑
k=1

ϕ(k)p(k)
λ(k)Θ∗µ

λ(k)Θ∗(µ+ γ − γe−µτ ) + µ(µ+ γ)
. (3.5)

Evidently, Θ∗ = 0 is a solution to (3.5), and it follows that the virus-free equilibrium
E0 of system (2.1) always exists. To ensure (3.5) has a nontrivial solution, we take
Θ∗ > 0. Then, we divide both sides of (3.5) by Θ∗,

1 =
1

〈k〉

n∑
k=1

ϕ(k)p(k)
λ(k)µ

λ(k)Θ∗(µ+ γ − γe−µτ ) + µ(µ+ γ)
. (3.6)

Let

f(Θ∗) = 1− 1

〈k〉

n∑
k=1

ϕ(k)p(k)
λ(k)µ

λ(k)Θ∗(µ+ γ − γe−µτ ) + µ(µ+ γ)
.

Note that

f ′(Θ∗) =
1

〈k〉

n∑
k=1

ϕ(k)p(k)
λ(k)(µ+ γ − γe−µτ )

[λ(k)Θ∗(µ+ γ − γe−µτ ) + µ(µ+ γ)]2
> 0

and

lim
Θ→+∞

f(Θ) = 1.

The equation f(Θ) = 0 has a unique non-trivial solution if and only if

f(0) = 1− 1

〈k〉

n∑
k=1

ϕ(k)p(k)
λ(k)

µ+ γ
= 1−R0 < 0.

We conclude that (3.6) has a unique positive solution Θ∗ in the interval (0, 1) when
R0 > 1. That is to say, system (2.1) has a unique endemic equilibrium E∗, when
R0 > 1.
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Remark 3.1. The basic reproduction number R0 is an important conception in the
transmission of diseases, which represents the average number of secondary infec-
tious infected by an individual of infections during whose whole course of disease in
the case that all the members of the population are susceptible [19]. We explain the
biological meaning of R0 (3.1) as follows. For the primary infected case, the average
period spent in an infectious stats is µ+γ. During this period, the average number

of the susceptible infected by the primary infected case is
∑n
k=1

λ(k)ϕ(k)p(k)
〈k〉 . In

addition, we get that R0 decreases with the increase of birth rate µ and quarantine
rate γ, and increases with the increase of correlated infection rate λ(k).

Theorem 3.2. If R0 < 1, the disease-free equilibrium E0 of system (2.1) is globally
asymptotically stable for ∀ τ ≥ 0.

Proof. Consider the following Lyapunov function

V (t) =
1

〈k〉

n∑
k=1

ϕ(k)p(k)Ik(t).

Taking the derivative of V (t) along the solution of system (2.1) and noting that
0 < Sk(t) ≤ 1, we obtain

dV (t)

dt
|(2.1) =

1

〈k〉

n∑
k=1

ϕ(k)p(k)[λ(k)Sk(t)Θ(t)− (µ+ γ)Ik(t)]

≤ 1

〈k〉

n∑
k=1

ϕ(k)p(k)[λ(k)Θ(t)− (µ+ γ)Ik(t)]

= Θ(t)[
〈λ(k)ϕ(k)〉
〈k〉

− (µ+ γ)].

Thus, dV (t)
dt ≤ 0 when R0 < 1, and dV (t)

dt = 0 if and only if Ik(t) = 0. According to
the LaSalle Invariance Principle [6], we conclude that E0 is globally asymptotically
stable when R0 < 1 for τ ≥ 0.

Theorem 3.3. If R0 > 1, the infectious disease is uniformly persistent, i.e., there
exists a positive constant ε such that limt→+∞ inf Ik(t) > ε.

Proof. Denote

D =

{
(Sk(t), Ik(t), Qk(t)) ∈ Ω : I(t) =

n∑
k=1

P (k)Ik(t) > 0

}
, ∂D = D/Ω.

