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Autonomous Planar Systems of Riccati Type

Gary R. Nicklason1,†

Abstract The role of Riccati type systems in the plane along with the re-
lated linear, second order differential equation is examined. If x and y are
the variables of the Riccati differential equation, then any integrable Riccati
system has two independent invariant curves dependent upon these variables
whose nature is easily determined from the solution of the linear equation.
Each of these curves has the same cofactor. Other invariant curves depend
upon x alone and are shown to be less important. The systems have both
Liouvillian and non–Liouvillian solutions and are easily transformable to sym-
metric systems. However, systems derived from them may not be symmetric
in their transformed variables. Several systems from the literature are dis-
cussed with regard to the forms of the invariant curves presented in the paper.
The relation of certain Riccati type systems is considered with respect to Abel
differential equations.
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1. Introduction

In this work, we consider differential polynomial systems in the plane having the
form

dx

dt
= −N(x, y),

dy

dt
= M(x, y)

(1.1)

for polynomials M, N and specifically their relation to Riccati systems for which
M(x, y) = P (x)y2 + Q(x)y + R(x), N(x, y) = N(x). Our primary interest will be
for the centre–focus cases

M(x, y) = x+ q(x, y),

N(x, y) = y + p(x, y),
(1.2)

where p, q are homogeneous polynomials of degree n ≥ 2 or

M(x, y) = x+ q2(x, y) + q3(x, y),

N(x, y) = y + p2(x, y) + p3(x, y),
(1.3)
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where p2, q2 and p3, q3 are homogeneous polynomials of degree 2 and 3 respectively
and how these systems relate to the Riccati systems. We shall refer to the first
of these as homogeneous systems and to the second as cubic systems. We give
examples of this type that can be reduced to Riccati type systems. Associated with
(1.1) is the ordinary differential equation

dy

dx
= −M(x, y)

N(x, y)
. (1.4)

In these, we assume the variables along with any associated parameters in the
differential equations are real, although some of the latter could be complex.

The cubic system (1.3) is a particular case of a more general system of centre–
focus type in which the nonlinearity is expressed, as the sum of homogeneous polyno-
mials having degrees n and 2n−1 for integers n ≥ 2. The cubic system corresponds
to n = 2. In [22], the authors use a relation to an Abel differential equation to
consider certain centre conditions for the quintic n = 3 system.

A point (x0, y0) is said to be a critical point of (1.1), if M(x0, y0) = N(x0, y0) =
0. This point is said to be a centre if all trajectories of the system on a neighbourhood
of the critical point are closed. In his original work [20], Poincaré developed a
method for determining, if the origin is a centre by seeking an analytic solution to
(1.4), where M, N satisfy M(0, 0) = N(0, 0) = 0. This is given by

U(x, y) =
1

2
(x2 + y2) +

∞∑
k=3

Uk(x, y), (1.5)

where the Uk are homogeneous polynomials of degree k. The solution (1.5) is re-
quired to satisfy the condition

dU

dt
=
∂U

∂x

dx

dt
+
∂U

∂y

dy

dt
=

∞∑
k=2

Vk(x2 + y2)k.

The Vk are called Lyapunov coefficients and they are homogeneous polynomials in
the coefficients of the system. A necessary and sufficient condition for the critical
point (0, 0) to be a centre is the vanishing of all the Lyapunov coefficients. One
way of finding centre conditions is to compute several of the Vk, and then obtain
necessary conditions for them to vanish. From this, one hopes to show that these
conditions are sufficient so that all Vk = 0. In this case, (1.5) will have a form
which is convergent and the solution will be given by U(x, y) = C where C is a
constant. Another approach is to show that (1.4) can be solved. The main method
for doing this is the Darboux method. This approach has been well studied and a
great number of general results concerning it are known. It requires the existence
of algebraic invariant curves which are used to construct integrating factors, and
in some cases, solutions. An integrating factor of (1.4) is a function µ(x, y) which
satisfies the partial differential equation

−N(x, y)
∂µ

∂x
+M(x, y)

∂µ

∂y
=

(
∂N

∂x
− ∂M

∂y

)
µ. (1.6)

An algebraic invariant curve of a system (1.1) is an expression of the form f(x, y) = 0
where f is a polynomial. It is required to satisfy the partial differential equation

−N(x, y)
∂f

∂x
+M(x, y)

∂f

∂y
= λ(x, y)f. (1.7)
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The function λ is called the cofactor of f and is a polynomial of degree at most
n− 1 where n is the degree of the system. There are a number of examples of this
type of approach in the literature. See, for example, Chavarriga et al., [1–3] and
this author [17] in which several such systems are given. Usually, the terminology
for a solution of (1.7) is invariant algebraic curve. However, as all the curves we will
obtain for Riccati systems are invariant curves which may or may not be reducible
to an algebraic form, we shall retain the previous terminology throughout this work.

A Darbouxian function is a function of the form

D(x, y) = exp

(
g(x, y)

f(x, y)

) N∏
k=1

fαk

k (x, y),

where f, g, fk are polynomials and the exponents αk can be real or complex. If
an equation of the type (1.4) is Liouvillian integrable, it has an integrating factor
of Darboux type. See Zhang [23], Theorem 3.11, and the references for Prelle,
Singer and Christopher cited therein. The fk are algebraic invariant curves of the
system as is f provided it is not constant. In this case, the term eg/f is called
an exponential factor and satisfies (1.7) for a polynomial function (cofactor) λ of
degree less than or equal to n − 1. For our purposes, a Liouvillian function is
one obtained from a set of rational functions by a finite sequence of operations
including arithmetic operations, exponentiations, differentiations, integrations and
the solution of algebraic equations. See Zo la̧dek and Llibre [25], Definition 1.

A major purpose of this work is not to continue with the Darboux approach, but
to consider systems (1.1) which arise from Riccati differential equations. A Riccati
differential equation is one of the form

dy

dx
= P (x)y2 +Q(x)y +R(x), (1.8)

where P, Q, R are arbitrary functions with P (x) 6= 0. Such an equation can always
be paired with a corresponding linear, second order differential equation. Therefore,
the solvability of one implies the solvability of the other. Suppose a Riccati system
has an invariant curve (not necessarily algebraic) Φ(x, y) = 0 for which ∂Φ

∂y 6= 0.

Writing it in the form y = φ(x), it is straightforward to show that y = φ defines a
particular solution of the Riccati equation. Letting y → y + φ in (1.8) yields the
Bernoulli equation

dy

dx
= P (x)y2 + (Q(x) + 2P (x)φ(x))y.

Solving this and setting the integration constant equal to zero, we obtain a second
solution to the Riccatti equation, which can be expressed as (y−φ(x))

∫
P (x)G(x) dx+

G(x) = 0, where G(x) = exp(
∫

(Q(x) + 2P (x)φ(x)) dx). A simple calculation shows
that the cofactor of the invariant curve y − φ = 0 is λ = Py + Pφ+Q, and a little
more work shows that the second solution also has the same cofactor. Since it is
unlikely that λ is a polynomial, some modifications are necessary in order to obtain
one. These basically involve the forms of the particular solutions used; the details
of this are discussed in Section 3. However, this simple example illustrates two basic
aspects of Riccati systems. One is that there are two independent invariant curves
and the other is that both of the curves (when expressed properly) have the same
cofactor. Although this method of finding a second solution of a Riccati equation
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when one solution is given is well-known (see [21]), it is worthwhile, for our purpos-
es, to express it in this manner. Hence, whenever a Riccati equation (system) has
an invariant curve of the form Φ(x, y) = 0, both it and the corresponding linear,
second order equation are solvable. We shall assume this is true throughout this
work. The problem of when (1.8) has an algebraic invariant curve was considered
in [14] by Llibre and Vals for the case when P, Q, R are polynomials.

The paper consists of two main parts. In Sections 2 and 3, we present some of the
forms of Riccati systems and the main results concerning these. Also, in Sections
3–5, some results from the literature are reviewed with regard to these Riccati
forms. In Section 2, we discuss the transformation of Riccati systems to symmetric
and more general systems and in Section 3 we present some general properties of
Riccati systems. In particular, we show that any such system has two invariant
curves having a particular and specific form. Whether or not these are algebraic
depends upon the solution of the related linear, second order differential equation.
In Section 5, we obtain the reduction of a cubic system (1.3) which is solvable in
terms of Airy functions to a Riccati system. We also present two more general
cubic systems which are also solvable in terms of these functions. Furthermore, we
obtain the reduction of a homogeneous system (1.2) to a Bernoulli form. In the final
section, we give a partial proof of the results in Section 5. All symbolic computations
for the paper were carried out in the Computer Algebra System (CAS) Maple.

