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Stability of Peakons for a Nonlinear Generalization
of the Camassa-Holm Equation∗

Hao Yu1 and Kelei Zhang1,†

Abstract In this paper, by using the dynamic system method and the known
conservation laws of the gCH equation, and underlying features of the peakons,
we study the peakon solutions and the orbital stability of the peakons for
a nonlinear generalization of the Camassa-Holm equation (gCH). The gCH
equation is first transformed into a planar system. Then, by the first integral
and algebraic curves of this system, we obtain one heteroclinic cycle, which
corresponds to a peakon solution. Moreover, we give a proof of the orbital
stability of the peakons for the gCH equation.
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Orbital stability.
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1. Introduction

Due to its importance in breaking waves, the Camassa-Holm (CH) equation

ut − utxx − 3uux + 2uxuxx + uuxxx = 0 (1.1)

and related theories have been widely studied, see for instance [2–4, 6, 7, 11] and
references therein. Recently, in [1], Anco and Recio have obtained single peakon and
multi-peakon solutions to the following nonlinear generalization of the CH equation
(gCH)

ut − uxxt =
1

2
(p+ 1) (p+ 2)upux −

1

2
p (p− 1)up−2u3

x − 2pup−1uxuxx − upuxxx,
(1.2)

where p is an arbitrary nonlinearity power. When p = 1, the gCH equation (1.2)
becomes the CH equation (1.1) .

Similar to the CH equation, the gCH equation (1.2) also has the form of conser-
vation law

mt −
(

1

2
pup−1

(
u2 − u2

x

)
+ upm

)
x

= 0, m = u− uxx. (1.3)
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Thus, the integral

P =

∫ +∞

−∞
mdx (1.4)

is conserved under the appropriately asymptotic decay condition on u.

The Hamiltonian

E(p) =

∫ +∞

−∞

1

2
up
(
u2 + u2

x

)
dx, p 6= 0 (1.5)

gives another conservation integral, which gives rise to the conservation law

Dt

(
1

2
up
(
u2 + u2

x

))
+DxX = 0 (1.6)

with

X = −uputux +
1

2

((
1−D2

x

)−1
(

1

2
pup−1

(
u2 − u2

x

)
+ up (u− uxx)

))2

− 1

2

(
Dx

((
1−D2

x

)−1
(

1

2
pup−1

(
u2 − u2

x

)
+ up (u− uxx)

)))2

.

(1.7)

The classification of conservation laws of the gCH equation is based on both [1]
and [22]. When p = 3, equation (1.2) becomes

ut − utxx −
(

3

2
u2
(
u2 − u2

x

)
+ u3 (u− uxx)

)
x

= 0. (1.8)

In [1], Anco and Recio discovered that the equation (1.2) has peakons. Equation
(1.8) has the peakon solution

u (x, t) = cϕ (x+ ct) = ce−|x+ct|, c ∈ R. (1.9)

Constantin and Strauss showed in [9] that peakons of a certain nonlinear dis-
persive equation are orbital stable. By using the method in [8], the orbital stability
of peakons for other nonlinear wave equations was proved [5, 12, 17–19, 23]. More
recently, Lu, Chen and Deng [20] have studied the peakon solutions of the gCH
equation when p = 2 and the orbital stability of the peakons. By using the dy-
namic system method, Lu, Lu and Chen [21] obtained some peakon and periodic
peakon solutions to the modified Camassa-Holm equation, and Li [14] studied the
dynamical behavior for the generalized Burger-Fisher equation and the Sharma-
Tasso-Olver equation under different parametric conditions. In this paper, by the
dynamic system method [10,13,15,16] and the method in [9], we mainly study the
case of p = 3 in the gCH equation (1.2), which has higher degree of nonlinearity
and integration than the former [20]. It is much more complex to construct the
fifth degree polynomial to prove the stability of peakons, and we discover that the
planar system has only one heteroclinic, which is different from the case of p = 2
in [20].

Now, we state the main result of this paper.
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Theorem 1.1. For every ε > 0, there is a δ > 0 such that if u ∈ C
(
[0, T );H1 (R)

)
is a solution to (1.8) with

‖u (·, 0)− ϕ‖H1(R) < δ. (1.10)

Then,

‖u (·, t)− ϕ (· − ξ (t))‖2
H1(R)

< ε (1.11)

for t ∈ (0, T ), where ξ (t) ∈ R is any point where the function u (·, t) attains its
maximum.

