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Positive Periodic Solutions for a Single-species
Model with Delay Weak Kernel and Cycle

Mortality∗

Ceyu Lei1 and Xiaoling Han1,†

Abstract In this paper, by using the Krasnoselskii’s fixed-point theorem, we
study the existence of positive periodic solutions of the following single-species
model with delay weak kernel and cycle mortality:

x′(t) = rx(t)
[
1 − 1

K

∫ t

−∞
αe−α(t−s)x(s)ds

]
− a(t)x(t),

and get the necessary conditions for the existence of positive periodic solutions.
Finally, an example and numerical simulation are used to illustrate the validity
of our results.

Keywords Positive periodic solutions, Single-species model, Delay, Cycle
mortality.
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1. Introduction

As we all know, the application of delay differential equations in population dynam-
ics can be traced back to the 1920s, and in the past 100 years, the theory of popu-
lation dynamics has achieved significant development. For example, see [2,3,9,10].
In 1980, Gurney et al. [8] studied the delayed Nicholson’s blowflies equation

N ′(t) = PN(t− τ)e−αN(t−τ) − δN(t), (1.1)

where N(t) represents the population of mature adults at time t, 1
α denotes the

population size at which the complete population reproduces at its maximum rate,
P denotes the maximum possible per capita egg production rate, τ > 0 is a delay
term and δ > 0 is the mortality rate.

Consider the different practical conditions, model (1.1) is generalized to more
general models. In 2008, Li et al. [11] used the Krasnoselskii’s fixed-point theorem
to prove the existence of the positive periodic solution of the following generalized
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Nicholson’s blowflies model:

x′(t) = −δ(t)x(t) +

m∑
i=1

pi(t)x(t− τi(t))e−qi(t)x(t−τi(t)), t ≥ 0.

In [1], by using the Schauder’s fixed-point theorem, they study the existence of
positive periodic solutions of Nicholson’s blowflies differential equation with iterative
harvest function:

N ′(t) = p(t)N(t− τ)e−γ(t)N(t−τ) − a(t)N(t)− qN(t− τ)E(t,N(t), ..., N [n](t)),

where E denotes the harvesting effort, defined as the intensity of the human activi-
ties to harvest the flies and q ≥ 0 is the so-called the catchability coefficient, which
express the fraction of the population that is removed by one unit of harvesting
effort.

In 1934, Volterra [14] proposed a more accurate model based on the Logistic
model:

dN(t)

dt
= N(t)

[
1− 1

K

∫ t

−∞
G(t− s)N(s)ds

]
,

where G(t) called the delay kernel, is a weighting factor which says how much
emphasis should be given to the size of the population at earlier times to determine
the present effect on resource availability. The delay kernel is usually normalized
so that

∫∞
0
G(u)du = 1. Two special cases including

G(u) = αe−αu,

G(u) = α2ue−αu

are called weak delay kernel and strong delay kernel.
Based on the discussions above, in this paper, we consider a single-species model

with delay weak kernel and death term as follows:

x′(t) = rx(t)
[
1− 1

K

∫ t

−∞
αe−α(t−s)x(s)ds

]
− a(t)x(t), (1.2)

where r > 0 is the intrinsic rate of growth for population, x(t) is the size of the
population at time t, K > 0 is the population’s carrying capacity and a(t) is the
death rate and we assume that (H) holds in this article:

(H) a : R→ (0, 1) is T -periodic continuous coefficients satisfying a(t) = a(t+T )
for t ∈ R.

In recent years, the existence of positive T -periodic solutions of periodic e-
cological models with delays have been studied by many authors. For examole,
see [4–6,12,13,15,16] and references therein. However, it is worth mentioning that
there is no conclusion about the existence of positive T -periodic solutions of equa-
tion (1.2). Therefore, our results are completely new.