2. Transformation of Riccati equations to general
systems

The homogeneous systems (1.2) given by

dx

dt
= −y − axn−1y,

dy

dt
= x+ bxn−2y2 + cxn−4y4,

(2.1)

where n ≥ 4 is an integer and a, b, c are parameters are generally solvable in terms
of special functions, although some do have elementary solutions. Each is reducible
to a Riccati differential equation which can be transformed to a linear, second order
differential equation and this is what gives rise to the form of the solutions. In
addition, each of the systems in (2.1) is symmetric, having trajectories which are
symmetric about the x-axis.

We consider the linear, second order differential equation

d2u

dx2
−A(x)

du

dx
+B(x)u = 0, (2.2)

where A, B are rational functions such that A = Q/P, B = R/P , where P, Q
and R are polynomials. For the form Pu′′ − Qu′ + R = 0, we assume that
gcd(P, gcd(Q,R)) = 1 and that A, B are fully reduced. By choosing the coefficient
functions appropriately, the form (2.2) includes the 2F1 Gaussian hypergeometric
functions, the 1F1 confluent hypergeometric functions and the 0F1 hypergeometric
functions of which class the Bessel functions are members. All classical orthogonal
polynomials are included as well as more general functions such as Heun functions.
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See [11] for details. Any such equation can be transformed to a Riccati differential
equation by the transformation

u(x) = e−
∫
F(x)y(x) dx,

where F is an arbitrary differentiable function. The resulting Riccati equation is

dy

dx
= y2 +

(
A(x)− F

′(x)

F(x)

)
y +

B(x)

F(x)
,

and assuming (2.2) is solvable, it has the solution

y(x) = − 1

F(x)

Cψ′1(x) + ψ′2(x)

Cψ1(x) + ψ2(x)
, (2.3)

where ψ1, ψ2 are independent solutions of (2.2) and C is a constant. For the systems
of this type that we shall consider in this section we can take F(x) = 1. This gives

dy

dx
= y2 +A(x)y +B(x). (2.4)

The transformation which converts a given Riccati form to a linear, second order
equation is given by

y(x) = − 1

G(x)

u′(x)

u(x)
, (2.5)

where G is the coefficient function of the y2 term in (1.8). To avoid repeated
repetition, whenever the functions ψ1, ψ2 are referred to in the remainder of the
paper (except where necessary in the statement of formal results), it will be assumed
that they are linearly independent.

Writing (2.4) as a system and using the assumed forms for A and B, we get

dx

dt
= P (x),

dy

dt
= P (x)y2 +Q(x)y +R(x).

(2.6)

Proposition 2.1. Let ψ1 and ψ2 be linearly independent solutions of (2.2). Then,
the solution of the planar system defined by (2.6) can be given in terms of ψ1, ψ2

and their derivatives.

Letting y → y2 in (2.6), we obtain the system

dx

dt
= 2P (x)y,

dy

dt
= P (x)y4 +Q(x)y2 +R(x),

(2.7)

and letting y → −1/y2 in (2.6), we obtain the alternate system

dx

dt
= 2P (x)y,

dy

dt
= R(x)y4 −Q(x)y2 + P (x).

(2.8)
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Proposition 2.2. The trajectories of the systems (2.7) and (2.8) are symmetric
about the x-axis as the systems are invariant under the transformation (x, y, t) →
(x,−y,−t).

We can now transform (2.7) and (2.8) in any manner we wish to obtain more
general systems that may not display the type of symmetry associated with the
original systems. In Section 5 we obtain the full transformation which maps a
specific member of (2.1) to a cubic system. This is made possible because of the
association of these systems with certain Abel differential equations which we discuss
in Section 4.

Proposition 2.3. Let

dx

dt
= −y − P(x, y),

dy

dt
= x+Q(x, y),

(2.9)

where P, Q are polynomials having no constant or linear terms be any system de-
rived from either (2.7) or (2.8) by an invertible transformation. Then the origin of
the system is a centre.

In this case, it does not matter if either (2.7) or (2.8) is solvable, only that (2.9)
is transformable to a system which is symmetric. For general choices of P, Q, R in
(2.7), it is not obvious how systems like (2.9) can be obtained. However, we can
ensure that (2.7) will have a non–degenerate critical point at the origin if we impose
the conditions P (0) 6= 0, R(0) = 0, R′(0) 6= 0. Further, this will be of centre-focus
type if we take P (0)R′(0) < 0. The equation

(a1x+ b1)
d2u

dx2
− (a2x

2 + b2x+ c2)
du

dx
+ x(a3x

2 + b3x+ c3)u = 0, (2.10)

where a1, b1, . . . , c3 are parameters such that b1c3 6= 0 satisfies the conditions for a
non–degenerate critical point. It is solvable in terms of Heun functions for general
non–zero values of the parameters, although there are cases for which it cannot be
solved (such as a3 = 0, a1a2 6= 0). However, these do not concern us. For this form,
(2.7) becomes the degree 5 system

dx

dt
= 2b1y + 2a1xy,

dy

dt
= c3x+ b3x

2 + a3x
3 + (a2x

2 + b2x+ c2)y2 + (a1x+ b1)y4.

(2.11)

If b1c3 < 0, the linear part has the form of a centre–focus, and if b1c3 > 0, it has
the form of a hyperbolic saddle. Clearly, there are other possibilities if b1c3 = 0.
We will show in the next section that unless (2.10) is Liouvillian integrable, (2.11)
does not have an algebraic invariant curve.

The solutions of (2.10) and (2.11) tend to be rather cumbersome expressions
for general values of the parameters. Denoting the right side of (2.3) by Φ(x), the
solution of (2.11) is given by y2 = Φ(x), where ψ1, ψ2 are solutions of (2.10). In
order to greatly simplify the following discussion, we will proceed using two specific
examples. In each of these we will take P (x) = 1. Setting b1 = 1, b2 = 2, c2 =
−2, c3 = −2 and the remaining parameters equal to zero, (2.10) becomes

d2u

dx2
− 2(x− 1)

du

dx
− 2xu = 0, (2.12)
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and (2.11) is

dx

dt
= 2y,

dy

dt
= −2x+ 2(x− 1)y2 + y4.

(2.13)

The general solution of (2.12) is given by u = C1ψ1 +C2ψ2 for arbitrary constants
C1, C2 and

ψ1(x) =
√
xex(x−2)/2I1/4

(
x2

2

)
,

ψ2(x) =
√
xex(x−2)/2K1/4

(
x2

2

)
,

where I, K are the modified Bessel functions of the first and second kinds respec-
tively.

Now, we would like to transform (2.11) in such a manner that the characteristics
of the eigenvalues of the linear part are retained. A general transformation that
will do this is given by

x =
aξ + bη

(1 + f(ξ, η))n
,

y =
cξ + dη

(1 + f(ξ, η))n
,

(2.14)

where ∆ = ad− bc 6= 0, f is an arbitrary and suitably differentiable function which
satisfies f(0, 0) = 0, and n 6= 0 is an integer. Since we are interested in polynomial
systems, we assume f is a polynomial. Using (2.14) to transform the general system
(1.1), we can show that

dξ

dt

∂f

∂ξ
+
dη

dt

∂f

∂η
= (1 + f(ξ, η))P(ξ, η),

where the derivatives ξ̇ and η̇ define the transformed system and P is a polynomial.
Hence, from (1.7), it follows that 1+f(ξ, η) = 0 defines an algebraic invariant curve
of the transformed system. The actual situation is much more general than this
as we can replace the single factor in the denominators for x and y in (2.14) by a
product of factors (1 + fk(ξ, η))nk , where the nk’s are non–zero integers and the
fk’s are polynomials having no constant terms for k = 1, . . . , N . Each of the factors
1 + fk(ξ, η) = 0 becomes an algebraic invariant curve of the transformed system.
Since these curves are induced by the transformation, there are no counterparts to
them in the original system. This gives an indication of how difficult it could be to
reduce a given system to symmetric form because the appropriate transformation
cannot be determined. As an example, we could have a system having N invariant
straight lines which is not integrable, because the original system is not integrable.