The rest of the organization is as follows: In the second section, we analyze the
peakon solution of the gCH equation with the dynamic system method [10,13,15,16].
In the third section, we prove the orbital stability of peakon by the method in [9].
In Section 4, we give a brief conclusion.

2. Peakon solutions

The first thing we need to do in this part is to convert the equation (1.8) into a
dynamic system. By using τ = x + ct to substitute u (x, t) = ϕ (τ) into equation
(1.8), we obtain

cϕ′ − cϕ′′′ −
(

5

2
ϕ4 − 3

2
ϕ2(ϕ′)

2 − ϕ3ϕ′′
)′

= 0, (2.1)

where ϕ
′

is the derivative with respect to τ . By integrating the above formula, we
get

cϕ− cϕ′′ −
(

5

2
ϕ4 − 3

2
ϕ2(ϕ′)

2 − ϕ3ϕ′′
)

= g, (2.2)

where g is the integral constant. By taking transformation y = dϕ
dτ , we have the

planar dynamical system
dϕ

dτ
= y

dy

dτ
=
−3ϕ2y2 + 5ϕ4 − 2cϕ+ 2g

2 (ϕ3 − c)

(2.3)

and the first integral

H (ϕ, y) =
(
ϕ3 − c

) [
y2 − ϕ2 − 2gϕ

ϕ3 − c

]
= h. (2.4)

When g = 0, the following planar dynamical system
dϕ

dτ
= y

dy

dτ
=
−3ϕ2y2 + 5ϕ4 − 2cϕ

2 (ϕ3 − c)

(2.5)
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and the first integral

H (ϕ, y) =
(
ϕ3 − c

) (
y2 − ϕ2

)
(2.6)

are obtained. Since the system (2.5) is discontinuous on the singular line ϕ3 = c, we
do the conversion dτ =

(
ϕ3 − c

)
dξ to avoid this line for the time being. Through

the above transformation, the system (2.5) becomes


dϕ

dξ
=
(
ϕ3 − c

)
y,

dy

dξ
=
−3ϕ2y2 + 5ϕ4 − 2cϕ

2
.

(2.7)

Since the system (2.7) has the same first integral (2.6) as the system (2.5), so the
system (2.7) has the same topological phase portrait as the system (2.5), except for
the singular line ϕ3 = c. It is an invariant straight line solution for the system (2.7),
and that is pretty obvious. When c > 0, system (2.7) has two equilibrium points

O (0, 0) and A
(

3

√
2c
5 , 0

)
. Beyond that, the straight line has other two equilibrium

points B ( 3
√
c, 3
√
c) and C ( 3

√
c,− 3
√
c).

The coefficient matrix of the linearized system (2.7) at the equilibrium point
(ϕm, ym) is denoted as M (ϕm, ym), and J = detM (ϕm, ym) is defined. Then, by

this definition, we can figure out JO = −c2 < 0, JA = 9c2

5 > 0 and JB,C = −9c2 < 0.
According to planar dynamical system theory, O and B,C are three saddle points,
and A is a center point. Figure 1 shows the phase portrait of the system (2.5) and
the heteroclinic cycle, which is highlighted in blue in Figure 1, corresponding to
one peakon constitutes the algebraic curves defined by H (ϕ, y) = 0. The closer
H (ϕ, y) is to 0, the closer the red solution curve corresponding to H (ϕ, y) < 0 and
the green solution curve corresponding to H (ϕ, y) > 0 approach the heteroclinic
cycle, but never intersect.

y2 = ϕ2 (2.8)

is obtained by the algebraic curves defined by H (ϕ, y) = 0.

Figure 1. Phase portrait of the system (2.5)
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Figure 2. The profile of ϕ (τ) = e−|τ|

Figure 3. The profile of ϕ (τ) = −e−|τ|

The peakon solution in the form of exponential function

ϕ (τ) = ± 3
√
ce−|τ |, (2.9)

whose profiles are shown in Figure 2 and Figure 3, is obtained by integrating with
the first equation of the system (2.5).

We define ∗ as the convolution on R, and its structure is (f ∗ g) (x) =
∫
R f (y) g (x− y) dy.

