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Abstract In this paper, a singular nonlinear high order fractional differential
problem involving multi-point boundary conditions is solved by means of the
fixed point index theory. Some properties of the first eigenvalue corresponding
to relevant operator and some new height functions are also used to prove the
existence and multiplicity of positive solutions. The nonlinearity depends on
arbitrary fractional derivative.
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1. Introduction

We strive to investigate the existence and multiplicity of positive solutions for the
following fractional equation problem:

Dα
0+y(t) + g(t)f(t, y(t), Dw

0+y(t)) = 0, 0 < t < 1,

Dw
0+y(0) = Dw+1

0+ y(0) = · · · = Dw+n−2
0+ y(0) = 0,

Dβ
0+y(1) =

m∑
i=1

ηiD
γ
0+y(ζi),

(1.1)

where α ∈ R, n − 1 < α ≤ n, n > 2, ηi ≥ 0, i = 1, 2, · · · ,m (m ∈ N+), 0 <
ζ1 < ζ2 < · · · < ζm < 1, β, γ ∈ R, 1 ≤ β − w, β ≤ n − 2 and 0 ≤ γ ≤ β with
(Γ(α)/Γ(α − γ))

∑m
i=1 ηiζ

α−γ−1
i < Γ(α)/Γ(α − β), 0 ≤ w ≤ 1, Dα

0+ is the α-order
Riemann-Liouville derivative, f(t, u, v) ∈ C([0, 1] × [0,+∞) × [0,+∞), [0,+∞)),
g(t) is continuous and may have singularities at the points t = 0, 1. Under certain
conditions, by using some properties of the first eigenvalue corresponding to relevant
operator, the different height functions of the nonlinear term of the equation defined
on the special bounded set and theory of the fixed point index, we obtain the
existence and multiplicity results of positive solutions.
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In recent years, a large number of fractional differential equations with vari-
ous boundary conditions have been paid attention to people in many fields such
as science and engineering. This is mainly because in most cases we can use such
a mathematical model to accurately and quickly solve many complex problems
in various fields, such as biology physics, chemistry, control theory, engineering,
mechanics, aerodynamics and other fields. For details, see [3, 4, 13, 21, 23, 29]. Re-
cently, extensive research on differential equations has promoted the development
of boundary value problems (BVP) of differential equations. They include sin-
gular BVP [5, 10, 17, 19, 22, 30], semipositone BVP [1, 9, 16, 24–26] and nonlocal
BVP [2, 8, 11, 12, 15, 18, 27] as special cases. The existence, uniqueness and mul-
tiplicity of solutions to these problems are obtained by using nonlinear analysis
techniques such as the nonlinear alternative technique, fixed point theorems, the
method of monotone iterative, upper and lower solutions method. Now, we give
some examples. In [19], Jiang et al. explored the following two-term fractional
equation problem with two point boundary value problem:{

−Dα
0+x(t) + ax(t) = b(t)f(t, x(t)), 0 < t < 1,

x(0) = 0, x(1) = 0,

where 1 < α ≤ 2, a > 0 and f : [0, 1] × [0,∞) → [0,∞) is continuous, b(t)
is continuous and its singularities are t = 0, 1, by virtue of u0-positive operator
and theory of the fixed point index, at least one positive solution has been found.
In [28], Zhang et al. studied the following differential equation, which is an integral
boundary value problem:

Dα
0+x(t) + f(t, x(t)) = 0, 0 < t < 1,

x(β)(0) = 0, 0 ≤ β ≤ n− 2,

[Dγ
0+x(t)]t=1 = λ

∫ η

0

g(t)Dγ
0+x(t)dt,

where Dα
0+ is the Riemann-Liouville fractional derivative, n − 1 < α ≤ n, n ≥ 3,

γ ≥ 1, α − γ − 1 > 0, η ∈ (0, 1], 0 ≤ λ
∫ η

0
g(t)tα−γ−1dt < 1, g ∈ L1[0, 1] is

nonnegative, the singularities of f(t, x) are t = 0, 1 and x = 0. By using Leggett-
Williams fixed point theory, the authors demonstrated that the equation at least
has three positive solutions. In [12], He et al. explored the following differential
problem with the Riemann-Stieltjes integral and with any derivative in the integral:

Dα
0+x(t) + f(t, x(t), Dβ

0+x(t)) = 0, 0 < t < 1,

Dβ
0+x(0) = Dβ+1

0+ x(0) = 0,

[Dγ
0+x(t)]t=1 =

∫ 1

0

Dγ
0+x(s)dA(s),

where Dα
0+ is the Riemann-Liouville derivative, 2 < α ≤ 3, 0 < β ≤ γ < α − 2,∫ 1

0
Dγ

0+x(s)dA(s) is a linear functional with the Riemann-Liouville integrals, the
singularities of f(t, u, v) are t = 0, 1 and u = v = 0, by applying suitable upper
and lower solutions and Schauder’s fixed point theorem, the authors proved that
the problem at least has one positive solution.

Motivated by all the papers above, we discuss the existence and multiplicity of
positive solutions of (1.1). Our article have various features. Firstly, the equation
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we study is a high order fractional differential equation. Compared with literature
[12,19], our equation is more general. Secondly, the nonlinear term is dependent on
any derivative and the boundary value conditions are also related to any derivative,
this is different from [19]. Thirdly, we study (1.1) by virtue of some properties of the
first eigenvalue corresponding to relevant operator and some new height functions,
some sufficient conditions for the existence and multiplicity of positive solutions are
established. The method used is different from [12,19,28]. Therefore, our conclusion
are new and meaningful.

The remaining part of the paper is arranged as follows: We will state the basic
definition and we will summarise the properties of Green’s function in the next
section. In addition, we will give key lammas. Section 3 is devoted to prove that
(1.1) has at least one solution and at least three solutions.

2. Preliminaries

For the convenience of understanding, we first give some definitions and lemmas,
which will play a crucial role in the process of proving our conclusion.

Definition 2.1 ( [20]). The Riemann-Liouville fractional integral of order α > 0
for a function y : (0,∞)→ R is defined as

Iα0+y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds,

which provided the right-hand side of the equation is pointwise defined on (0,∞).

Definition 2.2 ( [20]). The Riemann-Liouville fractional derivative of order α > 0
for a continuous function y : (0,∞)→ R is defined as

Dα0+y(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

y(s)

(t− s)α−n+1
ds,

where n is the smallest integer greater than or equal to α, providing the right-hand
side of the equation is pointwise defined on (0,∞).

Lemma 2.1 ( [25]). (i) If y ∈ L1(0, 1), µ > σ > 0, then

Iµ0+I
σ
0+y(t) = Iµ+σ

0+ y(t), Dσ
0+I

µ
0+y(t) = Iµ−σ0+ y(t), Dσ

0+I
σ
0+y(t) = y(t).

(2.1)

(ii) If µ > 0, σ > 0, then

Dµ
0+t

σ−1 =
Γ(σ)

Γ(σ − µ)
tσ−µ−1. (2.2)

Let y(t) = Iw0+z(t), where z(t) ∈ C[0, 1]. By using Lemma 2.1 and the definition
of Riemman-Liouville derivative, one has

Dα
0+y(t) =

(
d

dt

)n
In−α0+ y(t) =

(
d

dt

)n
In−α0+ Iw0+z(t) =

(
d

dt

)n
In−α+w
0+ z(t) = Dα−w

0+ z(t),

Dw
0+y(t) = Dw

0+I
w
0+z(t) = z(t),

Dµ+w
0+ y(t) = Dµ

0+z(t), D
ν+w
0+ y(t) = Dν

0+z(t).

(2.3)
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Let β − w = µ, γ − w = ν. Then, by (2.3), BVP (1.1) can be simplified to the
following improved fractional equation:

Dα−w
0+ z(t) + g(t)f(t, Iw0+z(t), z(t)) = 0, 0 < t < 1,

z(0) = z′(0) = · · · = z(n−2)(0) = 0,

Dµ
0+z(1) =

m∑
i=1

ηiD
ν
0+z(ζi),

(2.4)

and conversely, by using (2.3) again, we can convert (2.4) into the form (1.1).
Therefore, BVP (2.4) and BVP (1.1) are equivalent.

Lemma 2.2. Let z ∈ C[0, 1]. If z > 0 is a solution of BVP (2.4), then Iw0+z > 0
is a solution of BVP (1.1).

Proof. Let z ∈ C[0, 1] and z > 0 is a solution to the BVP (2.4). Now, for the
function y(t) = Iw0+z(t), from Lemma 2.1, we have

Dα
0+y(t) = Dα

0+I
w
0+z(t) = Dα−w

0+ z(t)

= −g(t)f(t, Iw0+z(t), z(t))

= −g(t)f(t, y(t), Dw
0+y(t)).

(2.5)

In addition, by combining y(t) = Iw0+z(t), (2.3), and the boundary conditions of
problem (2.4), we get

Dw
0+y(0) = Dw+1

0+ y(0) = · · · = Dw+n−2
0+ y(0) = 0,

Dβ
0+y(1) =

m∑
i=1

ηiD
γ
0+y(ζi).

(2.6)

Thus, we obtain Iw0+z(t) > 0 is a solution of BVP (1.1).

Remark 2.1. The expression can be obtained by applying the formula calculation,

Iw0+t
α−w−1 =

1

Γ(w)

∫ t

0

(t− s)w−1sα−w−1ds

=
B(w,α− w)

Γ(w)
tα−1 =

Γ(α− w)

Γ(α)
tα−1.

(2.7)

Next, we denote ∆ = Γ(α−w)
Γ(α−w−β) −

Γ(α−w)
Γ(α−w−γ)

∑m
i=1 ηiζ

α−w−γ−1
i .

Lemma 2.3 ( [14]). Suppose that ∆ 6= 0. Given h ∈ C(0, 1) ∩ L1(0, 1), then the
unique positive solution of the fractional equation:

Dα−w
0+ z(t) + h(t) = 0, 0 < t < 1,

z(0) = z′(0) = · · · = z(n−2)(0) = 0,

Dµ
0+z(1) =

m∑
i=1

ηiD
ν
0+z(ζi),

(2.8)
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can be expressed as

z(t) =

∫ 1

0

G(t, s)h(s)ds, t ∈ [0, 1],

where

G(t, s) = K1(t, s) +
tα−w−1

∆

m∑
i=1

ηiK2(ζi, s),

K1(t, s) =


tα−w−1(1− s)α−w−µ−1

Γ(α− w)
, 0 ≤ t ≤ s ≤ 1,

tα−w−1(1− s)α−w−µ−1 − (t− s)α−w−1

Γ(α− w)
, 0 ≤ s ≤ t ≤ 1,

K2(t, s) =


tα−w−ν−1(1− s)α−w−µ−1

Γ(α− w − ν)
, 0 ≤ t ≤ s ≤ 1,

tα−w−ν−1(1− s)α−w−µ−1 − (t− s)α−w−ν−1

Γ(α− w − ν)
, 0 ≤ s ≤ t ≤ 1.

(2.9)

Here, G(t, s) is the Green function for problem (2.8). Obviously, for t, s ∈ [0, 1],
G(t, s) is continuous.

Lemma 2.4 ( [14]). If ηi > 0, i = 1, 2, · · · ,m, and ∆ > 0, then the function G(t, s)
given by (2.9) has the following essential properties:

(i) G(t, s) ≤ D(s), ∀ t, s ∈ [0, 1], and here D(s) = a1(s)+(1/∆)
∑m
i=1 ηiK2(ζi, s),

a1(s) = (1− s)α−w−µ−1(1− (1− s)µ)/Γ(α− w) and s ∈ [0, 1];

(ii) G(t, s) ≥ tα−w−1D(s), ∀ t, s ∈ [0, 1];

(iii) G(t, s) ≤ δtα−w−1, ∀ t, s ∈ [0, 1], and δ = 1/Γ(α−w)+
∑m
i=1 ηiζ

α−w−ν−1
i /(∆Γ(α−

w − ν)).