Firstly, we prove that D is positively invariant with respect to system (2.1).
(Sk(0), Ik(0), Qk(0)) ∈ D, which means Θ(0) > 0. Then, calculating the derivative
of Θ(t) along the solution of system (2.1), we get

dΘ(t)

dt
=

1

〈k〉

n∑
k=1

ϕ(k)p(k)[λ(k)Sk(t)Θ(t)− (µ+ γ)Ik(t)].
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Thus,

Θ(t) = Θ(0) exp

{
1

〈k〉

∫ t

0

n∑
k=1

ϕ(k)p(k)λ(k)Sk(ξ)dξ − (γ + µ)t

}
,

which has Θ(t) > 0 for all t > 0. It implies that

dI(t)

dt
=

n∑
k=1

p(k)
dIk(t)

dt

=

n∑
k=1

p(k)[λ(k)Sk(t)Θ(t)− (µ+ γ)Ik(t)]

> −(µ+ γ)Ik(t).

Hence, I(t) > I(0) exp[−(µ + γ)t] > 0. Obviously, D is a positive invariant, and
system (2.1) is a dissipative system. Then, E0 is the unique equilibrium of system
(2.1) on ∂D, and the ω − limit of system (2.1) on ∂D. E0 is isolated and acyclic.
Lastly, by Theorem 4.6 in [24], the infectious disease will be uniformly persistent,
if we prove that

W s(E0)
⋂
∂ D = ∅, , (3.7)

where W s(E0) denotes the stable manifold of E0.

Suppose it is not valid, then there is a solution (Sk(t), Ik(t), Qk(t)) ∈ D such that
Sk(t) → 1, Ik(t) → 0, Qk(t) → 0 as t → ∞. Since R0 > 1, we can choose a η > 0
small enough such that (1 − η)R0 > 1. On the other hand, for the above η > 0,
there is a tη > 0 such that 1− η ≤ Sk(t) ≤ 1 + η, 0 ≤ Ik(t) ≤ η, 0 ≤ Qk(t) ≤ η for
t > tη. Denote

Φ(t) =
1

γ + µ
Θ(t),

and Φ(t) is clearly bounded function. Taking the derivative of Φ(t) along solution
of system (2.1) for t > tη, we come to a conclusion that

dΦ(t)

dt
=

1

γ + µ
〈k〉−1

n∑
k=1

ϕ(t)p(k)[λ(k)Sk(t)Θ(t)− (µ+ γ)Ik(t)]

≥ 1

γ + µ
〈k〉−1

n∑
k=1

ϕ(t)p(k)[λ(k)(1− η)Θ(t)− (µ+ γ)Ik(t)]

=
1

γ + µ
[〈k〉−1

n∑
k=1

ϕ(t)p(k)λ(k)(1− η)Θ(t)− (µ+ γ)Θ(t)]

= (γ + µ)[(1− η)R0 − 1]Φ(t).

Hence, Φ(t) ≥ Φ (tη) exp[(γ + µ)[(1− η)R0 − 1]t], we have Φ(t)→ +∞ as t→ +∞.
It is contradictory to the boundedness of Φ(t). This completes the proof.

Theorem 3.4. If R0 > 1, the endemic equilibrium E∗ of system (2.1) is locally
asymptotically stable for ∀ τ ≥ 0.
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Proof. Since Qk(t) = 1−Sk(t)− Ik(t), it is ample to discuss the following system,


dSk(t)

dt
= µ− λ(k)Sk(t)Θ(t) + γIk(t− τ)− µSk(t),

dIk(t)

dt
= λ(k)Sk(t)Θ(t)− (µ+ γ)Ik(t).

(3.8)

Let xk(t) = Sk(t) − S∗k , yk(t) = Ik(t) − I∗k . The linear system of system (3.8) at
(S∗k , I

∗
k) is as follows:


dxk(t)

dt
= − (µ+ λ(k)Θ∗)xk(t)− λ(k)S∗kθ(t) + γyk(t− τ),

dyk(t)

dt
= λ(k)Θ∗xk(t) + λ(k)S∗kθ(t)− (µ+ γ)yk(t),

, (3.9)

where θ(t) = 1
〈k〉
∑n
k=1 ϕ(k)p(k)yk(t).