Therefore, we have u =
(
1− ∂2

x

)−1
m = p̃ ∗m.

Definition 2.1. Given initial data u0 ∈W 1,3 (R), the function u ∈ L∞
(
[0, T ] ,W 1,3 (R)

)
is said to be a weak solution to (1.8), if it satisfies the following identity∫ T

0

∫
R

[
uψt −

1

4
u4ψx − p̃ ∗

(
9

4
u4 +

3

2
u2u2

x

)
ψ

]
dxdt+

∫
R
u (x, 0)ψ (x, 0) dx = 0

(2.10)

for any smooth test function ψ (t, x) ∈ C∞c ([0, T ]× R). If u is a weak solution on
[0, T ) for every T > 0, it is called a global weak solution.

Theorem 2.1 ( [1] ). The peaked function of the form

u (t, x) = ± 3
√
ce−|x+ct| (2.11)

is a global weak solution to (1.8) in the sense of Definition 2.1.
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3. Proof of stability

Notice that a small change in the shape of a peakon can produce another peakon at
a different speed. Thus, the proper concept of stability is orbital stability: a wave
whose initial profile is close to peakon will remain close to some translation of it all
the time thereafter. In another words, the shape of the wave remains roughly the
same at all times.

Equation (1.8) has the following three conservation laws

H0 [u] =

∫
R
udx, H1 [u] =

∫
R

(
u2 + u2

x

)
dx, H2 [u] =

5

4

∫
R
u3
(
u2 + u2

x

)
dx. (3.1)

Therefore, just for the sake of calculation, let us take c = 1 and then ϕ (x) = e−|x|.
We get

H1 [ϕ] = 2, H2 [ϕ] = 1 (3.2)

by applying (3.1). We complete the proof of Theorem 1.1 through the following four
lemmas in several steps. The first consideration is the expansion of the conservation
law H1 around the peakon ϕ in the H1(R)-norm.

Lemma 3.1. For any u ∈ H1(R) and ξ ∈ R,

H1 [u]−H1 [ϕ] = ‖u− ϕ (· − ξ)‖2
H1(R)

+ 4 (u (ξ)− 1) . (3.3)

Proof. We calculate

‖u− ϕ (· − ξ)‖2
H1(R)

=

∫
R

[u (x)− ϕ (x− ξ)]2 + [ux (x)− ϕx (x− ξ)]2dx

= H1 [u] +H1 [ϕ]− 2

∫
R
u (x)ϕ (x− ξ)dx

− 2

∫
R
ux (x)ϕx (x− ξ)dx.

(3.4)

Since

ϕ(x− ξ) =

{
e−(x−ξ), x > ξ

ex−ξ, x < ξ
(3.5)

and

ϕx(x− ξ) =

{
−e−(x−ξ), x > ξ,

ex−ξ, x < ξ,
(3.6)

we obtain

ϕx(x− ξ) =

{
−ϕ(x− ξ), x > ξ,

ϕ(x− ξ), x < ξ.
(3.7)

Using (3.7) and integration by parts, we find∫
R
ux (x)ϕx (x− ξ) dx

=

∫ ξ

−∞
ux (x)ϕ (x− ξ)dx−

∫ +∞

ξ

ux (x)ϕ (x− ξ)dx

= 2u (ξ)−
∫
R
u (x)ϕ (x− ξ) dx.

(3.8)
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Hence, we have

‖u− ϕ (· − ξ)‖2
H1(R)

= H1 [u] +H1 [ϕ]− 4u (ξ)

= H1 [u]−H1 [ϕ]− 4 (u (ξ)− 1) .
(3.9)

Lemma 3.2. For any u ∈ H1(R), let M = maxx∈R {u (x)}. Then,

H2 [u] ≤ 5

4
M3H1 [u]− 3

2
M5. (3.10)

Proof. Let us take M = u (ξ) where ξ ∈ R and define

g(x) :=

{
u(x)− ux(x), x < ξ,

u(x) + ux(x), x > ξ.
(3.11)

We calculate∫
R
g2 (x)dx =

∫ ξ

−∞
[u (x)− ux (x)]

2
dx+

∫ +∞

ξ

[u (x) + ux (x)]
2
dx

= H1 [u]− u2 (x)
∣∣∣ξ−∞ + u2 (x)

∣∣∣+∞ξ
= H1 [u]− 2M2.