The simplest form for (2.14) is

x =
aξ + bη

αξ + βη + 1
,

y =
cξ + dη

αξ + βη + 1
,

(2.15)
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where α, β are parameters. A transformation of this type was used by Lloyd and
Pearson in [15] to investigate centre conditions in certain cubic systems. Using it
to transform (2.13), we obtain the system

dξ

dt
= −2(ab+ cd)ξ − 2(b2 + d2)η +

5∑
k=2

pk(ξ, η),

dη

dt
= 2(a2 + c2)ξ + 2(ab+ cd)η +

5∑
k=2

qk(ξ, η),

(2.16)

where pk, qk are homogeneous polynomials of degree k. The eigenvalues of the linear
portion are ±2∆i, and those of the original system are ±2i. The solution is given
by transforming y2 = Φ(x) in accordance with (2.15).

Equation (2.2) with A(x) = −2x3, B(x) = −2x is not solvable in Maple. It
leads to the system (2.7) given by

dx

dt
= 2y,

dy

dt
= −2x− 2x3y2 + y4,

which by Proposition 2.2 has a centre at the origin. When it is transformed accord-
ing to (2.15), it produces a system of degree 6 similar in form to (2.16) and which
has a centre at (ξ, η) = (0, 0). We note that neither of these transformed systems is
symmetric with respect to the variables ξ, η.

Based on (2.7) and (2.11), we have used simple transformations to produce
centre–focus forms of homogeneous systems which have centres at the origin be-
cause they are derived from symmetric systems. In Section 5, we carry out this
transformation in the opposite way for a cubic system and a particular homoge-
neous system, both of which are known to have centres at the origin. Each of these
systems is shown to be ultimately transformable to a symmetric system and this,
once again, raises the question as to whether or not all homogeneous systems with a
centre can be transformed to a symmetric form. Ideas such as this are certainly not
new. There is, for example, Zo la̧dek’s conjecture [24] regarding rationally reversible
and Liouvillan integrable cubic systems (also see [9], Conjecture 9.1, by Christopher
and Llibre). From the ideas just presented, we think it is highly probable that any
polynomial system that is solvable in terms of special functions is derivable from a
system such as (2.7).

3. Invariant curves of Riccati equations

Here, we present some basic ideas concerning Riccati type systems such as (2.6),
which we shall formalize at the end of the section. In the following, we consider in
some detailed two separate cases, although it is clear that the same ideas can be
used for other Riccati systems. One case is where the form Pu′′ −Qu′ +Ru = 0 of
equation (2.2) can be written having arbitrary polynomial coefficients and the other
for the case when the Riccati equation (1.8) has general polynomial coefficients. For
the first of these, we have F(x) = G(x) = 1 and for the second F(x) = G(x) = P (x).
For a specific pair of corresponding linear, second order and Riccati equations, we
can take F = G.
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Solving (2.3) for C, we obtain

U(x, y) =
F(x)ψ2(x)y + ψ′2(x)

F(x)ψ1(x)y + ψ′1(x)
= −C =

1

K
, (3.1)

where K, C are constants and ψ1, ψ2 are solutions of (2.2). From this, we can
see that no Riccati system can ever have a polynomial first integral. For suitable
choices of F , a sufficient condition for the solution to be rational is that ψ1, ψ2

be rational. In this solution, there are two particular solutions or invariant curves,
which we get by setting one of C or K equal to zero. They are given by

F(x)ψ1(x)y + ψ′1(x) = 0,

F(x)ψ2(x)y + ψ′2(x) = 0
(3.2)

and can be obtained by transforming the solutions u = ψ1 and u = ψ2 of (2.2) by
(2.5). They can be considered as basic forms for the invariant curves and because
they often involve functions which are not elementary, they are not usually algebraic
unless they can be reduced in some manner. For example, in the case of system (3.9)
below it is necessary to reduce them in order to obtain an algebraic curve which has a
polynomial cofactor. The forms (3.2) are the only possibilities for algebraic invariant
curves of this type (dependent on y), there can be no others. For if Ψ(x, y) = 0
defined another such curve, then writing it as y = −ψ′3/(Fψ3) = −u′/(Fu), it
would follow that u = ψ3 is another solution of (2.2) which is not possible unless
there exist constants α, β such that ψ3 = αψ1 + βψ2. If this is the case, we obtain
Fψ3y + ψ′3 = (αFψ1 + βFψ2)y + (αψ′1 + βψ′2) = α(0) + β(0) = 0. Therefore, we
get nothing new. Clearly, the same is true for any Riccati system whose solution is
given by (3.1). With ψ3 defined in this way, we can obtain the so–called cross–ratio
solution of the Riccati equation (see [21]) from (3.1). Planar polynomial systems
having non–algebraic invariant curves were considered by Garćıa and Giné in [12].

There is another possibility for algebraic invariant curves of Riccati systems.
Suppose we have ẋ = P(x) where P is a non–constant polynomial. Then, writing

P(x) = K

N∏
k=1

(x− αk)nk

where K 6= 0, the αk are real or complex constants with αi 6= αj unless i = j and
the nk, N are positive integers, we have from (1.7)

λk(x, y) =
1

x− αk

(
P(x)

d

dx
(x− αk) +

dy

dt

∂

∂y
(x− αk)

)
=

P(x)

(x− αk)nk
(x− αk)nk−1.

Since λk is a polynomial, each of the simple factors x − αk of P is an irreducible
algebraic invariant curve. These are important in the construction of integrating
factors of Darboux type, but due to the form (3.5) of the general integrating factor
given below, it is clear that we do not need to consider them separately. Any such
factor must appear naturally. The expression (3.4) for the Wronskian is valid for
the first of the two systems we consider, and for the second system, it is given by
CP (x)e

∫
Q(x) dx. Hence, the function P appears explicitly in each case. We give
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a specific example of the appearance of these types of factors later. As given, the
invariant curves defined by (3.2) are not necessarily algebraic. The simple Euler
form A(x) = 2(x + 2)/x, B(x) = (x2 + 4x + 6)/x2 of (2.2) with F(x) = x2 has
the invariant curve (x2)(x2ex)y + (x2ex)′ = xex(x3y + x+ 2) = 0 which reduces to
an algebraic form. More generally, the invariant curves of (2.13) are not algebraic,
since the solutions of (2.12) are not Liouvillian.

Expressing the functions A and B of (2.4) in terms of ψ1, ψ2 gives

A(x) =
Q(x)

P (x)
= −ψ

′′
1 (x)ψ2(x)− ψ1(x)ψ′′2 (x)

W(ψ1(x), ψ2(x))
,

B(x) =
R(x)

P (x)
= −ψ

′′
1 (x)ψ′2(x)− ψ′1(x)ψ′′2 (x)

W(ψ1(x), ψ2(x))
,

(3.3)

where W is the Wronskian given by

W(ψ1(x), ψ2(x)) = ψ1(x)ψ′2(x)− ψ′1(x)ψ2(x)

= Ce−
∫
A(x) dx = Ce−

∫
Q(x)/P (x) dx

(3.4)

and C 6= 0 is a constant. Differentiating the solution (3.1) and its reciprocal with
respect to y gives the integrating factors

µ(x, y) =
F(x)W(ψ1(x), ψ2(x))

(F(x)ψk(x)y + ψ′k(x))2
(3.5)

for k = 1, 2. They are particular cases of a general solution of (1.6) which we
consider at the end of the section. However, they are suitable for our purposes at
this time.

The integrating factors (3.5) satisfy a form of (1.6) for which N(x, y) = −1, but
can be easily modified to satisfy other forms of Riccati systems. The appropriate
form for (2.4) has F(x) = 1. The invariant curves (3.2) satisfy y = −ψ′/(Fψ)
and ordinarily we would cancel any common factors that appear in this expression.
However, in order to obtain a specific form for the cofactor, we will not do this
except where indicated. To obtain the first of these, we can use the system derived
from (2.6). Since the labelling of the functions ψ1, ψ2 is arbitrary, it is obvious that
both curves have the same cofactor. Using the first of the curves (3.2) and taking
F(x) = 1, we obtain for the quotient with respect to y

λ(x, y) =
ψ′1(x)y + ψ′′1 (x) + (y2 +A(x)y +B(x))ψ1(x)

ψ1(x)y + ψ′1(x)

= y +A(x) +R(x, y) = y +
Q(x)

P (x)
.

The numerator of the remainder R is the simple statement that ψ1 is a solution of
(2.2), so it is automatically satisfied. The cofactor

λ(x, y) = P (x)y +Q(x) (3.6)

for (2.6) is then obtained by multiplying the above result (system) by P. The sim-
plest case for an algebraic invariant curve is when y = −ψ′1/(Fψ1) = α, a constant.
In this case we have ψ1(x) = e−

∫
αF(x) dx. We shall say more about this later. An-

other possibility is that there exists a non–zero integer n such that (ψ′1/(Fψ1))n
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is a rational function. The form of (2.2) with A(x) = 1/(2x), B(x) = −a2/(4x)
having solutions e±a

√
x generates the curve 4xy2 − a2 = 0.

In [4], Chavarriga and Grau used (2.2) with A(x) = 2x and B(x) = 2n, where
n is a positive integer to produce the Riccati system

dx

dt
= 1,

dy

dt
= y2 + 2xy + 2n

(3.7)

as an example of a system of low degree which has an algebraic invariant curve of
arbitrary degree. This is a polynomial system which also has the form of (2.6).
Hence, we can take F(x) = P (x) = 1 in the preceding results. One of the solutions
of (2.2) for this case is the Hermite polynomial Hn, which means that (3.7) has an
irreducible algebraic invariant curve Hny +H′n = 0 having cofactor (3.6) given by
λ(x, y) = y + 2x. For this system, the other curve in (3.2) is not algebraic. From
(3.4) and (3.5), an integrating factor is

µ(x, y) =
ex

2

(Hn(x)y +H′n(x))2
.

If we set y = α, where α is a constant in system (2.6), we obtain the relation

P (x)α2 +Q(x)α+R(x) = 0. (3.8)

Hence, if this satisfied, the system has an algebraic invariant curve y − α = 0.
In [14], Llibre and Valls considered the algebraic invariant curves and algebraic first
integrals for polynomial Riccati systems of the form

dx

dt
= 1,

dy

dt
= P (x)y2 +Q(x)y +R(x).

(3.9)

In [14], Theorem 2(b), the relation (3.8) is exactly the condition given for the
polynomial system (3.9) to have an algebraic invariant curve. It is also stated that
the system has such a curve if and only if (3.8) is satisfied. However, in view of the
results for the system (3.7), it is clear that this is not true. As we shall see, this
case is not as straightforward as the first one considered.

Transforming (3.9) by y → −y′/(Py) gives the second order equation

d2y

dx2
−
(
Q(x) +

P ′(x)

P (x)

)
dy

dx
+ P (x)R(x)y = 0. (3.10)

For the case when (3.8) is satisfied, we have noted that one solution of this equation
is ψ1(x) = e−

∫
αP (x) dx. Hence, the corresponding invariant curve (3.2) is

P (x)ψ1(x)y + ψ′1(x) = P (x)e−
∫
αP (x) dx(y − α) = 0.
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If we determine the cofactor using the full form of this curve, we obtain

λ(x, y) =

∂
∂x (P (x)E(x)(y − α)) + (P (x)y2 +Q(x)y +R(x)) ∂∂y (P (x)E(x)(y − α))

P (x)E(x)(y − α)

=
E(x)

[
P ′(x) + αP 2(x) + (P (x)y − αP (x)−Q(x))P (x)

]
P (x)E(x)

= P (x)y +Q(x) +
P ′(x)

P (x)
(3.11)

where E(x) = e−
∫
αP (x) dx. If we used the curve obtained by removing the common

term P (x), we would get λ = Py + Q, and if we used y − α = 0 as the invariant
curve, we have λ = Py +Q+ αP which is the form for this case obtained in [14].

For the general form (3.9) and the invariant curves (3.2), (3.11) is exactly the
expression we would obtain for the cofactor. Clearly, in order to have a polynomial
form for this, we must impose further conditions. The obvious one, P ′(x) = 0,
basically leads back to the previous case given by (3.6). An example for which
P ′(x) 6= 0 is given by

dx

dt
= 1,

dy

dt
= (3x+ 2n)y2 + (x+ 2)y + 1,

where n is an arbitrary parameter which we take to be a non–negative integer.
Since the expression for ẏ has no factor y− α where α is a constant, the coefficient
functions do not satisfy (3.8). The system was developed from a form of (3.10),
which has solutions in terms of confluent hypergeometric functions. For these values
of n, it will produce polynomial solutions multiplied by a simple exponential factor.
For n = 1, the system has the irreducible algebraic invariant curve

(x− 5)(x4 − 12x3 + 42x2 − 40x− 9)y+ x4 − 16x3 + 90x2 − 208x+ 163 = 0. (3.12)

For general values of n the degree of the curve is 2n+ 4, and in this regard, it is a
result similar to that given by (3.7). The solution of (3.10) that gives rise to (3.12)
is ψ1(x) = (x− 5)(x4 − 12x3 + 42x2 − 40x− 9)e3x. Multiplying (3.12) by e3x gives
the cofactor λ(x, y) = P (x)y+Q(x) = (3x+ 2)y+x+ 2. What we can further show
and what this example has in common with the previous one from the case (3.8) is
that the expression for ψ′1 has a factor of P and this common factor P was removed
from the expression (3.2) of the invariant curve before the cofactor was determined.
This is also true for several other cases we know of, so we believe that the solutions
ψ1, ψ2 must be such that their derivatives have a factor of P. Substituting y′ = Pφ
in (3.10), we get the linear, second order equation

R(x)
d2φ

dx2
− (Q(x)R(x) +R′(x))

dφ

dx

+
(
P (x)R2(x) +Q(x)R′(x)−R(x)Q′(x)

)
φ = 0

(3.13)

for the function φ. Thus, we have ψ′1 = Pφ1, ψ
′
2 = Pφ2, where φ1, φ2 are linearly

independent solutions of (3.13). This leads to the following result which we will
establish later.
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Proposition 3.1. A necessary and sufficient condition for the system (3.9) to have
the unique polynomial cofactor λ = Py+Q for its invariant curves is that ψ′ = Pφ,
where ψ and φ are linearly independent solutions of (3.10) and (3.13) respectively.
In this case, the invariant curves (3.2) with F = P are reduced to the form ψy+φ =
0.

Corollary 3.1. A necessary condition for the system (3.9) to have an algebraic
invariant curve is that it have an invariant curve ψy + φ = 0 having cofactor
λ = Py + Q where ψ′ = Pφ with ψ and φ being linearly independent solutions of
(3.10) and (3.13) respectively.

In this case, the general integrating factor (3.5) with F = P can be taken as

µ(x, y) =
P (x)W(ψ1(x), ψ2(x))

(P (x)ψ(x)y + P (x)φ(x))2

=
P (x)P (x)e

∫
Q(x) dx

(P (x)ψ(x)y + P (x)φ(x))2
=

e
∫
Q(x) dx

(ψ(x)y + φ(x))2
,

(3.14)

so that P does not appear in the final result. For the cofactors defined by (3.6) and
Proposition 3.1, we can show that if ψ, ψ′ have a common exponential factor eP(x),
where P is a polynomial and this is removed before the determination of the cofactor
is carried out, then the system has the cofactor (cf. (3.11)) λ = Py + Q + P ′. In
the case of (3.6), there are other possibilities. For example, if the solutions ψ1, ψ2

are polynomials multiplied respectively by powers xα, x1−α, where α is real. A
sufficient condition for system (2.6) to have two algebraic invariant curves is that
equation (2.2) should have two polynomial (rational) solutions. To accomplish this,
let ψ1, ψ2 be two arbitrary polynomials having non–constant Wronskian. Set P
equal to this and define Q, R using (3.3). In this case, (2.6) has a rational first
integral.

For the purpose of finding algebraic invariant curves of (3.9), equation (3.13) is a
better choice than (3.10) because it has the necessary condition ψ′ = Pφ implicit in
it. Consequently, we need make no restrictions on P, Q, R beyond those necessary
to obtain the desired result. Once these are determined, we can find the necessary
solutions from (3.10). One simple choice is to take the coefficient of φ to be zero.
Then, the equation is Liouvillian integrable, and has one constant solution φ = φ0.
Solving this implied differential equation, for Q gives

Q(x) =

(∫
P (x) dx

)
R(x),

where P, R are arbitrary polynomials. Then, ψ′ = φ0P and the algebraic invariant
curve of (3.9) is y

∫
P (x) dx + 1 = 0. Another choice is to take P (x) = Q(x) =

x, R(x) = 1 which gives the reducible invariant curve ex((x − 1)y + 1) = 0 for the
resulting system. In view of the fact that these results are dependent upon the
solutions of equations (3.10) and (3.13), we feel it is unlikely that all the conditions
for algebraic invariant curves of (3.9) can ever be fully characterized. To give
an idea of how difficult this might be, consider the transformation y → ((1 +
pq)y + q)/(py + 1) where p, q are arbitrary polynomials, at least one of which is
nonzero. This will transform the polynomial system (3.9) to a new system having
polynomial coefficients. If the coefficient functions of the first system satisfy (3.8),
then those of the new system do not unless both p and q are constant. If two
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transformations of this type, say T1 and T2, are applied consecutively to (3.9) and
then in the opposite order, the results are not generally the same (unless T1 = T2).
That is T2 ◦ T1 6= T1 ◦ T2. Hence, any finite sequence of N transformations of
this type is capable of producing N ! different results. If the original system has
an algebraic invariant curve, all the transformed systems have one as well. To
completely solve the problem of algebraic invariant curves for a polynomial system,
it would be necessary to classify all Liouvillian solutions of either (3.10) or (3.13).
The algorithm presented by Kovacic [13] for determining if a linear, second order
differential equation has Liouvillian solutions is effective if the form of the equation
is known, but it is not clear if it can be readily adapted to the case where the
equation contains arbitrary functions. For now we can say that the relation (3.8) is
sufficient for these to exist, but it is not necessary.

The solution of (2.2) or (3.10), assuming one can be found, is either Liouvillian
or non-Liouvillian. For if ψ1 is one solution, then a second independent solution for
the case (2.2) (similarly for (3.10)) is

ψ2(x) = ψ1(x)

∫
e−

∫
A(x) dx

ψ2
1(x)

dx,

which is of the same type as ψ1. Also, it is clear that in order for the forms (3.2) to
be algebraic, the solutions of (2.2) or (3.10) must be Liouvillian. The next result
explains the comment made following equation (2.11).

Proposition 3.2. If either of the systems (2.6) or (3.9) has a non-Liouvillian first
integral or is not solvable, then the corresponding system does not have an algebraic
invariant curve.

In [10], Christopher and Llibre used a Riccati system to show that a system could
have an algebraic invariant curve of arbitrary degree and which has no rational first
integrals. The system is given by

dx

dt
= x(1− x),

dy

dt
= y2 +

[(
a+ b− 1− 2ab

c

)
x+ 1− c

]
y +

ab

c2
(c− a)(c− b)x2

where a is a non–positive integer, b ≤ a is a constant and c is taken to be an
irrational constant in [10], although this is not necessary for the general system.
The basic form which describes this system can be written as ẋ = 1, ẏ = (1/P )y2 +
(Q/P )y+R/P . This is somewhat different than the previous two systems. However,
we can still use the same ideas to obtain the invariant curves and integrating factor.
The linear equation obtained from (2.5) with G(x) = 1/P (x) = 1/(x(1 − x)) has
solutions ψ1(x) = (2x+ 1)(x− 1)2, ψ2(x) = (x− 1)2[4x2 + 2x− 27− 8(2x+ 1) lnx]
for the values a = −1, b = −2, c = 1. The Wronskian is 8(x − 1)7/x and the
corresponding integrating factor (3.5) with F(x) = 1/(x(1− x)) can be taken as

µ(x, y) =
(x− 1)4

(2xy + y − 6x2)2
.

This turns the form µ[((1/P )y2 + (Q/P )y + R/P ) dx − dy] = 0 exact. Therefore,
writing (y2 +Qy+R)(µ/P ) dx−P (µ/P ) dy = 0 gives the integrating factor for the
system as given and this agrees with the form given in [10] for the assumed values
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of the parameters. In this case, we see the appearance of the algebraic invariant
curves x = 0 and x− 1 = 0 in the integrating factor in spite of the fact that these
types of curves were not specifically considered.

In the following and in Section 5 of the paper, we will obtain equations of the
form

dy

dx
= y2 − Q(x)

P (x)
y, (3.15)

where P, Q are polynomials. These will arise by reducing integrable systems to the
given Bernoulli form. Since it can be considered as a reducible Riccati equation, it
has particular solutions of the form (3.2). One of the solutions is y = 0, and the
second solution can be taken in the form y = −F ′/F , where

F (x) =

∫
exp

(
−
∫ (

Q(x)

P (x)
dx

))
dx. (3.16)

Clearly, this solution need not be such that the form of invariant curve (3.2) would
be algebraic. For the homogeneous case we will consider in Section 5, P , and Q will
be such that this solution will define an algebraic invariant curve which is obtained
by reducing a corresponding curve from the original homogeneous system.

In [12], Lemma 3.2, the authors consider the Lotka–Volterra system

dx

dt
= x(ax+ by + x2 + 2xy + 4y2),

dy

dt
= y(ax+ by + x2 + xy + 2y2),

where a, b are real parameters. The purpose is to demonstrate a system having a
non–algebraic invariant curve with a polynomial cofactor. The form (1.4) for the
system can be transformed to the Bernoulli form (3.15) by the change of variables
x = −(at + b)/((t + 2)v(t)), y(x) = −(at + b)/(t(t + 2)v(t)). This equation has an
invariant curve Fv+F ′ = 0, where F (t) = (b− 2a)Ei(t)− (at+ 2b)e−t/t is given by
(3.16) and Ei(t) = −

∫∞
−t e

−u/u du is the exponential integral. Transforming it back
to the original variables, we find that the given system has two invariant curves
(2a − b)xEi(x/y)ex/y + (x + 2y)2 + ax + 2by = 0 and x + 2y = 0 having cofactors
λ1(x, y) = ax+by+2x2+4xy+4y2 and λ2(x, y) = ax+by+x2+2xy+2y2 respectively.
The results in [12] for this system are a little unusual since parameters are introduced
which are not present in the original system. The expression f = f1 + f2 given in
the lemma having the component functions

f1(x, y) = C2

(y
x

)β1
(

1 +
2y

x

)β2+2

eβ3x/y

×
(

(b− 2a)xex/yEi

(
−x
y

)
+
C1

C2
xex/y + ax+ 2by

)
,

f2(x, y) = C2x
2
(y
x

)β1
(

1 +
2y

x

)β2+4

eβ3x/y,

where C1 and C2 6= 0 are arbitrary constants and the βk’s are real parameters (which
must satisfy certain conditions) is such that each function defines an invariant curve
of the system. Of these f2 has the polynomial cofactor λ̄2(x, y) = 2ax+2by+α1x

2+
α2xy + α3y

2 where the αk’s are arbitrary real parameters. From the definition
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of f and the linearity of (1.7), it follows that the cofactors satisfy the relation
λ̄f = λ̄(f1 + f2) = λ̄1f1 + λ̄2f2, where λ̄, λ̄1 are the cofactors of f, f1. That none
of the cofactors are equal is easily verifiable. Hence, the relation can be written as
either λ̄2− λ̄ = (λ̄− λ̄1)(f1/f2) or f1/f2 = −(λ̄− λ̄2)/(λ̄− λ̄1). Since f1/f2 is not a
rational function, we have from the first one that if λ̄ is a polynomial then λ̄1 cannot
be and from the second if λ̄1 is a polynomial then λ̄ cannot be. In fact, neither
of them are polynomials. From what this writer can see, the only way to obtain a
polynomial cofactor for f is to impose the conditions b = 2a, C1 = 0 which would
remove the exponential integral term from the invariant curve f1. This reduces
f1/f2 to a rational function, but even then λ̄1 is not a polynomial.

The system given in [12], Lemma 4.9, is of a similar nature. In this case, it
is directly transformable to a Riccati equation which is solvable in terms of Bessel
functions. The invariant curves given by (3.2) can then be directly converted to
the invariant curves of the given system, and the first integral is the ratio of these
due to the direct relation with the solution (3.1) of the Riccati equation. Although
not of the same type as those discussed in the previous section, both this system
and the previous one can be considered as inverse problems for the Riccati system.
That is, systems having particular properties that are derivable from the basic
Riccati form. Using the method described in [17], the homogeneous system ẋ =
−y+xP (x, y), ẏ = x+yP (x, y) where P is a homogeneous polynomial of degree n−1
for n ≥ 2, discussed in [12], Lemma 4.7, can be transformed to the form (3.15) and
the invariant curves determined form that. The system has two irreducible invariant
curves x± iy = 0 and another which is either algebraic or non–algebraic according
as n is even, odd. The expression f(x, y) = (x2 + y2)n/2 exp(K arctan(y/x)) = 0,
where K is an arbitrary constant mentioned in the statement of the lemma is an
invariant curve of the system. It can be fully expressed in terms of powers of x± iy.

In the following, we establish the results of Proposition 3.1. First, assume that
we can write ψ′ = Pφ where φ is a solution of (3.13). Setting F = P and removing
the common factor of P , we take the expression for the invariant curve as ψy+φ = 0.
With this we find that

λ(x, y) =
ψ′(x)y + φ′(x) + (P (x)y2 +Q(x)y +R(x))ψ(x)

ψ(x)y + φ(x)

= P (x)y +Q(x) +
ψ′(x)− P (x)φ(x)

ψ(x)y + φ(x)
y +

φ′(x)−Q(x)φ(x) +R(x)ψ(x)

ψ(x)y + φ(x)

,

which gives the cofactor λ = Py + Q when we set φ = ψ′/P and use the fact that
ψ is a solution of (3.10). Now, suppose that the cofactor is λ = Py + Q. The
basic form for an invariant curve is given by (3.2), so we take the more general
form ρψy + φ = 0 where ρ and φ are functions to be determined in order to deal
with possible modifications of the coefficient functions. Substituting for λ and the
invariant curve in (1.7) and collecting powers of y, we find that the coefficient of
the y2 term is zero, and the vanishing of the other two is given by

ρ(x)
dψ

dx
+ ψ(x)

dρ

dx
− P (x)φ(x) = 0,

dφ

dx
−Q(x)φ(x) +R(x)ρ(x)ψ(x) = 0.

Solving this system of equations for φ and ρ, we find that φ is a solution of (3.13).
Therefore, it satisfies φ = ψ′/P. Substituting this in the second equation and using
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the fact that ψ is a solution of (3.10) reduces it to ρ(x) = 1. Hence, the invariant
curve is ψy + φ = 0 as before. It is straightforward to show that this cofactor as
well as the one for (2.6) is unique.

One question we might ask is: If a rational Riccati system is Liouvillian inte-
grable, does it have an algebraic invariant curve? It seems that there should be a
reasonable expectation that this is true. Any integrating factor for the system would
have to depend on y, and also there would be one which is of Darboux type [23]. It
would be necessary to establish that this particular integrating factor is dependent
upon one or both of the invariant curves (3.2). If this is true, then at least one of
them must be reducible to an algebraic form. Basic integrating factors are given
by (3.5), but there are more general forms. For the system (3.9) the characteristic
equations for equation (1.6) for an integrating factor can be written as

dx

1
=

dy

P (x)y2 +Q(x)y +R(x)
= − dµ

(2P (x)y +Q(x))µ(x, y)
.

This system is fully and explicitly solvable. The solution for the Riccati equation
(dy/dx) is given by (2.3) and this can be used to eliminate y from the equation
for dµ/dx. Since any particular solution of a Riccati equation leads to a solvable
equation, the equation has no singular solutions and every solution must be given
by (3.1). That is, it must be representable in terms of the invariant curves (3.2).
The resulting equation for dµ/dx is a linear, first order equation which also has no
singular solutions. Expressing Q, R in terms of ψ1, ψ2 in a manner similar to (3.3),
we find the solution can be given as

µ(x, y) =
P (x)W(ψ1(x), ψ2(x))

(P (x)ψ1(x)y + ψ′1(x))2
G

(
−P (x)ψ2(x)y + ψ′2(x)

P (x)ψ1(x)y + ψ′1(x)

)
,

where G = G(x) is an arbitrary and continuously differentiable function of one
variable and W is the Wronskian. For this general form, any integrating factor
must depend upon at least one of the invariant curves (3.2). Since all the examples
given for (3.9) involve only a single algebraic invariant curve, we can take G(x) = 1
or G(x) = 1/x2 in order to have an integrating factor with this form. For these
choices they reduce to those given by (3.5). A (possibly partially) reduced form
for an integrating factor for the system (3.9) is given by (3.14). In order that it be
of Darboux type, the invariant curve must be reducible to an algebraic expression.
The same type of result is true for the system (2.6).

Theorem 3.1. The systems (2.6) and (3.9) have a Liouvillian first integral if and
only if they have an algebraic invariant curve.

This result is almost certainly true for any rational Riccati system, but to es-
tablish it would take us beyond the scope of the present work. Now, we formalize
the results for the two Riccati systems considered in this section. While we have
restricted the discussion to these systems, the concepts would seem extendable to
more general systems such as those with rational coefficient functions. Furthermore,
although the primary emphasis in this work is with real–valued systems, there would
seem to be nothing in the preceding discussion which would indicate that the results
would not be valid for complex systems as well.
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Theorem 3.2. Let (3.9)

dx

dt
= 1,

dy

dt
= P (x)y2 +Q(x)y +R(x)

and (2.6)

dx

dt
= P (x),

dy

dt
= P (x)y2 +Q(x)y +R(x),

where P, Q, R are polynomials with P (x) 6= 0 be Riccati systems and let (3.10)

P (x)
d2y

dx2
− (P (x)Q(x) + P ′(x))

dy

dx
+ P 2(x)R(x)y = 0

and (2.2)

P (x)
d2y

dx2
−Q(x)

dy

dx
+R(x)y = 0

be the respective linear, second order differential equations obtained from the system-
s. Assume the latter two equations are solvable. If ψ1, ψ2 are linearly independent
solutions of these equations, then the following statements hold for the Riccati sys-
tems. For (3.9) set F(x) = G(x) = P (x) and for (2.6) set F(x) = G(x) = 1 in the
pertinent results.

1. The systems have two invariant curves given by (3.2). A necessary and sufficient
condition for one or both of these curves to be algebraic or be reducible to an algebraic
form is that ψ1, ψ2 be Liouvillian.

2. The unique cofactor for these curves is λ(x, y) = P (x)y+Q(x). They are specific
to the form of the invariant curves (3.2). In the case of (3.9) the solutions ψ1, ψ2

must be such that their derivatives have a factor of P (x). In the case of (2.6), no
non–constant common factor should be removed from the form of (3.2), and in the
case of (3.9), only the common factor P (x) should be removed.

3. The Riccati differential equations derived from the systems have integrating fac-
tors given by one of the forms (3.5).

4. The systems have no polynomial first integrals.

4. Aspects of the Abel differential equation

The transformations considered in the following section rely heavily on certain prop-
erties of Abel differential equations, so we will briefly review some of the pertinent
ones. An Abel equation of the first kind has the form

dy

dx
= f3(x)y3 + f2(x)y2 + f1(x)y + f0(x) (4.1)

and an Abel equation of the second kind has the form

dy

dx
=
f3(x)y3 + f2(x)y2 + f1(x)y + f0(x)

g1(x)y + g0(x)
(4.2)
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where the coefficient functions are assumed to be suitably differentiable functions
of x. We assume that the forms (4.1) and (4.2) are actual Abel equations and not
some degenerate form (e.g., f3(x) = 0 in (4.1)). The form (4.2) can always be
transformed to an Abel equation of the first kind by the variable change

y(x) =
1

g1(x)u(x)
− g0(x)

g1(x)
. (4.3)

For a general Abel equation of the first kind, it is possible to define recursively
an infinite sequence of relative invariants by [6]

s3(x) = f0(x)f2
3 (x) +

2

27
f3

2 (x) +
1

3
(f3(x)f ′2(x)− f2(x)f ′3(x)− f1(x)f2(x)f3(x))

(4.4)
and

s2k+1(x) = f3(x)s′2k−1(x)+(2k−1)

(
1

3
f2

2 (x)− f ′3(x)− f1(x)f3(x)

)
s2k−1(x) (4.5)

for k ≥ 2. The invariants of the second kind form (4.2) are defined as the invariants
of the corresponding first kind form (4.1). From (4.4) and (4.5), a sequence of
absolute invariants can be formed. The first of these is given by

I1(x) =
s3

5(x)

s5
3(x)

. (4.6)

Two Abel equations of the first kind are said to belong to the same equivalence
class (see [6]), if there exists a transformation of the form

x = F (t),

y(x) = P1(t)u(t) +Q1(t)
(4.7)

such that F ′(t)P1(t) 6= 0 which transforms one of the equations into the other.
The existence of the function F is the necessary and sufficient condition (see [6]
and references therein) for the transformation (4.7) to exist. Once it is known, the
determination of P1, Q1 is straightforward. Hence, if an equation belonging to a
particular class is solvable, then every equation in the class can be solved. Suppose
two Abel equations (4.1) having independent variables x and t respectively belong
to the same equivalence class. Let I1(x) and J1(t) be the first absolute invariants
of the two equations. Then, it follows that

Ĩ1(t) = I1(x)|x=F (t) = J1(t).

Although the general process [6] for determining F is somewhat more involved
(particularly when parameters are present), for our purposes, it is sufficient to obtain
an expression for it simply by factoring the difference I1(x) − J1(t). Observe that
this technique can only be used with equations whose invariants are non–constant.

The general Abel equation of the second kind

dy

dx
=

(a3x+ b3)y3 + (a2x+ b2)y2 + (a1x+ b1)y + a0x+ b0
(c3x3 + c2x2 + c1x+ c0)y + d3x3 + d2x2 + d1x+ d0

(4.8)

is a sixteen parameter equation which has the property that if we interchange the
roles of x and y we obtain a new Abel equation having a similar form, but which
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(usually) defines a different equivalence class. In the terminology of [7], it is of type
AIA (Abel, Inverse–Abel). Obviously, if one of these equations is solvable, so is the
other. However, while this is true, it is not necessarily so in CAS such as Maple,
because both of these independent cases must be coded separately. The AIA class
is a useful way of determining new, solvable classes of Abel equations from existing
ones and in Section 6 we shall give an example of this. Currently, any solvable
equivalence class of Abel equations is known to have a representative which has
AIA form and this is believed to be true in general.

The structure inherent in the Abel equation is a useful tool for developing the
transformations which will bring one form into another equivalent form. There is
also a correspondence between certain Abel and Riccati equations that we can use
to facilitate this process. The Abel equation of the second kind

dy

dx
=

a3y
3 + a2y

2 + a1y + a0

(b2x2 + b1x+ b0)y + c2x2 + c1x+ c0
(4.9)

where a3, a2, . . . , c0 are parameters is said to be of type AIR (see [7]) which stands
for Abel–Inverse Riccati. It is so named because it becomes a Riccati differential
equation when the roles of x and y are reversed. This form is responsible for
the appearance of special functions in the solutions of certain Abel equations. In
order for (2.4) to generate this type of equation, the degrees of the polynomials
P, Q, R cannot exceed one. This clearly limits the types of functions that can satisfy
both the Abel and Riccati forms. However, there are some possibilities. The Airy
functions which are combinations of Bessel functions of orders ±1/3 are solutions
of the equation y′′−xy = 0 and do satisfy this condition. Other possibilities would
include the Hermite equation, the Laguerre equation, the confluent hypergeometric
equation and certain Bessel type equations. AIR is a distinct subclass of AIA.

In [5], equation (21), Cheb–Terrab considers the AIR equation

dη

dξ
=

1

(ξ2 + s1ξ + (s2
1 − 4)/4)η + 2τξ − 2σ + s1τ

(4.10)

where s1, τ, σ are parameters as one which occurs in the solution of a Heun type e-
quation. The parameter s1 can be removed from (4.10) by means of a rather lengthy
variable transformation (see [5], equation (28)). One of the author’s interests is to
separate out the Liouvillian solutions from the non–Liouvillian forms of the Heun
functions obtained from the corresponding linear, second order differential equation.
This is done by the calculation of symmetries and results in the general condition
σ2 = τ2 for the existence of a Liouvillian solution. In this case, we can do this
much more directly, if we assume that condition (3.8) holds. Transforming (4.10)
to a Riccati eqution, we obtain the polynomial form

dy

dx
= xy2 + (s1x+ 2τ)y +

1

4
(s2

1 − 4)x− 2σ + s1τ.

Applying (3.8) to the coefficient functions of this equation, we obtain the relations
σ = ±τ, s1 = 2(A± 1) where corresponding signs are taken. For these the Riccati
equation has the form

dy

dx
= (y +A)((y +A)x± 2x+ 2τ)
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and letting y → y −A in this produces the corresponding Bernoulli equation. This
equation is independent of A (or, equivalently, s1 in (4.10)) and the original basic
condition σ2 = τ2 is recovered. The Liouvillian forms of the other Heun equations
discussed there can be obtained in a similar manner.

5. Reduction of a cubic system and a homogeneous
system to Riccati form

In [19], the author gave the system

dx

dt
= −y −Ax2 − xy −Ax3,

dy

dt
= x+ x2 + (2A− 1)xy − 2

3
y2 + 2A(1− 5A)x3 +

1

3
(2A− 1)x2y

from the work of Cherkas and Romanovski [8], where A is an arbitrary parameter.
The form (1.4) for this system which is of Abel type does not seem to be generally
integrable. However, for the specific values A = 0, 1/4 it is solvable in terms of
Airy functions. For these values, the resulting equations are

dy

dx
= −

x+ x2 − xy − 2
3y

2 − 1
3x

2y

(x+ 1)y
(5.1)

and
dy

dx
= −4

x+ x2 − 1
2xy −

2
3y

2 − 1
8x

3 − 1
6x

2y

(x+ 1)(4y + x2)
(5.2)

respectively. We will obtain the complete mapping of (5.1) to the Airy form of the
Riccati equation (2.4). At the end of the section, we will present two, more general
cubic systems of which (5.1) and (5.2) are particular members.

Setting P (x) = 1, Q(x) = 0, R(x) = −x in (2.4) from the Airy differential
equation y′′ − xy = 0, we obtain the Riccati equation which can be written as

du

dt
= u2 − t. (5.3)

This equation belongs to AIR (4.9), so its inverse is of Abel type. Converting it to
an Abel equation and transforming that to a first kind form using (4.3) gives

du

dt
= u3 − 2tu2 (5.4)

where, for now, we have retained t and u as the variables. Also converting (5.1) to
first kind form using (4.3), we have

dy

dx
= 9x(x+ 1)2y3 − x(x+ 3)y2 − 5

3

1

x+ 1
y (5.5)

where we continue to use x and y as the variables. Both of the equations (5.4) and
(5.5) belong to the same equivalence class, so there exists a transformation (4.7)
which will convert one of the equations into the other. In this case, we will have
Q1(t) = 0 since the function f0 is absent in each equation and this fact will allow
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for a significant simplification in the calculations. As we observed, the form for F
can be obtained by considering the first absolute invariants. Using (4.6), this is
given by

I1(t) = 11664
t6(8t3 + 15)3

(8t3 + 9)5
. (5.6)

for (5.4) and for (5.5) by

J1(x) =
729

4

(x+ 3)6(x3 + 9x2 + 72x+ 72)3

(x3 + 9x2 + 54x+ 54)5
.

Factoring the difference I1(t)− J1(x), we obtain the expression

24(x+ 1)t3 − (x+ 3)3 = 0.

Solving this for t will provide the form of F necessary to convert (5.4) to (5.5) and
solving the cubic in x will give the form to carry out the conversion in the opposite
order. Clearly, a solution for t is much the simpler of the two choices. We obtain

t = F (x) =
3
√

9

6

x+ 3

(x+ 1)1/3
.

With this, we can now easily determine P1 and complete the transformation of (5.4)
to (5.5). We do not give the details of all the intermediate steps, but simply give
the complete transformation of (5.3) to (5.1). It is the composition of 4 separate
transformations, and has the form

t =
3
√

3

12

(x+ 3)2

(x+ 1)2/3
−

3
√

3

3

1

(x+ 1)2/3
y(x),

u(t) =
3
√

9

6

x+ 3

(x+ 1)1/3
.

Converting (5.1) to (5.3), we can invert this to give

x = 2
3
√

3αu(t)− 3,

y(x) =
3
√

9α2(u2(t)− t),

where α is a root of the cubic equation X3 − 2 3
√

3u(t)X + 2 = 0. Both of these
transformations can be easily extended to include the transformation to or from
the Airy form of the system (2.6). In this case, we would have the rather unusual
situation of the complete transformation of a homogeneous system of centre–focus
of type to a cubic system of the same type.

Within the framework of Abel differential equations (5.1) and (5.2) represent
the same equation, so there exists a transformation which will convert one of the
equations to the other. Since they have the same first absolute invariant I1, there
is no need for a change in the independent variable, and we find that the simple
form y(x) = u(x) + x2/4 will convert (5.1) to (5.2). Now, we present the two
systems mentioned earlier, both of which are solvable in terms of Airy functions.
We do not give the development of these systems, although some of the ideas will be
described in the next section. Equation (5.1) is a member of the first system with
a1 = 1, b1 = −1 and (5.2) is a member of the second system with a2 = 1, b2 = −1/2.
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Theorem 5.1. Each of the following systems is solvable in terms of Airy functions
and defines a centre at the critical point at the origin.

dx

dt
= −y − a1xy,

dy

dt
= x+ a1x

2 + b1xy −
2

3
a1y

2 +
1

3
a1b1x

2y

or

dx

dt
= −y +

1

2
b2x

2 − a2xy +
1

2
a2b2x

3,

dy

dt
= x+ a2x

2 + b2xy −
2

3
a2y

2 − 1

2
b22x

3 +
1

3
a2b2x

2y,

where a1, b1, a2, b2 are arbitrary, non–zero parameters.

Since both systems produce Abel differential equations which can be reduced
to the form (5.3) in a manner similar to the one that has just been described,
they belong to the same equivalence class. Hence, as with the case of (5.1) and
(5.2), there exists a transformation which will convert one of the equations to the
other. Factoring the first absolute invariants as was done previously, we obtain the
expression [

4a2
1a

2
2b

2
2(a2t+ 9)t2 + 27(4a2

1b
2
2 − a2

2b
2
1)(a2t+ 1)

]
(a1x+ 1)

− a2
1a

2
2b

2
1x

2(a1x+ 9)(a2t+ 1) = 0.

Solving this for x will give the form x = F (t) that will allow conversion of the form
(1.4) of the first system to that of the second system in which (x, y) is replaced by
(t, u).

Next, we give a reduction to a Bernoulli form for an integrable homogeneous
system (1.2). In [17], equation (25), the author gave the system

p(x, y) = (n− 2)xn−2y2 − xn,
q(x, y) = −n(n− 2)xn−3y3 + (3n− 2)xn−1y

(5.7)

having integrating factor

µ(x, y) = (1 + 2(n− 1)xn−2y + 2(n− 1)x2n−2)−(2n−1)/(n−1) (5.8)

where n ≥ 2 is an integer. It is a particular case of the general systems given in [18].
For the purpose of simplifying the transformation equations we have interchanged
the roles of x and y in the result given in [17]. The equation (1.4) for the system
(5.7) is first converted to an Abel differential equation [17], and then transformed
to its final form. Through this sequence of transformations, (5.7) is converted to
the Bernoulli form

dy

dx
= y2 − (n− 1)x− n+ 3

(x+ 2)(nx+ 5n− 5)
y. (5.9)

This equation has exactly the form of (3.15) with P (x) = (x + 2)(nx + 5n − 5)
and Q(x) = (n − 1)x − n + 3. From the integrating factor (5.8) of the original
system (5.7), we see that the system has the algebraic invariant curve 1 + 2(n −
1)xn−2y + 2(n − 1)x2n−2 = 0. Transforming this in accordance with each of the
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transformations used to produce (5.9), we obtain, after simplification, the expression
(nx+ 5n− x− 7)(nx+ 5n− 5)y+ (n− 1)(x+ 2) = 0. This is exactly the algebraic
invariant curve Fy + F ′ = 0 of (3.15) where F is given by (3.16). Although we
do not present them, there are other integrable homogeneous systems found in
the literature that can be reduced in a similar fashion. The non–symmetric and
non–integrable systems given in [16] can also be reduced to symmetric polynomial
systems, although these are not of Riccati type.

At present, the most generally solvable class of Abel differential equations other
than Bernoulli (s3(x) = 0) and constant invariant equations (I ′1(x) = 0) is the so–
called AIR three parameter case. In this, the Abel equation can be reduced to an
AIR equation which depends upon at most three independent parameters. Hence,
if the equation depends upon four or more parameters and that number cannot
be reduced by redefining them or by variable transformations (cf. (4.10)), then it
is generally not solvable. It may be possible to impose certain restrictions on the
parameters which would reduce the equation to a simpler, integrable case. Since all
homogeneous systems can be transformed to an Abel equation [17], this condition
will limit the types of systems which would be integrable. For example, symmetric
and homogeneous systems of degree greater than three are generally not solvable
because they would depend upon n+1 parameters. Similarly, the systems described
in [16] depend upon [n/2+1] parameters where [. . . ] is the greatest integer function.

6. Partial proof of Theorem 5.1

In Theorem 5.1, we gave two cubic systems that are solvable in terms of Airy
functions. For this to be true, there must exist transformations which will convert
a cubic system of Abel type to an Airy type Abel equation such as (5.4). The most
general Abel type cubic system of centre–focus type can be written as

dx

dt
= −y − a0x

2 − a1xy − a2x
3 − a3x

2y,

dy

dt
= x+ b0x

2 + b1xy + b2y
2 + b3x

3 + b4x
2y + b5xy

2 + b6y
3.

(6.1)

To match this with (5.4), we must first convert the form (1.4) of (6.1) to a first kind
form using (4.3). This results in an Abel equation (4.1) in which the coefficient
functions are rational. In this, we take b6 = 0, since this condition is required,
and it also greatly simplifies the transformed equation. For this choice of b6, the
function f0 in (4.1) is zero. Therefore, the lowest power of u corresponds to the
function f1 which is given by

f1(x) =
(b5 − 2a3)x+ b2 − a1

a3x2 + a1x+ 1
. (6.2)

The functions f2, f3 are much less simple so we don’t give them. We need to show
that we can transform (5.4) in such a manner that we can match the form of the
coefficient functions f1, f2, f3 with those of the transformed equation. From (5.6),
we see that the first absolute invariant I1 of (5.4) is a function of t3. From this, we
obtain the variable transformation t = ξ1/3, u(t) = 3ξ1/3η(ξ), which converts (5.4)
to the equation

dη

dξ
= 3η3 − 2η2 − 1

3ξ
η =

9ξη3 − 6ξη2 − η
3ξ

. (6.3)
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This equation is of interest for a couple of reasons. Further, transforming it by
(4.7) with ξ = F (x), η(ξ) = P1(x)u(x), (Q1(x) = 0), we obtain a form of the most
general Abel equation of the first kind that can be obtained from (5.4). Carrying
this out, we get

du

dx
= 3F ′(x)P 2

1 (x)u3 − 2F ′(x)P1(x)u2 −
(

1

3

F ′(x)

F (x)
+
P ′1(x)

P1(x)

)
u. (6.4)

If it is possible to match this with the transformed form of the cubic system, there
must exist functions F, P1 for which this is true. Comparing (6.4) with the rational
coefficient functions f1, f2, f3 obtained by transforming (6.1), we can see that F, P1,
if they exist, must be rational. This explains one of the reasons why it is preferable
to use (6.3) rather than (5.4). Since (3F ′P 2

1 )/(−2F ′P1) = −(3P1)/2 = f3/f2, P1 is
rational, and for similar reasons, so is F ′. Then, from the expression for f1, we get
that F is also rational. From (6.2) and (6.4), we have

F ′(x)

F (x)
+ 3

P ′1(x)

P1(x)
= 3

(2a3 − b5)x+ a1 − b2
a3x2 + a1x+ 1

,

which gives upon integration

ln(F (x)P 3
1 (x)) = 3

∫
(2a3 − b5)x+ a1 − b2

a3x2 + a1x+ 1
dx+ lnA,

where A is a constant. Since the integral must produce the logarithm of a rational
function, this places some restrictions on the coefficients which appear. We are
forced to take a3 = b5 = 0, which then means that 3(a1−b2)/a1 must be an integer.
The precise value for this and the value of A are determined later. The remainder
of the matching process for f2, f3 is both lengthy and uninformative. Therefore,
we do not give it. Completing this and redefining the parameters give the results
stated in Theorem 5.1.

The second reason why equation (6.3) is useful is that it has AIA form (4.8). It
is solved (in Maple), but not its inverse equation

dy

dx
=

3y

3(3x− 2)x2y − x
.

The AIA nature of this equation is obvious, but if we obtained the equation in the
first kind form (with minor changes to (4.3))

dy

dx
= −3xy3 +

15x+ 8

3x+ 2
y2 − 9x+ 4

x(3x+ 2)
y,

and this relationship is not evident. The last equation might serve as a representa-
tive for this solvable class of Abel equations.
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[2] J. