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Existence Results for Fractional Differential
Equations with the Riesz-Caputo Derivative
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Abstract In this paper, we apply some fixed point theorems to attain the
existence of solutions for fractional differential equations with the space-time
Riesz-Caputo derivative. We study the boundary value problems that the
nonlinearity term f is relevant to fractional integral and fractional derivative.
In addition, the boundary conditions involve integral. Two examples are given
to show the effectiveness of theoretical results.
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1. Introduction

With the progress of modern science and technology and the advancement of frac-
tional order theory, fractional order differential equations have been widely used in
signal and image processing, electromagnetism, mechanics, optics and other fields
of science and engineering. It is of profound significance to solve practical problems.
See [1–3,10–13,15,16] and the references therein.

Specially, there are few papers that studied the fractional differential equations
problems with the Riesz-Caputo derivative. For the Riesz fractional derivative is a
two-sided operator which holds memory effects. In [5], Chen et al. investigated the
following equations:{

RC
0 Dγ

T y(τ) = g(τ, y(τ)), 0 ≤ τ ≤ T, 0 < γ ≤ 1,

y(0) = y0, y(T ) = yT ,

where RCDγ is a Riesz-Caputo derivative and g : [0, T ] × R → R is a continuous
function, y0 and yT are two constants. In [7], Gu et al. employed the Leray-Schauder
and Krasnosel’skii fixed point theorems to show the existence of positive solutions
for the above boundary value problems in [5], where 0 ≤ τ ≤ 1.

In [6], Chen et al. considered the anti-periodic boundary value problems:{
RC
0 Dγ

T y(τ) = g(τ, y(τ)), 0 ≤ τ ≤ T, 1 ≤ γ ≤ 2,

y(0) + y(T ) = 0, y′(0) + y′(T ) = 0,
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where g : [0, T ] × R → R is a continuous function. It reflected the future and
the past nonlocal memory effects. In [2], Ahmad et al. investigated the existence
of solutions for a nonlinear fractional integro-differential equation involving two
Caputo fractional derivatives of different orders and a Riemann-Liouville integral,
and equipped with dual anti-periodic boundary conditions. The authors introduced
a new concept of dual anti-periodic boundary conditions.

In [14], the authors considered the following singular fractional boundary value
problems of fractional differential equations:{

CDα
0+u(t) = f(t, u(t), u′(t),C Dβ

0+u(t)),

u(0) + u(1) = 0, u′(0) = 0,

where f(t, x, y, z) is singular at the value 0 of its space variables x, y and z, 1 < α <
2, 0 < β < 1, CDθ

0+ is Caputo fractional derivative. By using the Vitali convergence
theorems and fixed point theorem, the existence results of monotone solutions are
attained.

In [4], the authors studied the existence of solutions for Caputo type sequential
fractional integro-differential equations and inclusions:(

CDα + λCDα−1
)
u(t) = f(t, u(t),C Dpu(t), Iqu(t)), t ∈ (0, 1),(

CDα + λCDα−1
)
u(t) ∈ F (t, u(t), Iqu(t)), t ∈ (0, 1),

supplemented with the nonlocal boundary conditions

u(0) = h(u), u′(0) = u′′(0) = 0, aIβu(ξ) =

∫ 1

0

u(s)dH(s),

where CDα is the Caputo fractional derivative of order α, Iq is the Riemann-
Liouville fractional integral of order q, α ∈ (3, 4], p ∈ (0, 1), λ > 0, ξ ∈ (0, 1], a ∈ R,
β > 0, f is a nonlinear function, F is a nonlinear multivalued function. In [3],
authors studied a new nonlocal boundary value problem of integro-differential e-
quations involving mixed left and right Caputo and Riemann-Liouville fractional
derivatives and Riemann-Liouville fractional integrals of different orders. The ex-
istence of solutions are obtained by using Leray-Schauder nonlinear alternative,
Krasnosel’skii fixed point theorem and Banach contraction mapping principle.