(3.12)

Similarly,∫
R
u3g2 (x) dx

=

∫ ξ

−∞
u3(u− ux)

2
dx+

∫ +∞

ξ

u3(u+ ux)
2
dx

=

∫ ξ

−∞
u3
(
u2 + u2

x − 2uux
)
dx+

∫ +∞

ξ

u3
(
u2 + u2

x + 2uux
)
dx

=
4

5
H2 [u]− 2

5
u5 (x)

∣∣∣ξ−∞ +
2

5
u5 (x)

∣∣∣+∞ξ
=

4

5
H2 [u]− 4

5
M5.

(3.13)

Since ∫
R
u3 (x) g2 (x) dx ≤M3

∫
R
g2 (x) dx, (3.14)

we have

4

5
H2 [u]− 4

5
M5 ≤M3

(
H1 [u]− 2M2

)
. (3.15)

Simplify (3.15) to get

H2 [u] ≤ 5

4
M3H1 [u]− 3

2
M5.
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Lemma 3.3. For any u ∈ H1 (R), if ‖u− ϕ‖H1 < δ, then

|H1 [u]−H1 [ϕ]| ≤ δ
(
δ + 2

√
2
)

(3.16)

and

|H2 [u]−H2 [ϕ]| ≤ 5

4
δ

(√
2

4
δ4 +

5

2
δ3 + 5

√
2δ2 + 10δ + 5

√
2

)
. (3.17)

Proof. Identity (3.12) shows that for all v ∈ H1 (R),

sup
x∈R
|v (x)| ≤

√
1

2
H1 [v] =

√
2

2
‖v‖H1 . (3.18)

Equality holds if and only if v is proportional to a translate of ϕ. Note that

|H1 [u]−H1 [ϕ]| =
∣∣∣‖u‖2H1 − ‖ϕ‖2H1

∣∣∣
= |(‖u‖H1 + ‖ϕ‖H1) (‖u‖H1 − ‖ϕ‖H1)|
≤ (‖u− ϕ‖H1 + 2‖ϕ‖H1) ‖u− ϕ‖H1

≤ δ
(
δ + 2

√
2
)
.

(3.19)

Similarly,

|H2[u]−H2 [ϕ]|

=
5

4

∣∣∣∣∫
R
u3
(
u2 + u2

x

)
dx−

∫
R
ϕ3
(
ϕ2 + ϕ2

x

)
dx

∣∣∣∣
≤ 5

4

∣∣∣∣∫
R

[
(u− ϕ)

2
(u+ 2ϕ) + 3ϕ2 (u− ϕ)

] (
u2 + u2

x

)
dx

∣∣∣∣
+

5

4

∣∣∣∣∫
R
ϕ3
[
(u− ϕ)

2
+ (ux − ϕx)

2
]
dx

∣∣∣∣
+

5

4

∣∣∣∣∫
R
ϕ3 [2ϕ (u− ϕ) + 2ϕx (ux − ϕx)] dx

∣∣∣∣
≤ 5

4

[∥∥∥(u− ϕ)
2
∥∥∥
L∞
‖u+ 2ϕ‖L∞ + 3

∥∥ϕ2
∥∥
L∞
‖u− ϕ‖L∞

]
H1 [u]

+
5

4

∥∥ϕ3
∥∥
L∞
‖u− ϕ‖2H1 +

5

2

∥∥ϕ3
∥∥
L∞
‖ϕ‖H1‖u− ϕ‖H1

≤ 5

4

[
1

2
‖u− ϕ‖2H1 ·

√
2

2
(‖u− ϕ‖H1 + 3‖ϕ‖H1) +

3
√

2

2
‖u− ϕ‖H1

]
H1 [u]

+
5

4
‖u− ϕ‖2H1 +

5
√

2

2
‖u− ϕ‖H1

≤ 5

4

[√
2

4
δ2
(
δ + 3

√
2
)

+
3
√

2

2
δ

](
δ2 + 2

√
2δ + 2

)
+

5

4
δ2 +

5
√

2

2
δ

=
5

4
δ

(√
2

4
δ4 +

5

2
δ3 + 5

√
2δ2 + 10δ + 5

√
2

)
.

(3.20)
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Lemma 3.4. For any u ∈ H1 (R), let M = maxx∈R {u (x)}. If

|H1 [u]−H1 [ϕ]| ≤ δ
(
δ + 2

√
2
)

and

|H2 [u]−H2 [ϕ]| ≤ 5

4
δ

(√
2

4
δ4 +

5

2
δ3 + 5

√
2δ2 + 10δ + 5

√
2

)
for some δ, then

|M − 1| ≤
√

5

2
δ

1
2

√
Q (δ), (3.21)

where

Q (δ) =

(
1 +
√

2δ +
1

2
δ2

)3/2 (
δ + 2

√
2
)

+

√
2

4
δ4 +

5

2
δ3 + 5

√
2δ2 + 10δ + 5

√
2.

(3.22)

Proof. Because of the inequality (3.10) in Lemma 3.2,

H2 [u]− 5

4
M3H1 [u] +

3

2
M5 ≤ 0. (3.23)

Define the quintic polynomial

P (y) = H2 [u]− 5

4
y3H1 [u] +

3

2
y5. (3.24)

When H1 [u] = H1 [ϕ] = 2 and H2 [u] = H2 [ϕ] = 1, it takes the following form

P0 (y) = H2 [ϕ]− 5

4
y3H1 [ϕ] +

3

2
y5 =

1

2
(y − 1)

2
[
3y(y + 1)

2
+ y + 2

]
. (3.25)

According to (3.24) and (3.25), we calculate that

P0 (M) = P (M) +
5

4
M3 (H1 [u]−H1 [ϕ])− (H2 [u]−H2 [ϕ]) . (3.26)

Since H1 [u] is near 2 and H2 [u] is near 1, 3

√
1
2 <

3

√
H2[u]
H1[u] < M . By (3.23), (3.25)

and (3.26), we obtain

(M − 1)
2 ≤ 5

4
M3 (H1 [u]−H1 [ϕ])− (H2 [u]−H2 [ϕ]) . (3.27)

By using (3.27) and the relation

0 ≤M2 ≤ H1 [u]

2
≤ 1 +

√
2δ +

1

2
δ2, (3.28)

we find

|M − 1| ≤
√

5

4
M3 |H1 [u]−H1 [ϕ]|+ |H2 [u]−H2 [ϕ]| ≤

√
5

2
δ

1
2

√
Q (δ).
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Next, we prove Theorem 1.1.
Proof. Since H1 [u] and H2 [u] are both conserved by the equation (1.8), we have
H1 [u (·, t)] = H1 [u0] , H2 [u (·, t)] = H2 [u0] , t ∈ (0, T ).

We apply Lemma 3.3 to u0 and to δ, and by the hypotheses of Lemma 3.4 are
satisfied for u (·, t). Hence,

|u (ξ (t) , t)− 1| ≤
√

5

2
δ

1
2

√
Q (δ). (3.29)

Combining (3.3) with Lemma 3.1, we find

‖u (·, t)− ϕ (· − ξ (t))‖2
H1(R)

= H1 [u]−H1 [ϕ]− 4 (u (ξ, t)− 1)

≤ |H1 [u]−H1 [ϕ]|+ 4 |u (ξ, t)− 1|

≤ δ
(
δ + 2

√
2
)

+ 2
√

5δ
1
2

√
Q (δ).

(3.30)

Based on the (3.30), for any ε > 0, we can take a δ (ε) such that

‖u (·, t)− ϕ (· − ξ (t))‖2
H1(R)

< ε.

Remark 3.1. Compared with the CH case, the main interest in the proof is to see
the effect of the higher nonlinearity. Specifically, in the gCH case, it has a more
complicated conservation law, and its integrand is to the fifth power which leads to
the need for more computation. It also needs to construct a quintic polynomial to
complete the proof.

4. Conclusion

In this paper, the orbital stability of the peakons for the generalized Camassa-Holm
equation (gCH) with a quartic nonlinearity is studied. By the dynamic system
method in [10,13,15,16], it shows that the plane dynamical system derived from the
gCH equation has only one heteroclinic cycle corresponding to a peakon solution,
and the orbital stability of the peakons for gCH equation is also proved by the
method in [9].
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