For the sake of convenience, we present the following hypothesis for the full text.
(H1) f : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) is continuous.
(H2) g : (0, 1) → [0,+∞) is continuous and g(t) 6≡ 0 on any subinterval of (0, 1)

satisfies 0 <
∫ 1

0
D(s)g(s)ds < +∞.

Let E = C[0, 1], ‖z‖ = max0≤t≤1 |z(t)|, then (E, ‖ · ‖) be a Banach space. Set
P = {z ∈ E : z(t) ≥ 0, t ∈ [0, 1]} is a cone in E. We define a subcone X of P

X =
{
z ∈ P : z(t) ≥ tα−w−1‖z‖, t ∈ [0, 1]

}
.

For any r > 0, let Xr = {z ∈ X : ‖z‖ < r}, ∂Xr = {z ∈ X : ‖z‖ = r},
Xr = {z ∈ X : ‖z‖ ≤ r}. Let 0 < a1 < a2 ≤ 1, denote b = mint∈[a1,a2] t

α−w−1

and ξ(z) = mint∈[a1,a2] z(t), z ∈ X. ∀ R ≥ r > 0, set X(ξ, r, R) = {z ∈ X : r ≤
ξ(z), ‖z‖ ≤ R}, X̊(ξ, r, R) = {z ∈ X : r < ξ(z), ‖z‖ ≤ R}.

Define two operators T0 and T1 as follows:

(T0z)(t) =

∫ 1

0

G(t, s)g(s)z(s)ds, t ∈ [0, 1], (2.10)
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(T1z)(t) =

∫ 1

0

G(t, s)g(s)f(s, Iw0+z(s), z(s))ds, t ∈ [0, 1], (2.11)

where T0 is a linear operator and T1 is a nonlinear operator. It is not hard to prove
that T0 : E → E is linear completely continuous and T0(P ) ⊂ P .

Lemma 2.5 (Krein-Rutmann [6]). Assume that T0 : E → E is linear completely
continuous operator and T0(P ) ⊂ P . If there are ψ ∈ E \ (−P ) and a constant
c1 > 0 such that c1T0(ψ) ≥ ψ, then the spectral radius r(T0) 6= 0 and T0 has a
positive eigenfunction ϕ0 > 0 corresponding to its first eigenvalue λ1 = (r(T0))−1.
That is, ϕ0 = λ1T0ϕ0.

From Lemma 2.4 and Lemma 2.5, we know the spectral radius r(T0) 6= 0. In
addition, T0 has a eigenfunction ϕ0(t) > 0 corresponding to its first eigenvalue
λ1 = (r(T0))−1.

Lemma 2.6. Assume that (H1) and (H2) hold, then T1 : Xr2 \Xr1 → X is com-
pletely continuous.

Proof. First, we prove T1(Xr2 \Xr1) ⊂ X. For any z ∈ Xr2 \Xr1 , t ∈ [0, 1], by
the definition of T1 and Lemma 2.4, it implies that

(T1z)(t) =

∫ 1

0

G(t, s)g(s)f(s, Iw0+z(s), z(s))ds

≥ tα−w−1

∫ 1

0

D(s)g(s)f(s, Iw0+z(s), z(s))ds,

and

(T1z)(t) ≤
∫ 1

0

D(s)g(s)f(s, Iw0+z(s), z(s))ds,

which yield

(T1z)(t) ≥ tα−w−1‖T1z‖.

Therefore, T1z ∈ X. That is, T1(Xr2 \Xr1) ⊂ X. Then, by the standard argument,
we obtain that T1 : Xr2 \Xr1 → X is completely continuous.

Lemma 2.7 ( [7]). Let E be Banach space. X ⊂ E is a cone. Assume that
T1 : Xr1 → X is completely continuous.

(i) If there is z0 ∈ X \ {θ} such that z − T1z 6= µz0, for µ ≥ 0, z ∈ ∂Xr1 , then
i(T1, Xr1 , X) = 0.

(ii) If T1z 6= µz, for µ ≥ 1, z ∈ ∂Xr1 , then i(T1, Xr1 , X) = 1.