Denote b(k) = 1
〈k〉ϕ(k)p(k), and we can obtain the following equation from (3.2)

and (3.9):

dθ(t)

dt
=

n∑
k=1

b(k)[λ(k)Θ∗xk(t) + λ(k)S∗kθ(t)− (µ+ γ)yk(t)]

=

n∑
k=1

b(k)λ(k)Θ∗xk(t)

= Θ∗
n∑
k=1

b(k)λ(k)xk(t).

Analyze the following linear system:

d

dt



θ(t)

x1(t)

y1(t)
...

xn(t)

yn(t)


= M



θ(t)

x1(t)

y1(t)
...

xn(t)

yn(t)


+N



θ(t− τ)

x1(t− τ)

y1(t− τ)
...

xn(t− τ)

yn(t− τ)


. (3.10)

Let ρ represent the eigenvalue of the characteristic equation of system (3.10), and
ρ satisfies the following equation

f(ρ, τ) = det |ρI −M −Ne−ρτ | = 0. (3.11)
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Denote M̄ = M +Ne−ρτ , where M̄ is a (2n+ 1)× (2n+ 1) matrix, and

M̄ =



0 Θ∗b(1)λ(1) 0 · · · Θ∗b(k)λ(k) 0 · · · Θ∗b(n)λ(n) 0

−λ(1)S∗1 h1(1) h2 · · · 0 0 · · · 0 0

λ(1)S∗1 h3(1) h4 · · · 0 0 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

−λ(k)S∗k 0 0 · · · h1(k) h2 · · · 0 0

λ(k)S∗k 0 0 · · · h3(k) h4 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

−λ(n)S∗n 0 0 · · · 0 0 · · · h1(n) h2

λ(n)S∗n 0 0 · · · 0 0 · · · h3(n) h4



,

where h1(k) = −(λ(k)Θ∗+µ), h2 = γe−ρτ , h3(k) = λ(k)Θ∗, h4 = −(γ+µ). In order
not to change the eigenvalue of the matrix, we apply the similarity transformation
to the matrix M̄ . Specifically, the 2kth row is added to the (2k + 1)th row, the
(2k + 1)th column multiplied by −1 is added to the 2kth column, k = 1, 2, ..., n.
Hence matrix M̄ becomes

M̄1 =



0 Θ∗b(1)λ(1) 0 · · · Θ∗b(k)λ(k) 0 · · · Θ∗b(n)λ(n) 0

−λ(1)S∗1 h̄1(1) h̄2 · · · 0 0 · · · 0 0

0 h̄3 h̄4 · · · 0 0 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

−λ(k)S∗k 0 0 · · · h̄1(k) h̄2 · · · 0 0

0 0 0 · · · h̄3 h̄4 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

λ(n)S∗n 0 0 · · · 0 0 · · · h̄1(n) h̄2

0 0 0 · · · 0 0 · · · h̄3 h̄4



,

where h̄1(k) = −(λ(k)Θ∗ + µ + γe−ρτ ), h̄2 = γe−ρτ , h̄3 = γ(1 − e−ρτ ), h̄4 =
−µ+ γ(e−ρτ − 1).
Considering the characteristic root of matrix M̄1, the characteristic equation (3.11)
becomes

f(ρ, τ) = ρ

n∏
k=1

Ak(ρ) +

n∑
k=1

Bk(ρ)

n∏
l 6=k

Al(ρ) = 0, (3.12)

where

Ak(ρ) =

∣∣∣∣∣∣λ(k)Θ∗ + µ+ γe−ρτ + ρ −γe−ρτ

γ(e−ρτ − 1) µ+ γ(1− e−ρτ ) + ρ

∣∣∣∣∣∣ ,
Bk(ρ) = Θ∗b(k)λ(k)[(λ(k)S∗i )(µ+ γ(1− e−ρτ ) + ρ)], i = 1, 2, ..., n.
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(I) When τ = 0, e−ρτ = 1,

Ak(ρ) = (λ(k)Θ∗ + µ+ γ + ρ)(µ+ ρ).

