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The Monotonicity of the Linear Complementarity
Problem∗

Ximing Fang1 and Minhai Huang1,†

Abstract The monotonicity of the linear complementarity problem (LCP) is
discussed in this paper. Both the monotone property about the single element
of the solution and the monotone property of the whole solution are presented.
In order to illustrate the results, some corresponding numerical experiments
are provided.
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1. Introduction

The linear complementarity problem is to find a vector z ∈ Rn such that

zT(Mz + q) = 0, z ≥ 0, Mz + q ≥ 0, (1.1)

where M = (mij) ∈ Rn×n and q ∈ Rn. Problem (1) is usually denoted by
LCP(M, q), which has many applications such as the elastic contact problems, the
free boundary problems, the linear and quadratic programming problems and the
market equilibrium problems (see [1,3,7,10,15,21,26,27] and the references therein).

The theory research and the numerical algorithms for the LCP(M, q) have been
studied in recent decades. The theory research includes the existence and uniqueness
of the solution, the stability and sensitivity of the solution, the relationship between
the LCP(M, q) and other problems, etc., (see [6,7,10,14,18,20,21,23,24]). It is well-
known that the LCP(M, q) has a unique solution for any q ∈ Rn, if and only if the
system matrix M is a P -matrix. The positive definite matrix and the H+-matrix
are two types of P -matrices, both of which have been studied by many authors
(see [1, 9, 10, 14, 19]). For the stability and sensitivity of the solution, Mathias,
Pang, Cottle and other researchers discussed the error problem and the perturbation
problem of the solution, and many interesting results have been obtained, including
the Lipschitzian continuous property of the solution (see [4,5,7,8,12,16,17,23,25]).
For the numerical algorithms of the LCP(M, q), all kinds of solving methods have
been presented, including the direct methods and the iteration methods such as
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the Lemke method, the projected method, and the modulus-based matrix splitting
iteration method, etc.. Most of the solving methods are very efficient, and for the
detailed materials, readers can refer to [1, 13,15,27] and the references therein.

Although there are many theories for the LCP(M, q), there are few theoretical
studies on the monotony. In this paper, we will study the monotonicity problem of
the solution. We will present that the solution possesses the monotone decreasing
property for an arbitrary single variable, when matrix M is a P -matrix and the
whole solution is monotone decreasing under some conditions when the system
matrix M is an M -matrix. Besides, some conclusions related to the solution and
the corresponding experiments will be provided.

The outline of this paper is as follows. We briefly introduce some definitions,
then present the main conclusions in Section 2. The numerical experiments are
shown and discussed in Section 3. We end this paper by some concluding remarks
in Section 4.

2. Preliminaries and main results

First, we review several definitions as follows.

Definition 2.1. (Murty [19], Gale and Nikaido [11]) M is said to be a P -matrix,
if all its principal minors are positive.

Definition 2.2. (Ostrowski [22], Berman and Plemmons [2]) A matrix M ∈ Rn×n

is called an M -matrix, if

M−1 ≥ 0 and mij ≤ 0(i 6= j) for i, j = 1, 2, ..., n. (2.1)

Definition 2.3. (Murty [20]) Let M ∈ Rn×n be a matrix, the complementarity
set of column vectors of M is a set {A.j , j = 1, 2, ..., n} such that A.j is either I.j
or −M.j , for each j = 1, 2, ..., n.

Definition 2.4. (Murty [20]) Let M ∈ Rn×n be a matrix and {A.j , j = 1, 2, ..., n}
be any complementarity set of column vectors of M , a complementarity cone of M
is the set

pos{A.j , j = 1, 2, ..., n} = {
n∑

j=1

βjA.j , βj ≥ 0, j = 1, 2, ..., n}. (2.2)

In the following, we give the main conclusions of this paper.

Theorem 2.1. Suppose M ∈ Rn×n is a P -matrix, and q̂, q̃ ∈ Rn satisfy q̂, q̃ ∈
pos{A.j , j = 1, 2, ..., n}, which is a complementarity cone of M . If the solutions of
(1) with q = q̂, q̃ are denoted by ẑ, z̃ respectively, then

(i) λq̂ + µq̃ ∈ pos{A.j , j = 1, 2, ..., n}, λ ≥ 0, µ ≥ 0;
(ii) λẑ + µz̃ is the solution of (1), when q = λq̂ + µq̃.