Inspired by the works mentioned above, we study the existence and uniqueness
of solutions of fractional differential equations with Riesz-Caputo derivative:

RC
0 Dα

1 u(t) = f(t, u(t),0 I
β
t u(t),C0 D

α−1
t u(t)), 0 ≤ t ≤ 1,

u(0) = 0, u′(0) + u′(1) = 0, u(1) =

∫ 1

0

u(t)dt,
(1.1)

where 1 < α ≤ 2 , β > 0, RCD is a Riesz-Caputo derivative, 0I
β
t is the left Riemann-

Liouville fractional integral of order β, C0 D
α−1
t is the left Caputo derivative of order

α − 1, and f : [0, 1] × R3 → R is a continuous function. By using the fixed point
theorems, the existence results for fractional differential equations with the Riesz-
Caputo derivative are obtained under some conditions.

Few literature studied the fractional differential equations with the Riesz-Caputo
derivative. Compared with the existing literature [5–7], the new feature lying in this
paper is that we investigate BVP(1.1), in which the nonlinearity term f is relevant
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to fractional integral and fractional derivative. In addition, the boundary conditions
involve integral. As far as we know, there is no literature that studies this problem.
Our achievements fill this margin to some extension. Moreover, the basic space
used in this paper is the space X = {u ∈ C[0, 1],C Dα−1

0+ u ∈ C[0, 1]} equipped with

the norm ‖u‖X = ‖u‖+ ‖CDα−1
0+ u‖. Here, ‖x‖ = sup{|x(t)|, t ∈ [0, 1]}, this Banach

space is different from [5–7]. Thus, our results are new and meaningful.
The rest of this paper is organized as follows: In Section 2, we present some

definitions and lemmas, which will be used to prove our main results. In Section 3,
the existence results of solutions are obtained by using the fixed poind theorem. In
Section 4, two examples are given to show the effectiveness of theoretical results.

2. Basic definitions and preliminaries

For the convenience of readers, we present some definitions and lemmas, which will
be used in the proofs of our results. Let α > 0, and n − 1 < α ≤ n , n = [α]; [α]
denotes the integer part of the real number α.

Definition 2.1 ( [10]). The left and right Riemann-Liouville fractional integral of
order α > 0 of a function u : [0, 1]→ R are given respectively by

0I
α
t u(t) =

1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

tI
α
1 u(t) =

1

Γ(α)

∫ 1

t

(s− t)α−1u(s)ds,

where Γ is the Euler gamma function defined by Γ(α) =
∫ +∞

0
tα−1e−tdt, α > 0.

Definition 2.2. The Riesz integral of order α > 0 of a function u ∈ C[0, 1] is
defined by

R
0 I

α
1 u(t) =

1

2Γ(α)

∫ 1

0

| t− s |α−1 u(s)ds.

Remark 2.1. From Definition 2.1 and Definition 2.2, we conclude that

R
0 I

α
1 u(t) =

1

2
[0I

α
t u(t) + tI

α
1 u(t)] .

Definition 2.3 ( [5]). The classical Riesz-Caputo derivative of order α > 0 is given
by

RC
0 Dα

1 u(t) =
1

Γ(n− α)

∫ 1

0

| t− s |n−α−1

(
d

ds

)n
u(s)ds

=
1

2

[
C
0 D

α
t u(t) + (−1)n

C
t D

α
1 u(t)

]
,

where C
t D

α
1 is the right hand side Caputo derivative, C

0 D
α
t is the left hand side

Caputo derivative, which are respectively given by

C
0 D

α
t u(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1

(
d

ds

)n
u(s)ds,
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C
t D

α
1 u(t) =

(−1)n

Γ(n− α)

∫ 1

t

(s− t)n−α−1

(
d

ds

)n
u(s)ds.

Particularly, if 1 < α ≤ 2 and u(t) ∈ C[0, 1], the Riesz-Caputo fractional derivative
of order α is given by

RC
0 Dα

1 u(t) =
1

2

(
C
0 D

α
t u(t) +C

t D
α
1 u(t)

)
.

Lemma 2.1 (Lemma 2.1, [6]). If u(t) ∈ Cn[0, 1] , then

0I
α
t
C
0 D

α
t u(t) = u(t)−

n−1∑
l=0

u(l)(0)

l!
(t− 0)l

and

tI
α
1
C
t D

α
1u(t) = (−1)n

[
u(t)−

n−1∑
l=0

(−1)lu(l)(1)

l!
(1− t)l

]
.