Obviously, the real parts of the eigenvalues of the corresponding matrix to Ak(ρ)
are negative. Then, we mark that ρk = λ(k)Θ∗ + µ+ γ, and Ak(ρ) becomes

Ak(ρ) = (ρ+ ρk)(ρ+ µ).

Then,
Bk(ρ) = Θ∗b(k)λ(k)[(λ(k)S∗k)(ρ+ µ)]

=Ck(ρ+ µ),

where Ck = Θ∗b(k)λ(k)2S∗k , and

f(ρ, 0) = ρ

n∏
k=1

Ak(ρ) +

n∑
k=1

Bk(ρ)

n∏
l 6=k

Al(ρ)

= ρ

n∏
k=1

(ρ+ ρk)(ρ+ µ) + (ρ+ µ)

n∑
k=1

Ck

n∏
l 6=k

(ρ+ ρl)(ρ+ µ)

= (ρ+ µ)n

ρ n∏
k=1

(ρ+ ρk) +

n∑
k=1

Ck

n∏
l 6=k

(ρ+ ρl)

 .
(3.13)

Consider the different forms of λ(k). Firstly, assume that all λ(k) are respectively
unequal, and ρk are also mutually unequal. From equation (3.13), we obtain that
n eigenvalues are equal to −µ, and others satisfy the following equation

ρ

n∏
k=1

(ρ+ ρk) +

n∑
k=1

Ck

n∏
l 6=k

(ρ+ ρl) = 0. (3.14)

Noting that equation (3.14) has the same form as [ [27] equation (3.4)], we can refer
to the method of proof which is presented in [ [27] Theorem 3.3]. We obtain that
the real parts of all roots of equation (3.14) are negative.

Secondly, without loss of generality, we assume that m1 functions λ(k) are mu-
tually unequal, m2 functions λ(k) have one equal value and m3 functions λ(k)
have another equal value, where n = m1 + m2 + m3. Then, we reorder λ(k) as

λ̃(k): when k = 1, 2, ...,m1,m1 + 1,m1 + 2, λ̃(k) are mutually unequal; when

k = m1 + 3,m1 + 4, ...,m1 + m2 + 1, λ̃(k) = λ̃(m1 + 1); when k = m1 + m2 +

2,m1 +m2 + 3, ..., n, λ̃(k) = λ̃(m1 + 2). Ck changes order with λ̃(k) to become C̃k.

Denote ρ̃k = λ̃(k)Θ∗ + µ+ γ, and equation(3.13) becomes

f(ρ, 0) = (ρ+µ)n(ρ+ρ̃m1+1)m2−1(ρ+ρ̃m1+2)m3−1

ρm1+2∏
k=1

(ρ+ ρ̃k) +

n∑
k=1

C̃k

m1+2∏
l 6=k

(ρ+ ρ̃l)

 .
(3.15)

We obtain that equation (3.15) has n eigenvalues equaling to −µ, m2−1 eigenvalues
equaling to −ρ̃m1+1, m3 − 1 eigenvalues equaling to ρ̃m1+2, and other eigenvalues
satisfying the following equation

ρ

m1+2∏
k=1

(ρ+ ρ̃k) +

n∑
k=1

C̃k

m1+2∏
l 6=k

(ρ+ ρ̃l) = 0. (3.16)
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Since equation (3.16) has the same expression with equation (3.14), we can solve
it with the same mathematical proof. Namely, the real parts of roots of equation
(3.16) are negative, and other similar circumstances can be also proved. Thus, the
real parts of eigenvalues of f(ρ, 0) = 0 are negative.