Lemma 2.8 ( [7]). Let T1 : Xr3 → X be completely continuous operator. If there
is a concave functional ξ > 0 and ξ(z) ≤ ‖z‖ (z ∈ X), for positive numbers c1 <
c2 ≤ c3, satisfying the conditions:

(i) X̊(ξ, c1, c2) 6= ∅ with ξ(T1z) > c1 if z ∈ X(ξ, c1, c2);

(ii) T1z ∈ Xc3 if z ∈ X(ξ, c1, c3);

(iii) ξ(T1z) > c1 for z ∈ X(ξ, c1, c3) with ‖T1z‖ > c2.
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Then, i(T1, X̊(ξ, c1, c3), Xc3) = 1.

Lemma 2.9 ( [7], [28]). Let X be a cone in the Banach space E, and operator
T1 : X → X is completely continuous. Let positive numbers be c1 < c2 < c3.

(i) If ‖T1z‖ > ‖z‖ for any z ∈ ∂Xc1 , and ‖T1z‖ ≤ ‖z‖ for any z ∈ ∂Xc2 , then

i(T1, Xc2 \Xc1 , Xc2) = 1.

(ii) If ‖T1z‖ > ‖z‖ for any z ∈ ∂Xc1 , and ‖T1z‖ < ‖z‖ for any z ∈ ∂Xc2 , then

i(T1, Xc2 \Xc1 , Xc3) = 1.

3. Main results

In the following, we can give the existence and multiplicity results of positive solu-
tions in this paper.

Theorem 3.1. Assume that (H1) and (H2) hold, and

lim inf
u→0+

v→0+

f(t, u, v)

u+ v
> λ1, lim sup

u+v→+∞
v→+∞

f(t, u, v)

v
< λ1, (3.1)

uniformly on t ∈ [0, 1], where λ1 is the first eigenvalue of T0 and T0 is defined by
(2.10). Then, BVP (1.1) at least has a positive solution.

Proof. According to (3.1), for t ∈ [0, 1], there exists r1 > 0 such that

f(t, u, v) ≥ λ1(u+ v), 0 ≤ u ≤ r1

Γ(w + 1)
, 0 ≤ v ≤ r1, (3.2)

and so for z ∈ ∂Xr1 , since

0 ≤ Iw0+z(s) ≤
r1

Γ(w + 1)
, 0 ≤ z(s) ≤ r1. (3.3)

Then, by (3.2), (3.3) and Lemma 2.4, for t ∈ [0, 1], we can get

(T1z)(t) =

∫ 1

0

G(t, s)g(s)f(s, Iw0+z(s), z(s))ds

≥λ1

∫ 1

0

G(t, s)g(s)(Iw0+z(s) + z(s))ds

≥λ1(T0z)(t).

(3.4)

Let ϕ0 > 0 be the eigenfunction of T0 corresponding to λ1, so ϕ0 = λ1T0ϕ0. Then,
we will prove the condition (i) of Lemma 2.7. That is,

z − T1z 6= µϕ0, µ ≥ 0, z ∈ ∂Xr1 . (3.5)

We use the contraction method. That is, there are z1 ∈ ∂Xr1 and µ1 ≥ 0 such
that z1 − T1z1 = µ1ϕ0. Therefore, when µ1 > 0, z1 = T1z1 + µ1ϕ0 ≥ µ1ϕ0. Set
µ = sup{µ|z1 ≥ µϕ0}, then µ ≥ µ0 > 0, z1 ≥ µϕ0. By (3.4)

z1 = T1z1 + µ1ϕ0 ≥ λ1T0z1 + µ1ϕ0 ≥ µϕ0 + µ1ϕ0 = (µ+ µ1)ϕ0,
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this contradicts the definition of µ. Therefore, (3.5) is established. Then, according
to Lemma 2.7, we obtain

i(T1, Xr1 , X) = 0. (3.6)

Next, we will verify the condition (ii) of Lemma 2.7. According to (3.1), for
t ∈ [0, 1], there exists r0 > r1 such that

f(t, u, v) ≤ λ1v, u+ v ≥ r0, v ≥ r0. (3.7)

Now, let M1 = max{f(t, u, v)|t ∈ [0, 1], 0 ≤ u + v ≤ r0, 0 ≤ v ≤ r0} < +∞.
Then, by (3.7) and for t ∈ [0, 1], we have

f(t, u, v) ≤ λ1v +M1, u+ v ≥ 0, v ≥ 0. (3.8)

Set

A = {z ∈ X, z = µT1z, 0 ≤ µ ≤ 1}.