Then, we have

R
0 I

α
1
RC
0 Dα

1u(t) =
1

2

[
0
Iαt

C
0 D

α
t u(t) +t I

α
1
C
0 D

α
t u(t)

]
+

(−1)n

2

[
0
Iαt

C
t D

α
1u(t) +t I

α
1
C
t D

α
1u(t)

]
=

1

2

[
(0I

α
t
C
0 D

α
t u(t) + (−1)n ·t Iα1 Ct Dα

1u(t)
]
.

Particularly, if 1 < α 6 2 and u(t) ∈ C1[0, 1], then

R
0 I

α
1
RC
0 Dα

1u(t) = u(t)− 1

2

[
u(0) + u(1)

]
− 1

2

[
u′(0)t− u′(1)(1− t)

]
.

Lemma 2.2. Assume that p ∈ L1[0, 1], 1 < α ≤ 2, 0 ≤ t ≤ 1, then the problem
RC
0 Dα

1u(t) = p(t),

u(0) = 0, u′(0) + u′(1) = 0, u(1) =

∫ 1

0

u(t)dt,
(2.1)

has a unique solution

u(t) =
1

Γ(α)

∫ 1

0

[
(1− s)α−1 − (α− 1)(1− s)α−2

]
p(s)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)ds+
1

Γ(α)

∫ 1

t

(s− t)α−1p(s)ds.

(2.2)

Proof. Lemma 2.1 guarantees that

u(t) =
u(0) + u(1)

2
+
u′(0)t− u′(1)(1− t)

2
+

1

Γ(α)

∫ t

0

(t− s)α−1p(s)ds

+
1

Γ(α)

∫ 1

t

(s− t)α−1p(s)ds.
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Then,

u′(t) =
u′(0) + u′(1)

2
+

1

Γ(α− 1)

∫ t

0

(t−s)α−2p(s)ds− 1

Γ(α− 1)

∫ 1

t

(s−t)α−2p(s)ds.

From the boundary conditions u(0) = 0, u′(0) + u′(1) = 0, u(1) =
∫ 1

0
u(t)dt, we

have

u′(1) =
1

Γ(α− 1)

∫ 1

0

(1− s)α−2p(s)ds,

u′(0) = − 1

Γ(α− 1)

∫ 1

0

(1− s)α−2p(s)ds.

Then,

u(t) =
1

2

∫ 1

0

u(t)dt− t

Γ(α− 1)

∫ 1

0

(1− s)α−2p(s)ds− 1− t
2Γ(α− 1)

∫ 1

0

(1− s)α−2p(s)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)ds+
1

Γ(α)

∫ 1

t

(s− t)α−1p(s)ds

(2.3)
and

1

2

∫ 1

0

u(t)dt = − 1

Γ(α− 1)

∫ 1

0

(1− s)α−2p(s)ds+
1

Γ(α)

∫ 1

0

(1− s)α−1p(s)ds. (2.4)

Substituting (2.4) into (2.3), we obtain the unique solution of (2.1) in [0, 1]. �

From Lemma 2.2, we note (1.1) is equivalent to the following equation:

u(t) =
1

Γ(α)

∫ 1

0

[
(1− s)α−1 − (α− 1)(1− s)α−2

]
f(t, u(t), Iβ0+u(t),C Dα−1

0+ u(t))ds

+
1

Γ(α)

∫ t

0

(t− s)α−1f(t, u(t), Iβ0+u(t),C Dα−1
0+ u(t))ds

+
1

Γ(α)

∫ 1

t

(s− t)α−1f(t, u(t), Iβ0+u(t),C Dα−1
0+ u(t))ds.

(2.5)

For the sake of convenience, in the rest of this paper, we use Iβ0+ , CDα−1
0+ and

RCDα to denote 0I
β
t , C0 D

α−1
t and RC

0 Dα
1 respectively.

Let the space X = {u ∈ C[0, 1],C Dα−1
0+ u ∈ C[0, 1]} equipped with the norm

‖u‖X = ‖u‖+ ‖CDα−1
0+ u‖, where ‖x‖ = sup{|x(t)|, t ∈ [0, 1]}. Then, (X, ‖ · ‖X) is a

Banach space.
Define an operator A : X → X by the formula

Au(t) =
1

Γ(α)

∫ 1

0

[
(1− s)α−1 − (α− 1)(1− s)α−2

]
fu(s)ds

+
1

Γ(α)

∫ t

0

(t− s)α−1fu(s)ds+
1

Γ(α)

∫ 1

t

(s− t)α−1fu(s)ds.