(II) When τ > 0, assume that equation (3.12) has a purely imaginary root
ρ = ωi(ω > 0).

Ak(ωi) =− ω2 + i(λ(k)Θ∗ + 2µ+ γ)ω + (λ(k)Θ∗ + µ)(µ+ γ)−
λ(k)Θ∗γ(cos(ωτ)− i sin(ωτ))

=0.

Separate real and imaginary parts of Ak(ωi),{
λ(k)Θ∗γ cos(ωτ) = −ω2 + (λ(k)Θ∗ + µ)(µ+ γ),

λ(k)Θ∗γ sin(ωτ) = −(λ(k)Θ∗ + 2µ+ γ)ω.

Square and add two equations,

[λ(k)Θ∗γ]2 = [ω2 + (λ(k)Θ∗ + µ)2][ω2 + (µ+ γ)2].

Since ω2 > 0, this equation has no root, i.e., equation Ak(ρ) = 0 has no purely
imaginary roots.

Then, we separate real and imaginary parts of Bk(ωi),{
γ cos(ωτ) = µ+ γ,

γ sin(ωτ) = −ω.

Namely,
γ2 = (µ+ γ)2 + ω2,

Since ω2 > 0, this equation has no root, i.e., equation Bk(ρ) = 0 has no purely
imaginary roots.

Moreover, we study equation (3.12),

f(ωi, τ) = ωi

n∏
k=1

Ak(ωi) +

n∑
k=1

Bk(ωi)

n∏
l 6=k

Al(ωi)

=

(
n∑
k=1

Bk(ωi)

Ak(ωi)
+ ωi

)
n∏
k=1

Ak(ωi).

We mention that equation Bk(ωi)
Ak(ωi) has real parts, i.e., there are no purely imaginary

roots such that
(∑n

k=1
Bk(ωi)
Ak(ωi) + ωi

)
= 0. Thus, combining that equation Ak(ρ) = 0

has no purely imaginary roots, we obtain that there are not purely imaginary roots
satisfying equation (3.12).

Therefore, on the one hand, the real parts of all roots of the equation f(ρ, 0) = 0
are negative. On the other hand, equation (3.12) has no purely imaginary roots.
According to [ [6], Chapter 8], the real parts of eigenvalues of the characteristic
equation (3.12) are negative. Namely, the endemic equilibrium E∗ of system (2.1)
is locally asymptotically stable for ∀ τ ≥ 0.
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4. Numerical simulations

In this section, we present some numerical simulations to verify the correctness of
our main result. The simulations are based on a heterogeneous scale-free network, in
which the degree distribution follows a low law distribution. The degree distribution
p(k) = Ck−γ and γ = 2.8 [5], where the constant C satisfies

∑n
k=1 p(k) = 1.

We assume the network is finite, the minimal degree of nodes is 1 and the
maximal degree of nodes n is equal to 100. The nonlinear infectivity ϕ(k) =
akα/ (1 + bkα), in which a = 0.5, α = 0.75, b = 0.02. The correlated infection
rate λ(k) = λk. Denote

I(t) =

n∑
k=1

p(k)Ik(t),

in which I(t) represents the average density of the infected nodes. Similarly, S(t)
and Q(t) represent the average density of the susceptible and quarantine nodes
respectively. The initial values are Ik(s) = 0.01, k = 5, 6, 7, 8, 9 and Ik(s) = 0, k 6=
5, 6, 7, 8, 9 where s ∈ [−τ, 0] and Qk(s) = 0, where s ∈ [−τ, 0].
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Figure 1. (a) Time evolution of of I(t), I20(t), I50(t) and I80(t) when R0 ≈ 0.9376 <
1; (b) Time evolution of I(t), I20(t), I50(t) and I80(t) when R0 ≈ 1.0176 > 1.