Next, we prove that A is bounded. For µ ∈ [0, 1] and z ∈ A, from (3.8), we
obtain

z(t) = µ(T1z)(t) ≤
∫ 1

0

G(t, s)g(s)f(s, Iw0+z(s), z(s))ds

≤
∫ 1

0

G(t, s)g(s)[λ1z +M1]ds

≤ λ1(T0z)(t) +N,

(3.9)

where N = M1 supt∈[0,1]

∫ 1

0
G(t, s)g(s)ds. We know r(λ1T0) < 1, so I − λ1T0 is

reversible. I is the identity operator. Then,

(I − λ1T0)−1 = I + λ1T0 + (λ1T0)2 + · · ·+ (λ1T0)n + · · · .

According to T0 : P → P , we have (I − λ1T0)−1(P ) ⊂ P . Then, this together
with (3.9) imply

z(t) ≤ (I − λ1T0)−1N, t ∈ [0, 1].

Thus, we get A is bounded.
We choose r2 > max{r0, supA}, then we can easily get

z 6= µT0z, z ∈ ∂Xr2 , 0 ≤ µ ≤ 1.

Then, according to Lemma 2.7, we get

i(T1, Xr2 , X) = 1. (3.10)

By (3.6) and (3.10), we get

i(T1, Xr2 \Xr1 , X) = i(T1, Xr2 , X)− i(T1, Xr1 , X) = 1.



Solutions for a Singular Nonlinear High Order Fractional Differential Problem 611

Consequently, T1 at least has a fixed point. That is, BVP (2.4) has a solution z > 0.
From Lemma 2.2, then BVP (1.1) has a positive solution y = Iw0+z.

Before giving the rest of the paper, we define some height functions.

φ(t, r1, r2) = max

{
f(t, u, v) : r1m1(t) ≤ u ≤ r2t

w

Γ(w + 1)
, r1m2(t) ≤ v ≤ r2

}
,

φ(t, r) = max

{
f(t, u, v) : rm1(t) ≤ u ≤ rtw

Γ(w + 1)
, rm2(t) ≤ v ≤ r

}
,

ϕ1(t, r) = min

{
f(t, u, v) : rm1(t) ≤ u ≤ rtw

Γ(w + 1)
, rm2(t) ≤ v ≤ r

}
,

ϕ2(t, r1, r2) = min

{
f(t, u, v) :

r1t
w

Γ(w + 1)
≤ u ≤ r2t

w

Γ(w + 1)
, r1 ≤ v ≤ r2

}
,

where m1(t) = Γ(α−w)
Γ(α) tα−1 and m2(t) = tα−w−1.

Theorem 3.2. Assume that (H1) and (H2) hold, and there exist constants ki,
i = 1, · · · , 5 with 0 < k1 < k2 < k3 < k4 < k5 and k3 < bk4 such that

(S1)
∫ 1

0
D(s)g(s)ϕ1(s, k1)ds ≥ k1;

(S2)
∫ 1

0
D(s)g(s)φ(s, k2)ds < k2;

(S3)
∫ a2
a1
D(s)g(s)ϕ2(s, k3, k4)ds > k3b

−1;

(S4)
∫ 1

0
D(s)g(s)φ(s, k3, k5)ds ≤ k5.

Then, BVP (1.1) at least has three positive solutions.