Proof. The conclusion (i) can be easily proved based on the definition of the
complementarity cone of M . We only prove (ii) in the following.
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It is well-known that the LCP(M, q) has a unique solution for any q ∈ Rn, if the
matrix M is a P -matrix, and the LCP(M, q) has a unique solution for a q ∈ Rn, if
and only if q belongs to some complementarity cone of M . From the condition, we
know that both the solution ẑ and z̃ are unique. Since q̂ and q̃ belong to the same
complementarity cone of M , if we denote the nonnegative vectors Mẑ + q̂, Mz̃ + q̃
by ω̂, ω̃ respectively, then ẑ and z̃ have the same nonnegative elements’ positions
corresponding to the same positions where both ω̂ and ω̃ are zeros. Meanwhile, ω̂
and ω̃ have the same nonnegative elements’ positions corresponding to the same
positions where both ẑ and z̃ are zeros. Therefore, there are four complementarity
relationships: ẑTω̂ = 0, z̃Tω̃ = 0, ẑTω̃ = 0 and z̃Tω̂ = 0. That is,

(
I −M

) ω̂

ẑ

 = q̂,
(
I −M

) ω̃

z̃

 = q̃, ẑTω̃ = 0, z̃Tω̂ = 0.

Thus, for arbitrary nonnegative real numbers λ ≥ 0, µ ≥ 0, we have

(
I −M

)λω̂ + µω̃

λẑ + µz̃

 = λq̂ + µq̃

with

(λẑ + µz̃)T(λω̂ + µω̃) = (λẑ + µz̃)T[M(λẑ + µz̃) + (λq̂ + µq̃)] = 0,

λẑ + µz̃ ≥ 0, M(λẑ + µz̃) + (λq̂ + µq̃) ≥ 0.

Therefore, λẑ + µz̃ is the solution of (1) with q = λq̂ + µq̃, and it is unique. Then,
the conclusion (ii) is proved.

We have the following monotonicity conclusion of the solution for the arbitrary
single variable of q.

Theorem 2.2. Suppose M ∈ Rn×n is a P -matrix, q1, ..., qi−1, qi+1, ..., qn are fixed,
and denote the ith element of the solution z of (1.1) by zi. Then, zi is a monotonic
decreasing function of qi, for i = 1, 2, ..., n.

Proof. Suppose  q1

q2

 =

 q(1 : i− 1)

q(i+ 1 : n)


and β > 0 is an arbitrary real number. Suppose z is the solution of (1) with
ω = Mz + q, when

q = (q1; qi; q2),

and z̃ is the solution of (1) with ω̃ = Mz̃ + q̃, when

q̃ = (q1; qi + β; q2).

Then,
(i) if z̃i = 0, it is obvious that zi ≥ z̃i;
(ii) if z̃i > 0, we will prove zi ≥ z̃i.
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Suppose not, then zi < z̃i. Under this condition, we have ω̃i = 0 by the comple-
mentarity relationship. Meanwhile, we also have ωi = 0. Otherwise, if ωi > 0, then
zi = 0. Thus, from 

ω(1 : i− 1)

ωi + β

ω(i+ 1 : n)

 = M


z(1 : i− 1)

0

z(i+ 1 : n)

+ q̃,

we know that z is another solution of (1), when q = q̃, which is a contradiction.

Hence, based on zi < z̃i, ω̃i = 0 and ωi = 0, if we set

q =


q1 +M(1 : i− 1, i)zi

qi + β +miizi

q2 +M(i+ 1 : n, i)zi

 ,

in (1). Then, (1) has two different solutions

z =


z(1 : i− 1)

0

z(i+ 1 : n)

 and z =


z̃(1 : i− 1)

z̃i − zi
z̃(i+ 1 : n)

 ,

which contradicts with the uniqueness of the solution of (1) for any q ∈ Rn. There-
fore, if z̃i > 0,

zi ≥ z̃i.

Combining (i) and (ii), the conclusion is proved.

Remark 2.1. Theorem 2.2 shows the relationship between qi and zi, for each
i = 1, 2, ..., n. In general, this monotone decreasing property cannot be extended to
the whole solution. We give a example as follows.

Let

M =

 1 1

−1 2

 , q̂ =

−1

1

 , q̄ =

−1

−2

 .

Then, the solutions of LCP(M, q̂) and LCP(M, q̄) are

ẑ =

 1

0

 , z̄ =

 0

1


respectively. We can find that the inequality ẑ2 < z̄2 holds from Theorem 2.2, since
q̂2 > q̄2 and q̂1 = q̄1. However, the inequality ẑ ≤ z̄ does not hold.

In the following, we consider the monotonicity of the whole solution z to the
LCP(M, q). First, we present a conclusion related to the complementarity cone as
follows.
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Theorem 2.3. Suppose M ∈ Rn×n is an M -matrix, and q = (q1, q2, ..., qn)T ∈ Rn.
Denote SN = {i|qi < 0} = {i1, i2, ..., is}, SP = {j|qj ≥ 0} = {j1, j2, ..., jt}, and
q1 = (qi1 , qi2 , ..., qis)T. Denote the principal submatrix of M by M(SN ,SN ), and

v = M−1
(SN ,SN )(−q1). If qi + M(i,SN )v ≥ 0 for i ∈ SP , then the following relations

hold:

(i) if i ∈ SN , then −M.i ∈ {A.j , j = 1, 2, ..., n};
(ii) if i ∈ SP , then Ii ∈ {A.j , j = 1, 2, ..., n};
(iii) if i ∈ SN , then zi ≥ 0, and zi comes from the elements of v in accordance

with the natural order;

(iv) if i ∈ SP , then zi = 0.
Here, {A.j , j = 1, 2, ..., n} is the complementarity set of M , z is the solution of the
LCP(M, q), and M(i,SN ) is the part of the ith row of M with the column elements’
indices coming from SN .

Proof. From the definition SN and SP , we know s + t = n. Since M is an M -
matrix, M(SN ,SN ) is also an M -matrix. Therefore, the vector v = M−1

(SN ,SN )(−q1) is

a positive vector. If we denote the indices of the vector v by i1, i2, ..., is correspond-
ing to the elements of set SN , and set z = (z1, z2, ..., zn)T, where zi = 0, if i ∈ SP

and zi = zik = vik , if i ∈ SN , and set ω = (ω1, ω2, ..., ωn)T, where ωi = 0, if i ∈ SN

and ωi = qi +M(i,SN )v, if i ∈ SP . Then, we have z ≥ 0, ω ≥ 0 with

(
I −M

)ω

z

 = q, zTω = 0.

Thus, z is the solution of the LCP(M, q). From the constructions of z, ω, and
the unique property of solution of the LCP(M, q) with an M -matrix, we know
q ∈ pos{A.j , j = 1, 2, ..., n}, which satisfies −M.i ∈ {A.j , j = 1, 2, ..., n}, i ∈ SN and
Ii ∈ {A.j , j = 1, 2, ..., n}, i ∈ SP , zi ≥ 0, if i ∈ SN and zi = 0, if i ∈ SP . Therefore,
the conclusion is established.

From Theorem 2.3 and the proof, we can obtain the following conclusion easily.

Corollary 2.1. Suppose M ∈ Rn×n is an M -matrix, and q = (q1, q2, ..., qn)T ∈ Rn

satisfy qi 6= 0, i = 1, 2, ..., n. Denote SN = {i|qi < 0} = {i1, i2, ..., is}, SP = {j|qj >
0} = {j1, j2, ..., jt}, and q1 = (qi1 , qi2 , ..., qis)T. Denote the principal submatrix of
M by M(SN ,SN ) and v = M−1

(SN ,SN )(−q1). If qi +M(i,SN )v ≥ 0 for i ∈ SP , then the

following relations hold:

(i) if i ∈ SN , then −M.i ∈ {A.j , j = 1, 2, ..., n};
(ii) if i ∈ SP , then Ii ∈ {A.j , j = 1, 2, ..., n};
(iii) if i ∈ SN , then zi > 0, and zi comes from the elements of v in accordance

with the natural order;

(iv) if i ∈ SP , then zi = 0.
Here, {A.j , j = 1, 2, ..., n} is the complementarity set of M , z is the solution of the
LCP(M, q), and M(i,SN ) is the part of the ith row of M with the column elements’
indices coming from SN .

From Theorem 2.3 and Corollary 2.1, we not only deduce the complementarity
cone of M which q belongs to, but also deduce the zero elements’ positions and the
positive elements’ positions of the solution. In addition, we can obtain a conclusion
for the invariance of the solution as follows.
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Theorem 2.4. Suppose M ∈ Rn×n is an M -matrix, and q̂ = (q̂1, q̂2, ..., q̂n)T ∈ Rn.
Denote SN = {i|q̂i < 0} = {i1, i2, ..., is}, SP = {j|q̂j ≥ 0} = {j1, j2, ..., jt}, and
q̂1 = (q̂i1 , q̂i2 , ..., q̂is)T. Denote the principal submatrix of M by M(SN ,SN ), and

v̂ = M−1
(SN ,SN )(−q̂1). If q̂i + M(i,SN )v̂ ≥ 0, for i ∈ SP . Then, for any nonnegative

vector β ∈ Rn with the elements satisfying: βi = 0, if q̂i < 0, βi ≥ 0, if q̂i ≥ 0, for
i = 1, 2, ..., n, q̃ = q̂ + β and q̂ belong to the same complementrity cone of M and
z̃ = ẑ, where z̃ is the solution of the LCP(M, q), when q = q̃.

Proof. From the character of β, we know that q̂ and q̃ have the same negative
elements with the same positions, and only at the nonnegative elements’ positions,
the elements of q̃ maybe become larger. Therefore, for the LCP(M, q), when q = q̃,
we have ṽ = M−1

(SN ,SN )(−q̃1) = M−1
(SN ,SN )(−q̂1) = v̂ is a nonnegative vector. Thus, if

q̂i+M(i,SN )v̂ ≥ 0 for i ∈ SP , then for q̃, we also have q̃i+M(i,SN )ṽ ≥ q̂i+M(i,SN )v̂ ≥
0 for i ∈ SP . Hence, from Theorem 2.3, (i)-(iv) hold. Thus, q̃ and q̂ belong to the
same complementarity cone of M . The solution z̃ of (1), when q = q̃ satisfies z̃ = ẑ
from ṽ = v̂. Then, the conclusion is proved.

Remark 2.2. Theorem 2.4 means that the nonnegative elements of the vector q
are increased, but the solution of the LCP(M, q) keeps the same. The following
conclusion shows the monotonicity of solution of the LCP(M, q) with an M -matrix
under a certain condition.

Theorem 2.5. Suppose M ∈ Rn×n is an M -matrix, and q̂ = (q̂1, q̂2, ..., q̂n)T, q̃ =
(q̃1, q̃2, ..., q̃n)T ∈ Rn satisfy q̂ ≤ q̃, and possess the same negative elements’ indices
set SN = {i1, i2, ..., is} and the nonnegative elements’ indices set SP = {j1, j2, ..., jt}.
Denote q̂1 = (q̂i1 , q̂i2 , ..., q̂is)T, q̃1 = (q̃i1 , q̃i2 , ..., q̃is)T, and denote the principal
submatrix of M by M(SN ,SN ) and v̂ = M−1

(SN ,SN )(−q̂1), ṽ = M−1
(SN ,SN )(−q̃1). If

q̂i+M(i,SN )v̂ ≥ 0 and q̃i+M(i,SN )ṽ ≥ 0 for i ∈ SP , then the solution ẑ of LCP(M, q̂)
and the solution z̃ of LCP(M, q̃) satisfy ẑ ≥ z̃.

Proof. Since q̂, q̃ have the same negative elements’ indices set SN , and q̂i +
M(i,SN )v̂ ≥ 0, q̃i + M(i,SN )ṽ ≥ 0 for i ∈ SP , combining with Theorem 2.3, we
know that the solutions ẑ and z̃ have the same zero elements’ indices set SP , and
the same nonnegative elements’ indices set SN . Therefore, we only need to prove
that there is the monotonic decreasing relationship on the nonnegative elements’
indices set SN .

From the proof of Theorem 2.3, we know that the nonnegative elements of
the solutions ẑ, z̃ come from the positive vector v̂, ṽ respectively, and the elements
selecting order corresponds to the set SN . For M−1

(SN ,SN ) ≥ 0, q̂1 ≤ q̃1 < 0, we have

v̂ = M−1
(SN ,SN )(−q̂1) ≥M−1

(SN ,SN )(−q̃1) = ṽ.

Thus, ẑ ≥ z̃ holds, and the conclusion is proved.

Remark 2.3. Theorems 2.2-2.5 discuss the solution z of the LCP(M, q), and the
difference is that Theorem 2.2 is for the single variable of the solution when the
system matrix M is a P -matrix, and the other three theorems are for the whole
solution, when the system matrix M is an M -matrix.
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3. Numerical examples

In this section, we show experiments to illustrate the presented results, that is,
Theorems 2.1-2.5. The first two examples are low-order cases, and the third example
is a high-order case.

Example 3.1. We set the system matrix M in the LCP(M, q) to be

M =


1 0 −1 1

−1 2 0 −1

0 −2 3 1

−1 2 −3 4


and consider q for two cases. That is,

q̃ = (−1, 3,−3, 6)T, q̂ = (1, 1,−6, 8)T.

Then, we know that M is a P -matrix, and the solutions are

z̃ = (1, 0, 2, 0)T, ẑ = (2, 0, 1, 0)T

for the LCP(M, q̃) and the LCP(M, q̂) respectively. Meanwhile, we have q̃, q̂ ∈
pos{−M.1, I2,−M.3, I4}. Then, from Theorem 2.1, we know that λz̃ + µẑ is the
unique solution of the LCP(M, q̄) with q̄ = λq̃ + µq̂ and λ ≥ 0, µ ≥ 0.

Example 3.2. We set M in the LCP(M, q) to be

M =


1 0 −1

−1 2 −1

−1 −1 3


and consider q for three cases. That is,

q̂ =


−1

3

−1

 , q̃ =


−1

3 + β

−1

 , q̄ =


−1

4

− 1
2


respectively. It is easy to know that the matrix M is an M -matrix, and for q̂, q̃ and
q̄, we have the same sets SP = {2} and SN = {1, 3}, when β ≥ 0.

(I) When q = q̂ ≤ q̃, we have

M(SN ,SN ) =

 1 −1

−1 3

 , v̂ = M−1
(SN ,SN )(−q̂1) =

 3
2

1
2

1
2

1
2

−q̂1
−q̂3

 =

 2

1

 ,

q̂2 +M(2,SN )v̂ = 3 + (−3) = 0.
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From Theorem 2.3, we know that the solution ẑ satisfies ẑ2 = 0, ẑ1, ẑ3 ≥ 0, and the
solution is

ẑ =


ẑ1

ẑ2

ẑ3

 =


2

0

1

 ,

with q̂ ∈ pos{−M.1, I2,−M.3}. Meanwhile, we know that q̃ ∈ pos{−M.1, I2,−M.3},
and the solution z̃ of the LCP(M, q̃) satisfies z̃ = ẑ from Theorem 2.4.

(II) When q = q̄ ≥ q̂, from Theorem 2.3, similarly, we have

v̄ = M−1
(SN ,SN )(−q̄1) =

 3
2

1
2

1
2

1
2

−q̄1
−q̄3

 =

 7
4

3
4

 , q̄2 +M(2,SN )v̄ = 4 + (−5

2
) =

3

2
,

and the solution of the LCP(M, q̄) is

z̄ =


z̄1

z̄2

z̄3

 =


7
4

0

3
4

 .

We can find that z̄ ≤ ẑ, which illustrates the monotonicity conclusion in Theorem
2.5.

Example 3.3. In this example, we consider a high-order case for Theorem 2.2. We
set the matrix M to be

M1 =



4 −1

−1 4
. . .

. . .
. . .

. . .

. . . 4 −1

−1 4


and M2 =



1 −1

−1 2
. . .

. . .
. . .

. . .

. . . n− 1 −1

−1 n


respectively, and set

q = (−1, 0, x3,−1, 0, 1,−1, 0, 1, · · · )T ∈ Rn.

Then, bothM1 andM2 areM -matrices, and both the LCP(M1, q) and the LCP(M2, q)
have a unique solution for any x ∈ R. Specially, we set

x = −1 :
1

10
: 1

in our experiments, and solve the two linear complementarity problems by the block
principal pivoting algorithm [9]. We set n = 1000, and consider the third element
z3 of the solution z. The numerical results are shown in Figure 1 as follows.

From (a) and (b) in Figure 1, we can see that z3 is the decreasing function of
q3, which verifies the conclusion of Theorem 2.2.
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Figure 1. The monotonicity of z3

4. Concluding remarks

In this paper, the monotonicity of solutions to the LCP(M, q) is considered, and the
monotonicity about a single variable of the solution is presented. The distribution
of zero elements and the monotonicity of the whole solution are also proposed, when
the system matrix M is an M -matrix. The numerical experiments are illustrated
to show the presented results.
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