(2.6)

for t ∈ [0, 1], u ∈ X, where fu(s) = f(s, u(s), Iβ0+u(s),C Dα−1
0+ u(s)), s ∈ [0, 1].

The function u(t) is a solution of BVP(1.1), if and only if u is a fixed point of
the operator A.
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3. Main results

Let

Λ =
2L1L2(Γ(3− α) + 1)

Γ(α)Γ(3− α)
, L2 = 1 +

1

Γ(β + 1)
.

We list the following assumptions adopted in this paper.

(H1) α ∈ (1, 2], β > 0, the function f : [0, 1] × R3 → R is continuous. There is a
constant L1 > 0 such that

| f(t, x, y, z)− f(t, x1, y1, z1) |≤ L1(| x− x1 | + | y − y1 | + | z − z1 |),

for all t ∈ [0, 1], x, x1, y, y1, z, z1 ∈ R.

(H2) There is a nondecreasing function ϕ ∈ C([0, 1],R+) such that

| f(t, x, y, z) |≤ ϕ(t), ∀t ∈ [0, 1], (x, y, z) ∈ R3.

(H3) There are functions ϕ,ψ ∈ C([0, 1],R+), where ψ is a nondecreasing function,
satisfying

| f(t, x, y, z) |≤ ϕ(t)ψ(x+ z), ∀t ∈ [0, 1], (x, y, z) ∈ R3.

(H4) There is m > 0 satisfying

m

‖ϕ‖ψ(m)
>

(3 + 21−α)Γ(3− α) + 22−α

Γ(α+ 1)Γ(3− α)
.

Theorem 3.1. Assume that (H1) holds. Then, BVP (1.1) has a unique solution
on [0, 1], providing that Λ < 1, L1L2 6= 1.

Proof. Put supt∈[0,1] |f(t, 0, 0, 0)| = M1 <∞, and r > M1

1−L1L2
. Suppose Br ⊂ X

is bounded, and the set

Br = {u ∈ X : ‖u‖X ≤ r}.

First and foremost, we prove that A maps Br into itself, A is defined by (2.6).
By the condition (H1), for any t ∈ [0, 1], u ∈ Br, we have

|fu(t)| = |f(t, u(t), Iβ0+u(t),C Dα−1
0+ u(t))|

≤ |f(t, u(t), Iβ0+u(t) +C Dα−1
0+ u(t))− f(t, 0, 0, 0)|+ |f(t, 0, 0, 0)|

≤ L1

(
|u(t)|+ |Iβ0+u(t)|+ |CDα−1

0+ u(t)|
)

+M1

≤ L1

(
‖u‖+

‖u‖
Γ(β + 1)

+ ‖CDα−1
0+ u‖

)
+M1

≤ L1‖u‖X
(

1 +
1

Γ(β + 1)

)
+M1

≤ L1L2r +M1.
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Then, we obtain

|(Au)(t)| ≤ 1

Γ(α)

∫ 1

0

(1− s)α−1|fu(s)|ds+
1

Γ(α− 1)

∫ 1

0

(1− s)α−2|fu(s)|ds

+
1

Γ(α)

∫ t

0

(t− s)α−1|fu(s)|ds+
1

Γ(α)

∫ 1

t

(s− t)α−1|fu(s)|ds

≤L1L2r +M1

Γ(α)

(
1

α
+ 1 +

tα

α
+

(1− t)α

α

)
≤5(L1L2r +M1)

Γ(α+ 1)

and

|(Au)′(t)| ≤
∣∣∣∣ 1

Γ(α− 1)

∫ t

0

(t− s)α−2fu(s)ds− 1

Γ(α− 1)

∫ 1

t

(s− t)α−1fu(s)ds

∣∣∣∣
≤L1L2r +M1

Γ(α− 1)

(
tα−1

α− 1
+

(1− t)α−1

α− 1

)
≤2(L1L2r +M1)

Γ(α)
.

Hence, we conclude

‖Au‖ ≤ 5(L1L2r +M1)

Γ(α+ 1)
, ‖(Au)′‖ ≤ 2(L1L2r +M1)

Γ(α)
.