Proof. By Lemma 2.6, when r1 = k1 and r2 = k5, for any z ∈ Xk5 \ Xk1 ,
t ∈ [0, 1], we have k1m2(t) ≤ z(t) ≤ k5 and k1m1(t) ≤ Iw0+z(t) ≤ k5t

w

Γ(w+1) . We know

T1 : Xk5 \Xk1 → X is completely continuous. According to the extension theorem,

T̃1 : X → X is a completely continuous operator extended from T1. We will still
use T1 to represent it below. First, we confirm that all the conditions of Lemma 2.8
are satisfied. Then, i(T1, X̊(ξ, k3, k5), Xk5) = 1.
(i) Obviously, X̊(ξ, k3, k4) 6= ∅. For z ∈ X(ξ, k3, k4) and t ∈ [a1, a2] ⊂ (0, 1], we
have k3 ≤ z(t) ≤ k4 and k3t

w

Γ(w+1) ≤ I
w
0+z(t) ≤ k4t

w

Γ(w+1) . According to Lemma 2.4 and

assumption (S3),

ξ(T1z) ≥ min
t∈[a1,a2]

tα−w−1

∫ a2

a1

D(s)g(s)f(s, Iw0+z(s), z(s))ds

≥ b
∫ a2

a1

D(s)g(s)ϕ2(s, k3, k4)ds > k3.

(3.11)

(ii) For z ∈ X(ξ, k3, k5) and t ∈ [0, 1], we have

k3m2(t) ≤ z(t) ≤ k5, k3m1(t) ≤ Iw0+z(t) ≤
k5t

w

Γ(w + 1)
. (3.12)

According to Lemma 2.4 and assumption (S4),

(T1z)(t) ≤
∫ 1

0

D(s)g(s)f(s, Iw0+z(s), z(s))ds

≤
∫ 1

0

D(s)g(s)φ(s, k3, k5)ds ≤ k5.

(3.13)
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Consequently, we obtain T1z ∈ Xk5 .
(iii) For z ∈ X(ξ, k3, k5), t ∈ [a1, a2] and ‖T1z‖ > k4, obviously, bk4 ≥ k3. Then,
we have

ξ(T1z) = min
t∈[a1,a2]

(T1z)(t) ≥ min
t∈[a1,a2]

tα−w−1‖T1z‖

= b‖T1z‖ > bk4 ≥ k3.
(3.14)

Therefore, from Lemma 2.8, when c1 = k3, c2 = k4, c3 = k5, we get the conclusion
that

i(T1, X̊(ξ, k3, k5), Xk5) = 1. (3.15)

Next, for z ∈ ∂Xk5 , obviously, ‖z‖ = k5, and for t ∈ [0, 1], we have k3m2(t) ≤
k5m2(t) ≤ z(t) ≤ k5 and k3m1(t) ≤ k5m1(t) ≤ Iw0+z(t) ≤ k5t

w

Γ(w+1) . Therefore, (3.12)

holds. Then, by (3.12), Lemma 2.4 and assumption (S4), in the same way that we
proved (3.13), we have

‖T1z‖ ≤ k5, ∀z ∈ ∂Xk5 . (3.16)

For z ∈ ∂Xk2 and t ∈ [0, 1], we have k2m2(t) ≤ z(t) ≤ k2 and k2m1(t) ≤ Iw0+z(t) ≤
k2t

w

Γ(w+1) . According to Lemma 2.4 and assumption (S2), we can obtain

(T1z)(t) ≤
∫ 1

0

D(s)g(s)f(s, Iw0+z(s), z(s))ds

≤
∫ 1

0

D(s)g(s)φ(s, k2)ds < k2.

Then,

‖T1z‖ < k2, ∀z ∈ ∂Xk2 . (3.17)

For z ∈ ∂Xk1 and t ∈ [0, 1], we obtain k1m2(t) ≤ z(t) ≤ k1 and k1m1(t) ≤ Iw0+z(t) ≤
k1t

w

Γ(w+1) . According to Lemma 2.4 and assumption (S1), we have

(T1z)(t) ≥ tα−w−1

∫ 1

0

D(s)g(s)f(s, Iw0+z(s), z(s))ds

≥ tα−w−1

∫ 1

0

D(s)g(s)ϕ1(s, k1)ds,

which yields

‖T1z‖ ≥ max
t∈[0,1]

tα−w−1

∫ 1

0

D(s)g(s)ϕ1(s, k1)ds =

∫ 1

0

D(s)g(s)ϕ1(s, k1)ds ≥ k1, ∀z ∈ ∂Xk1 .

(3.18)

Therefore, by (3.16), (3.17), (3.18) and Lemma 2.9, we obtain

i(T1, Xk5 \Xk1 , Xk5) = 1, (3.19)

i(T1, Xk2 \Xk1 , Xk5) = 1. (3.20)
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From (3.18), it is obvious that T1 has no fixed point on ∂Xk2 . Moreover, for
z ∈ X(ξ, k3, k4), by (3.11), we can get ξ(T1z) > k3. Then, for z ∈ X(ξ, k3, k5)
with ‖T1z‖ > k4, we also get ξ(T1z) > k3. Therefore, T1 has no fixed point on
X(ξ, k3, k5) \ X̊(ξ, k3, k5).

It follows from (3.15), (3.19) and (3.20) that

i(T1,Xk5 \ (X(ξ, k3, k5) ∪Xk2), Xk5)

= i(T1, Xk5 \Xk1 , Xk5)− i(T1, Xk2 \Xk1 , Xk5)

− i(T1, X̊(ξ, k3, k5), Xk5) = −1.

(3.21)

Consequently, by (3.15), (3.20) and (3.21), we conclude that T1 at least has three
fixed points z1 ∈ Xk2 \Xk1 , z2 ∈ X̊(ξ, k3, k5) and z3 ∈ Xk5 \ (X(ξ, k3, k5) ∪Xk2).
Clearly, yi = Iw0+zi, i = 1, 2, 3, are three positive solutions of BVP (1.1).

4. An example

Example 4.1. Consider the following equation
−D

7
2
0+y(t) = g(t)f(t, y(t), D

1
4
0+y(t)), 0 < t < 1,

D
1
4
0+y(0) = D

5
4
0+y(0) = D

9
4
0+y(0) = 0,

D
7
4
0+y(1) =

2

3
D

3
2
0+y(0.8).

(4.1)

where α = 7
2 , n = 4, w = 1

4 , β = 7
4 , γ = 3

2 , g(t) = 5
4
√
t(1−t)

, f(t, y(t), D
1
4
0+y(t)) =

(D
1
4
0+y(t))−

1
8 + [y(t) + D

1
4
0+y(t)]−

1
4 . By direct computation, we have (Γ(α)/Γ(α −

γ))
∑m
i=1 ηiζ

α−γ−1
i = (Γ(7

2 )/Γ(2)) × 2
3 × 0.8 ≈ 1.7728 < Γ( 7

2 )/Γ( 7
4 ) = 3.6142 and

∆ ≈ 1.3129 > 0. Obviously, f : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) is continuous,
g : (0, 1)→ [0,+∞) is continuous and g(t) is singular at the points t = 0 and t = 1

with 0 <
∫ 1

0
D(s)g(s)ds ≤ 2.7427 < +∞. In addition, we can easily obtain that

lim inf
u→0+

v→0+

f(t, u, v)

u+ v
= lim inf

u→0+

v→0+

(u+ v)−
1
4 + v−

1
8

u+ v
= +∞,

lim sup
u+v→+∞
v→+∞

f(t, u, v)

v
= lim sup
u+v→+∞
v→+∞

(u+ v)−
1
4 + v−

1
8

v
= 0,

where u(t) = y(t), v(t) = D
1
4
0+y(t), then u(t) = I

1
4
0+v(t). This means that

lim sup
u+v→+∞
v→+∞

f(t, u, v)

v
< λ1 < lim inf

u→0+

v→0+

f(t, u, v)

u+ v
.

Therefore, we prove that the problem satisfies all the assumptions of Theorem 3.1.
Consequently, Theorem 3.1 guarantees that equation (4.1) has at least a solution.



614 D. Wang & J. Jiang

5. Conclusion

In this paper, we obtained several sufficient conditions for the existence of positive
solutions for nonlinear fractional differential equation involving multi-point bound-
ary conditions. Our results will be a useful contribution to the existing literature
on the topic of fractional-order nonlocal differential equations. The results of the
existence are demonstrated on a relevant example.
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