The paper is organized as follows: In Section 2, we give a simple analysis of
equation (1.2) and some definitions and lemmas are given. In Section 3, we use
the Krasnoselskii’s fixed-point theorem to obtain the positive periodic solution of
the model (1.2) under some given conditions. In Section 4, an example is given to
illustrate our results obtained in the previous section.
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2. Auxiliary lemmas and preparations

For the sake of convenience, we would like to introduce some notations, definitions,
lemmas and assumptions which are used in what follows in this section.

Definition 2.1 ( [7]). Let M be a real Banach space. A nonempty, closed and
convex set Q ⊂M is a cone if it satisfies the following two conditions:

(i) x ∈ Q, λ ≥ 0 imply λx ∈ Q;
(ii) x ∈ Q, − x ∈ Q imply x = θ, where θ is the zero element of Q.

Definition 2.2 ( [7]). An operator P : M → M is completely continuous, if it is
continuous and maps bounded sets into relatively compact set.

The following is the well-known Kresnoselskii’s fixed-point theorem in a cone.

Lemma 2.1 ( [7]). Let M be a Banach space, and let Q ⊂ M be a cone. Assume
that Ω1 and Ω2 are open subset of M with θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

P : Q ∩ (Ω2 \ Ω1)→ Q

be a completely continuous operator such that
(i) ‖Pu‖ ≤ ‖u‖, u ∈ Q ∩ ∂Ω1, and ‖Pu‖ ≥ ‖u‖, u ∈ Q ∩ ∂Ω2; or
(ii) ‖Pu‖ ≥ ‖u‖, u ∈ Q ∩ ∂Ω1, and ‖Pu‖ ≤ ‖u‖, u ∈ Q ∩ ∂Ω2.

Then, P has a fixed point in Q ∩ (Ω2 \ Ω1).

Here, we introduce some notations used throughout this paper. Let

Γ1 =
e−

∫ T
0
a(s)ds

e
∫ T
0
a(s)ds − 1

, Γ2 =
e
∫ T
0
a(s)ds

e
∫ T
0
a(s)ds − 1

, and k =
Γ1

Γ2
.

For T > 0, let

M = {x ∈ C(R,R) : x(x+ T ) = x(t) for t ∈ R}

be the Banach space of T -periodic continuous functions equipped with the norm

‖x‖ = max
t∈R
|x(t)| = max

t∈[0,T ]
|x(t)|.

Define a subset in M by

Q = {x ∈M : x(t) ≥ k‖x‖, t ∈ [0, T ]}.

It is easy to see that Q is a cone in M.
For such a solution x of (1.2), there are ξ ∈ [0, T ] and η ∈ [0, T ] such that

L1 = x(ξ) = min
t∈[0,T ]

x(t),

L2 = x(η) = max
t∈[0,T ]

x(t).
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Lemma 2.2. Let a(t) 6= 0, and x ∈ Q. Then, x is a solution of (1.2), if and only
if

x(t) =

∫ t+T

t

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
G(t, u)du, (2.1)

where

G(t, u) =
e
∫ u
t
a(s)ds

e
∫ T
0
a(s)ds − 1

.

Proof. Let x ∈ Q be a solution of equation (1.2). We have

(x′(t) + a(t)x(t))e
∫ t
0
a(s)ds = rx(t)

[
1− 1

K

∫ t

−∞
αe−α(t−s)x(s)ds

]
e
∫ t
0
a(s)ds,

which is equivalent to

d

dt
(x(t)e

∫ t
0
a(s)ds) = rx(t)

[
1− 1

K

∫ t

−∞
αe−α(t−s)x(s)ds

]
e
∫ t
0
a(s)ds.

The integration from t to t+ T gives

x(t+ T )e
∫ t+T
0

a(s)ds − x(t)e
∫ t
0
a(s)ds

=

∫ t+T

t

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
e
∫ u
0
a(s)dsdu.