First, we show the stability of the equilibrium. Give the following parameters
λ = 0.07, µ = 0.06, γ = 0.06, τ = 6, and the basic reproduction number R0 ≈
0.9376 < 1. Figure 1(a) shows the evolution of I(t), I20(t), I50(t) and I80(t).
Infected nodes tend to 0 as t → ∞, which consistent with Theorem 3.2. Choose
λ = 0.08, and the basic reproduction number R0 ≈ 1.0716 > 1. Figure 1(b) shows
the evolution of I(t), I20(t), I50(t) and I80(t). Infected nodes continues to exist on
a unique positive stats, which consistent with Theorem 3.4.

Then, we study the influence of quarantine period τ . Give the following pa-
rameters λ = 0.07, µ = 0.06, γ = 0.06 and the basic reproduction number R0 ≈
0.9376 < 1. Let τ vary, time evolution of I(t), S(t) and Q(t) are shown in Fig-
ure 2(a) 2(b) and 2(c) respectively. Choose λ = 0.2, and the basic reproduction
number R0 ≈ 2.6789 > 1. Time evolution of I(t), S(t) and Q(t) with different τ
are shown in Figure 2(d), 2(e) and 2(f) respectively. According to these figures,
we find that when R0 < 1, time delay τ impact the asymptotic convergence rate
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Figure 2. When R0 < 1, time evolution of S(t), I(t) and Q(t) with different τ in
(a), (b) and (c) respectively; When R0 > 1, time evolution of S(t), I(t) and Q(t)
with different τ in (d), (e) and (f) respectively.
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Figure 3. Time evolution of I(t) with different µ.
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of the system, but scale tends to have no disease eventually. When R0 > 1, the
different τ not only impact the asymptotic convergence rate of the system, but also
the eventually scale of diseases. That is, when R0 > 1, infected nodes decrease with
the increase of quarantine period τ , quarantine nodes increase with the increase of
τ and susceptible nodes are independent of τ .

Finally, we show an interesting phenomenon about parameter µ. The initial
values are Ik(s) = 0.55, k = 2, 3, 4, 5 and Ik(s) = 0, k 6= 2, 3, 4, 5 where s ∈ [−τ, 0]
and Qk(s) = 0 where s ∈ [−τ, 0]. Provide the following parameters λ = 0.6,
γ = 0.5, τ = 23. As can be seen in Figure 3(a), bifurcation phenomenon occurs
at the endemic equilibrium when µ = 0 and R0 ≈ 1.9231 > 1. This is consistent
with the conclusion in Reference [14]. In Figure 3(b), Figure 3(c) and Figure 3(d),
we take µ = 0.001, µ = 0.01 and µ = 0.1 respectively, and the basic reproduction
numbers are R0 ≈ 1.9192, R0 ≈ 1.8854 and R0 ≈ 1.6026 respectively. It is clear
that with the increase of µ, the frequency of the oscillation of I(t) decreases, and
the convergence rate accelerates.

5. Conclusion

To study the effectiveness of quarantine period on diseases transmission, we discuss a
novel delayed SIQS epidemic model on scale-free networks. Based on mathematical
proofs, we obtain the formula of basic reproduction number R0, which is indepen-
dent of the average quarantine period τ . When R0 < 1, the infection disappears,
i.e., the disease-free equilibrium E0 is globally asymptotically stable. Otherwise,
when R0 > 1, the infectious disease is uniformly persistent, and the endemic equi-
librium E∗ is locally asymptotically stable. The following numerical simulations
verify the correctness of the main result.

The simulation result shows that the quarantine period τ affects the dynamical
behavior of system. When R0 > 1, infected individuals decrease as τ increas-
es, quarantine individuals increase as τ increases, and susceptible individuals are
independent of quarantine period τ . Therefore, when an epidemic breaks out, ap-
propriately increasing the quarantine period is an effective control strategy.

Interestingly, we also find that system (2.1) has a bifurcation phenomena when
there is no birth rate µ. In other words, even if the total number of nodes in
the network does not change, the dynamical performance on static networks and
dynamic networks are different. We leave it for our future research.
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