CDα−1
0+ is the left Caputo derivative of order α − 1 with α ∈ (1, 2]. Then, we

deduce

|CDα−1
0+ (Au)(t)| ≤ 1

Γ(2− α)

∫ t

0

(t− s)1−α|(Au)′(s)|ds

≤2(L1L2r +M1)

Γ(α)Γ(2− α)

∫ t

0

(t− s)1−αds

≤2(L1L2r +M1)

Γ(α)Γ(3− α)

and

‖CDα−1
0+ Au‖ ≤ 2(L1L2r +M1)

Γ(α)Γ(3− α)
.

Therefore,

‖Au‖X =‖Au‖+ ‖CDα−1
0+ ‖

≤5(L1L2r +M1)

Γ(α+ 1)
+

2(L1L2r +M1)

Γ(α)Γ(3− α)

≤r, ∀t ∈ [0, 1].

Thus, we conclude that the operator A maps Br into itself. Moreover, for all
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s ∈ [0, 1], u, v ∈ Br, we have

|fu(s)− fv(s)| ≤ L1

(
|u(s)− v(s)|+ |Iβ0+u(s)− Iβ0+v(s)|+ |CDα−1

0+ u(s)−C Dα−1
0+ v(s)|

)
≤ L1

(
‖u− v‖+ ‖CDα−1

0+ u−C Dα−1
0+ v‖+

‖u− v‖
Γ(β + 1)

)
≤ L1‖u− v‖X

(
1 +

1

Γ(β + 1)

)
≤ L1L2‖u− v‖X .

Then,

|(Au)(t)− (Av)(t)| ≤ 1

Γ(α)

∫ 1

0

(1− s)α−1|fu(s)− fv(s)|ds

+
1

Γ(α− 1)

∫ 1

0

(1− s)α−2|fu(s)− fv(s)|ds

+
1

Γ(α)

∫ t

0

(t− s)α−1|fu(s)− fv(s)|ds

+
1

Γ(α)

∫ 1

t

(s− t)α−1|fu(s)− fv(s)|ds

≤L1L2‖u− v‖X
Γ(α)

(
1

α
+ 1 +

tα

α
+

(1− t)α

α

)
≤L1L2‖u− v‖X

Γ(α+ 1)

and

|(Au)′(t)− (Av)′(t)| ≤ 1

Γ(α− 1)

∫ t

0

(t− s)α−2|fu(s)− fv(s)|ds

+
1

Γ(α− 1)

∫ 1

t

(s− t)α−1|fu(s)− fv(s)|ds

≤2L1L2‖u− v‖X
Γ(α)

,

which imply that

‖Au−Av‖ ≤ L1L2‖u− v‖X
Γ(α+ 1)

, ‖(Au)′ − (Av)′‖ ≤ 2L1L2‖u− v‖X
Γ(α)

.

Thus, we obtain

|CDα−1
0+ (Au)(t)−C Dα−1

0+ (Au)(t)| ≤ 1

Γ(2− α)

∫ t

0

(t− s)1−α|(Au)′(s)− (Av)′(s)|ds

≤2L1L2‖u− v‖X
Γ(α)Γ(3− α)

and

‖CDα−1
0+ Au−C Dα−1

0+ Av‖ ≤ 2L1L2‖u− v‖X
Γ(α)Γ(3− α)

.
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From the above inequalities, we obtain

‖Au−Av‖X =‖Au−Av‖+ ‖CDα−1
0+ Au−C Dα−1

0+ Av‖

≤2L1L2‖u− v‖X
(

1

Γ(α)
+

1

Γ(α)Γ(3− α)

)
=

2L1L2(Γ(3− α) + 1)

Γ(α)Γ(3− α)
‖u− v‖X

=Λ‖u− v‖X .

In view of the condition (H1), Λ < 1, the operator A is a contraction. By
Banach’s fixed point theorem, BVP(1.1) has a unique solution on [0, 1].

Lemma 3.3 (Krasnosel’skii fixed point theorem, [8]). Let Q be a closed, convex,
bounded and nonempty subset in Banach space E. Suppose that A1, A2 be operators
such that

(i) A1u1 +A2u2 ∈ Q, ∀u1, u2 ∈ Q;

(ii) A1 is a contraction mapping;

(iii) A2 is compact and continuous.

Then, the equation

A1z +A2z = z

has solution in E.