By the periodic properties, we obtain

x(t)e
∫ t
0
a(s)ds[e

∫ t+T
t

a(s)ds − 1]

=

∫ t+T

t

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
e
∫ u
0
a(s)dsdu.

Thus,

x(t) =

∫ t+T

t

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

] e
∫ u
t
a(s)ds

e
∫ T
0
a(s)ds − 1

du.

The proof is complete.

Remark 2.1. The function G satisfies the following property:

Γ1 =
e−

∫ T
0
a(s)ds

e
∫ T
0
a(s)ds − 1

≤ G(t, u) ≤ e
∫ T
0
a(s)ds

e
∫ T
0
a(s)ds − 1

= Γ2.

Define an operator P : M→M

(Px)(t) =

∫ t+T

t

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
G(t, u)du.
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For ∀x ∈ Q, t ∈ [0, T ],

x(t) ≤ Γ2

∫ t+T

t

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
du,

and

x(t) ≥ Γ1

∫ t+T

t

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
du.

Thus,

(Px)(t) ≥ Γ1

Γ2
‖Px‖ = k‖Px‖.

Hence,

PQ ⊂ Q.

Lemma 2.3. Let (H) holds. Then, the operator P : Q→ Q is completely continu-
ous.

Proof. We need to verify the following two points:
(i) P is continuous;
(ii) P maps any bounded subset of Q into a relatively compact subset of Q.
Point(i): Let ϕ,ψ ∈ Q. From (2.1), we get∣∣∣(Pϕ)(t)− (Pψ)(t)

∣∣∣
=
∣∣∣ ∫ t+T

t

rϕ(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)ϕ(s)ds

]
G(t, u)du

−
∫ t+T

t

rψ(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)ψ(s)ds

]
G(t, u)du

∣∣∣
≤
∣∣∣ ∫ t+T

t

rG(t, u)(ϕ(u)− ψ(u))du
∣∣∣

+
∣∣∣ ∫ t+T

t

r

K
G(t, u)

[ ∫ u

−∞
αe−α(u−s)(ϕ(u)ϕ(s)− ψ(u)ψ(s))ds

]
du
∣∣∣

≤ rΓ2T‖ϕ− ψ‖+ 2
r

K
Γ2TL2‖ϕ− ψ‖

≤ rΓ2T (1 +
2L2

K
)‖ϕ− ψ‖.

Therefore, the operator P is continuous.
Point(ii): For ∀x ∈ Q, t ∈ [0, T ],∣∣∣(Px)(t)

∣∣∣ = (Px)(t) =

∫ t+T

t

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
G(t, u)du

≤ rΓ2TL2(1− L1

K
). (2.2)
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Hence, {Px : x ∈ Q} is a family of uniformly bounded. Now, we show that the
operator P is equicontinuous. For ∀x ∈ Q, t1, t2 ∈ [0, T ] with t1 < t2, we have∣∣∣(Px)(t1)− (Px)(t2)

∣∣∣
=
∣∣∣ ∫ t2+T

t2

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
G(t2, u)du

−
∫ t1+T

t1

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
G(t1, u)du

∣∣∣
≤
∫ t1

t2

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
G(t2, u)du

+

∫ t1+T

t1

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]∣∣∣G(t2, u)−G(t1, u)
∣∣∣du

+

∫ t2+T

t1+T

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
G(t2, u)du. (2.3)

We write∣∣∣G(t2, u)−G(t1, u)
∣∣∣ =

1

e
∫ T
0
a(s)ds − 1

∣∣∣e∫ u
t2
a(s)ds − e

∫ u
t1
a(s)ds

∣∣∣.
We have∫ t1+T

t1

∣∣∣e∫ u
t2
a(s)ds − e

∫ u
t1
a(s)ds

∣∣∣du =

∫ t1+T

t1

e
∫ u
t2
a(s)ds

∣∣∣1− e∫ t2
t1
a(s)ds

∣∣∣du.
This immediately implies that∫ t1+T

t1

∣∣∣e∫ u
t2
a(s)ds − e

∫ u
t1
a(s)ds

∣∣∣du ≤ T‖a0‖|t2 − t1|e∫ T
0
a(s)ds.

Consequently,∫ t1+T

t1

∣∣∣G(t2, u)−G(t1, u)
∣∣∣du ≤ T‖a0‖|t2 − t1| e

∫ T
0
a(s)ds

e
∫ T
0
a(s)ds − 1

= TΓ2‖a0‖|t2 − t1|. (2.4)

It follows from (2.3) and (2.4) that∣∣∣(Px)(t1)− (Px)(t2)
∣∣∣ ≤ 2rΓ2L2(1− L1

K
)|t2 − t1|+ rΓ2TL2(1− L1

K
)‖a0‖|t2 − t1|

≤ rΓ2L2(1− L1

K
)(2 + T‖a0‖)|t2 − t1|.

Therefore, the operator P is equicontinuous. By the Arzela-Ascoli Theorem, we
know that the operator P is completely continuous. The proof is complete.

Lemma 2.4. Let (H) holds. Then, there are positive constants A and B such that
for x ∈ Q,

‖Px‖ ≤ B and ‖Px‖ ≥ A.



98 C. Lei & X. Han

Proof. From (2.2), for ∀x ∈ Q, t ∈ [0, T ],∣∣∣(Px)(t)
∣∣∣ = (Px)(t) =

∫ t+T

t

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
G(t, u)du

≤ rΓ2TL2(1− L1

K
) = B.

Then,

‖Px‖ ≤ B.

For ∀x ∈ Q, t ∈ [0, T ],∣∣∣(Px)(t)
∣∣∣ = (Px)(t) =

∫ t+T

t

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
G(t, u)du

≥ rΓ1TL1(1− L2

K
) = A > 0.

For ∀x ∈ Q,

‖Px‖ ≥ A.

Thus, the proof of Lemma 2.4 is complete.

3. Main results

Theorem 3.1. Suppose a(t) 6= 0. If (H) holds, then equation (1.2) has at least one
positive T -periodic solution x in Q.

Proof. Let

Ω1 = {x ∈M : ‖x‖ < A},

and

Ω2 = {x ∈M : ‖x‖ < B}.

Obviously, Ω1 and Ω2 are open bounded subsets in M, and θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2.
From Lemma 2.3, P : Q ∩ (Ω2 \ Ω1)→ Q is completely continuous.

If x ∈ Q ∩ ∂Ω2, which implies that ‖x‖ = B, and from Lemma 2.4, ‖Px‖ ≤ B.
Hence, ‖Px‖ ≤ ‖x‖ for x ∈ Q ∩ ∂Ω2.

If x ∈ Q ∩ ∂Ω1, which implies that ‖x‖ = A, and from Lemma 2.4, ‖Px‖ ≥ A.
Hence, ‖Px‖ ≥ ‖x‖ for x ∈ Q ∩ ∂Ω1.

From Lemma 2.1, the operator P has at least one fixed point lying in Q∩(Ω2\Ω1).
For example, equation (1.2) has at least one positive T -periodic solution. Theorem
3.1 is proved.

Theorem 3.2. Assume that (H) holds, and that

r ≤ a(t) for t ∈ [0, T ]. (3.1)

Then, every positive solution of Equation (1.2) tends to zero as t→∞.
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Proof. Let x(t) be any positive solution of equation (1.2). Equation (1.2) changes
into

(x(t)e
∫ t
0
a(s)ds)′ = rx(t)

[
1− 1

K

∫ t

−∞
αe−α(t−s)x(s)ds

]
e
∫ t
0
a(s)ds.

Integrating the above from t0 > 0 to t > t0, we have

x(t) = x(t0)e
−

∫ t
t0
a(s)ds

+

∫ t

t0

rx(u)
[
1− 1

K

∫ u

−∞
αe−α(u−s)x(s)ds

]
e
∫ u
t
a(s)dsdu.

From (3.1),

x(t) ≤ x(t0)e
−

∫ t
t0
a(s)ds

+ (1− L1

K
)

∫ t

t0

x(u)a(u)e
∫ u
t
a(s)dsdu.

Let ζ = lim sup
t→∞

x(t), then 0 ≤ ζ < ∞. Below we prove that ζ = 0. We divide

it into three cases.
Case 1. When x′(t) > 0, choose t0 > 0 such that x′(t) > 0 for t > t0. Then,

0 < x(t0) < x(t) for t > t0. From (1.2),

0 < rx(t)
[
1− 1

K

∫ t

−∞
αe−α(t−s)x(s)ds

]
− a(t)x(t)

<
[
r(1− L1

K
)− a(t)

]
x(t) < 0.

This contradiction shows that Case 1 is impossible.
Case 2. When x′(t) < 0. Choose t0 > 0 such that x′(t) < 0 for t > t0. Then,

ζ < x(t) < x(t0) for t > t0. From (3.1), we have

x(t) ≤ x(t0)e
−

∫ t
t0
a(s)ds

+ (1− L1

K
)

∫ t

t0

x(u)a(u)e
∫ u
t
a(s)dsdu

≤ x(t0)e
−

∫ t
t0
a(s)ds

+ x(t0)(1− L1

K
)
[
1− e−

∫ t
t0
a(s)ds

]
. (3.2)

Let t→∞ in (3.2), we obtain

ζ ≤ x(t0)(1− L1

K
).

Again, let t0 →∞ in the above, we have that ζ ≤ ζ(1− L1

K ), which implies that
ζ = 0.

Case 3. When x′(t) is oscillatory, in this case, there is tn with tn → ∞ as
n→∞ such that

x′(tn) = 0 forn = 1, 2, · · ·, and lim
n→∞

x(tn) = ζ.

From (1.2), we have

a(tn)x(tn) = rx(tn)
[
1− 1

K

∫ tn

−∞
αe−α(tn−s)x(s)ds

]
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≤ rx(tn)(1− L1

K
).

Transform the above formula, we have

0 ≤
[
r(1− L1

K
)− a(tn)

]
x(tn).

Let n→∞ in the above, we have that ζ = 0. The proof is complete.

From Theorem 3.2, we have the following results immediately.

Corollary 3.1. Let (H) and (3.1) hold. Then, (1.2) has no positive T -periodic
solution.

Corollary 3.2. Let (H) holds, and let r > a(t). Then, (1.2) has at least one
positive T -periodic solution.

4. Example

In this section, we give an example to illustrate the correctness of our main results.

Example 4.1. Let r = 1
2 , T = 35 days, L1 = 10, L2 = 30, K = 100, α = 1 and

a(t) = 1
200 sin2 2π

35 t.

Proof. There are

Γ1 =
e−

∫ T
0
a(s)ds

e
∫ T
0
a(s)ds − 1

' 0.85802,

Γ2 =
e
∫ T
0
a(s)ds

e
∫ T
0
a(s)ds − 1

' 1.0221.

Thus,
Q = {x ∈M : x(t) ≥ 0.83947‖x‖, t ∈ [0, 35]}.

For ∀x ∈ Q, we consider the following equation:

x′(t) =
1

2
x(t)

[
1− 1

100

∫ t

−∞
e−(t−s)x(s)ds

]
− 1

200
(sin2 2π

35
t)x(t).

We have

A = rΓ1TL1(1− L2

K
) = 105.11,

B = rΓ2TL2(1− L1

K
) = 428.94.

Hence,
‖Px‖ ≥ 105.11 and ‖Px‖ ≤ 428.94.

Since all conditions of Theorem 3.1 are satisfied, the considered equation has at
least one positive periodic solution on Q and 105.11 ≤ ‖x‖ ≤ 428.94.
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