Theorem 3.2. Assume that (H1) and (H2) hold. Then, the BVP (1.1) has at least
one solution on [0, 1], providing that 3L1

Γ(α+1) < 1.

Proof. Define a set Br1 = {u ∈ X : ‖u‖X ≤ r1}. Let the operators A1, A2 :
Br1 → X be defined by

A1u(t) =
1

Γ(α)

∫ 1

0

[
(t− s)α−1 − (α− 1)(t− s)α−2

]
fu(s)ds,

A2u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1fu(s)ds+
1

Γ(α)

∫ 1

t

(s− t)α−1fu(s)ds,

.

for any t ∈ [0, 1], u ∈ Br1 , where fu(t) = f(t, u(t), Iβ0+u(t),C Dα−1
0+ u(t)), s ∈ [0, 1].

Choose a number r1 ≥ ‖ϕ‖
(

5
Γ(α+1) + 2

Γ(α)Γ(3−α)

)
, where ϕ is the function given

by the condition (H2). Obviously, Br1 is a closed, convex and bounded set.
For any u, v ∈ Br1 , using the condition (H2), we have

‖A1u+A2v‖ ≤ ‖A1u‖+ ‖A2v‖

≤ ‖ϕ‖
Γ(α+ 1)

+
‖ϕ‖
Γ(α)

+
‖ϕ‖

Γ(α+ 1)
+

‖ϕ‖
Γ(α+ 1)

≤ 5‖ϕ‖
Γ(α+ 1)

,

‖(A1u)′ + (A2v)′‖ ≤ 2‖ϕ‖
Γ(α)
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and

‖CDα−1
0+ (A1u+A2v)‖ ≤ 2‖ϕ‖

Γ(α)Γ(2− α)

∫ t

0

(t− s)1−αds ≤ 2‖ϕ‖
Γ(α)Γ(3− α)

.

From the definition of r1, for all u, v ∈ Br1 , we can obtain

‖A1u+A2v‖X = ‖A1u+A2v‖+ ‖CDα−1
0+ (A1u+A2v)‖

≤ 5‖ϕ‖
Γ(α+ 1)

+
2‖ϕ‖

Γ(α)Γ(3− α)

≤ r1.

Thus, A1u+A2v ∈ Br1 , for all u, v ∈ Br1 .

Next, we show that A1 is a contraction mapping. By the condition (H1), for all
u, v ∈ Br1 , s ∈ [0, 1], we obtain

| A1u−A1v |≤
1

Γ(α)

∫ 1

0

(1− s)α−1|fu(s)− fv(s)|ds

+
1

Γ(α− 1)

∫ 1

0

(1− s)α−2|fu(s)− fv(s)|ds

≤ L1

Γ(α)
(‖u− v‖+ ‖Iβ0+u− Iβ0+v‖+ ‖CDα−1

0+ u−C Dα−1
0+ v‖)

(
1

α
+ 1

)
≤ 3L1

Γ(α+ 1)

(
‖u− v‖+

‖u− v‖
Γ(β + 1)

+ ‖CDα−1
0+ u−C Dα−1

0+ v‖
)

≤3L1‖u− v‖X
Γ(α+ 1)

and

‖(Au)′ − (Av)′‖ = 0, ‖CDα−1
0+ A1u−C Dα−1

0+ A1v‖ = 0,

which yield

‖A1u−A1v‖X ≤
3L1‖u− v‖X

Γ(α+ 1)
,

for all u, v ∈ Br1 with 3L1

Γ(α+1) < 1. Then, operator A1 is a contraction mapping.

Next, we prove that the operator A2 is compact and continuous. Obviously, A2

is continuous stem from the continuity of f . By the condition (H2), we can prove
that A2 is uniformly bounded on Br1 , as

‖A2u‖ ≤
2‖ϕ‖

Γ(α+ 1)
, ‖(A2u)′‖ ≤ 2‖ϕ‖

Γ(α)
, ‖CDα−1

0+ (A2u)‖ ≤ 2‖ϕ‖
Γ(α)Γ(3− α)

.

Thus, for all u ∈ Br1 , we get

‖A2u‖X = ‖A2u‖+ ‖CDα−1
0+ (A2u)‖ ≤ 2‖ϕ‖

(
1

Γ(α+ 1)
+

1

Γ(α+ 1)Γ(3− α)

)
.
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For all 0 ≤ t1 < t2 ≤ 0, u ∈ Br1 , we obtain

|(A2u)(t2)− (A2u)(t1)|

≤ ‖ϕ‖
Γ(α)

∣∣∣∣ ∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1ds+

∫ t2

t1

(t2 − s)α−1ds

+

∫ 1

t2

(s− t2)α−1ds−
∫ 1

t1

(s− t1)α−1ds

∣∣∣∣
≤ ‖ϕ‖

Γ(α+ 1)
(tα2 − tα1 + (1− t2)α − (1− t1)α)

and

|CDα−1
0+ (A2u)(t2)−C Dα−1

0+ (A2u)(t1)|

≤ 2‖ϕ‖
Γ(α)Γ(2− α)

∣∣∣∣∫ t1

0

(t2 − s)1−α − (t1 − s)1−αds+

∫ t2

t1

(t2 − s)1−αds

∣∣∣∣
≤ 2‖ϕ‖

Γ(α)Γ(3− α)
(t2−α2 − t2−α1 ).

|(A2u)(t2) − (A2u)(t1)| → 0, and |CDα−1
0+ (A2u)(t2) −C Dα−1

0+ (A2u)(t1)| → 0 as
t2 → t1. This prove that A2 is equicontinuous on Br1 . By the Arzelà-Ascoli
theorem, the operator A2 is compact. As all the assumptions of Krasnosel’skii
fixed point theorem are satisfied, then there exists a u ∈ X such that the equation
A1u + A2u = u has a solution. Then, the BVP (1.1) has at least one solution in
[0, 1].

Lemma 3.4 (Leray-Schauder alternative theorem, [9]). Let Q be a closed, convex
subset in Banach space E, U is an open subset of Q and θ ∈ U . Suppose that
A : U → Q be a continuous compact map (that is A(U) is a relatively compact
subset of Q), then either:

(i) A has a fixed point in U, or

(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u = λAu.

Theorem 3.3. Assume that (H3) and (H4) hold. Then, the BVP (1.1) has at least
one solution.

Proof. Define a set Br2 = {u ∈ X : ‖u‖X ≤ r2}, Br2 ⊂ X. The proof of that the
operator A : Br2 → X is completely continuous, which is similar to that of Theorem
3.1. Therefore, we omit it here. Assume that u be a solution of BVP (1.1). If there
exists u ∈ Br2 and λ ∈ (0, 1) such that u = λAu. Then, for all t ∈ [0, 1], by (H3),
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we have

|u(t)| =|λ(Au)(t)|

≤ λ

Γ(α)

∫ 1

0

(1− s)α−1|fu(s)|ds+
λ

Γ(α− 1)

∫ 1

0

(1− s)α−2|fu(s)|ds

+
λ

Γ(α)

∫ t

0

(t− s)α−1|fu(s)|ds+
λ

Γ(α)

∫ 1

t

(s− t)α−1|fu(s)|ds

≤ 1

Γ(α)

∫ 1

0

(1− s)α−1ϕ(s)ψ(u(s) +C Dα−1
0+ u(s))ds

+
1

Γ(α− 1)

∫ 1

0

(1− s)α−2ϕ(s)ψ(u(s) +C Dα−1
0+ u(s))ds

+
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ψ(u(s) +C Dα−1
0+ u(s))ds

+
1

Γ(α)

∫ 1

t

(s− t)α−1ϕ(s)ψ(u(s) +C Dα−1
0+ u(s))ds

≤‖ϕ‖ψ(‖u‖X)

Γ(α)

(
1

α
+ 1 +

tα

α
+

(1− t)α

α

)
≤‖ϕ‖ψ(‖u‖)3 + 21−α

Γ(α+ 1)

and

|(Au)′(t)| ≤
∣∣∣∣ 1

Γ(α− 1)

∫ t

0

(t− s)α−2fu(s)ds− 1

Γ(α− 1)

∫ 1

t

(s− t)α−1fu(s)ds

∣∣∣∣
≤‖ϕ‖ψ(‖u‖X)

Γ(α− 1)

(
tα−1

α− 1
+

(1− t)α−1

α− 1

)
≤‖ϕ‖ψ(‖u‖X)

22−α

Γ(α)
.

Hence, we conclude

|CDα−1
0+ u(t)| =|λCDα−1

0+ (Au)(t)| ≤ 1

Γ(2− α)

∫ t

0

(t− s)1−α|(Au)′(s)|ds

≤‖ϕ‖ψ(‖u‖X)
22−α

Γ(α)Γ(2− α)

∫ t

0

(t− s)1−αds

≤‖ϕ‖ψ(‖u‖X)
22−α

Γ(α)Γ(3− α)
.

Therefore,

‖u‖X =‖u‖+ ‖CDα−1
0+ u)‖ = λ‖Au‖X = λ‖Au‖+ λ‖CDα−1

0+ (Au)‖

≤‖ϕ‖ψ(‖u‖X)
(3 + 21−α)Γ(3− α) + 22−α

Γ(α+ 1)Γ(3− α)
,

which yields
‖u‖X

‖ϕ‖ψ(‖u‖X)
≤ (3 + 21−α)Γ(3− α) + 22−α

Γ(α+ 1)Γ(3− α)
. (3.1)
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Taking (H3) and (3.1) into account, it implies ‖u‖X 6= r2. Therefore, there is no
u ∈ Br2 such that u = λAu for λ ∈ (0, 1). According to Leray-Schauder fixed point
theorem, A has a fixed point in Br2 . We deduce that BVP (1.1) has solution.

4. Examples

Two examples are given to test our results established in the previous section.

Example 4.1. Consider the boundary value problem
RC
0 D

3
2
1 u(t) =

1√
t2 + 7

+
u(t)

129
+

2

83
I

5
2

0+u(t) +
3

95
(CD

1
2

0+u(t)),

u(0) = 0, u′(0) + u′(1) = 0, u(1) =

∫ 1

0

u(s)ds,

(4.1)

where α = 1
2 , β = 5

2 , the nonlinear term is

f(t, x, y, z) =
1√
t2 + 7

+
x

129
+

2y

83
+

3z

95
,

for t ∈ [0, 1], x, y, z ∈ R. There is a constant 1/12 such that

|f(t, x, y, z)− f(t, x1, y1, z1)| ≤ 1

12
(|x− x1|+ |y − y1|+ |z − z1|).

After simple calculations, we get

L1 =
1

12
, M1 =

1√
7
, L2 = 1 +

1

Γ(β + 1)
≈ 1.3009,

Λ =
2L1L2(Γ(3− α) + 1)

Γ(α)Γ(3− α)
≈ 0.5207 < 1, L1L2 ≈ 0.1084 6= 1.

Therefore, all conditions of Theorem 3.1 are satisfied. As a result, Theorem 3.1
guarantees that the problem (4.1) has a unique solution.

Example 4.2. We consider the following problem
RC
0 D

3
2
1 u(t) =

1√
t2 + 3

sin t

(
1

8
u(t) +

1

5
I

1
2

0+u(t) +
1

3
(CD

1
2

0+u(t))

)
, 0 ≤ t ≤ 1,

u(0) = 0, u′(0) + u′(1) = 0, u(1) =

∫ 1

0

u(s)ds,

(4.2)

where α = 3
2 , β = 1

2 , and the function f defined by

f(t, x, y, z) =
1√
t2 + 3

sin t

(
1

8
x+

1

5
y +

1

3
z

)
,

for t ∈ [0, 1], x, y, z ∈ R.
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In addition, we get

|f(t, u(t), I
1
2

0+ ,
C D

1
2

0+u(t))| ≤ 1

3
√
t2 + 3

(
‖u‖+ ‖CD

1
2

0+u‖
)
.

For the above functions, we attain

| f(t, x, y, z) |≤ ϕ(t)ψ(x+ z),

with ϕ(t) = 1√
t2+3

, ‖ϕ‖ = 1
2 , and ψ(x+ z) = 1

3 (x+ z).

Let L1 = 1
12 , r̃2 = 3, we find that

r̃2

‖ϕ‖ψ(r̃2)
= 6 >

(3 + 21−α)Γ(3− α) + 22−α

Γ(α+ 1)Γ(3− α)
≈ 1.9946.

Now, all conditions of Theorem 3.2 are satisfied. Thus, by Theorem 3.2, we conclude
that problem (4.2) has at least one solutions.
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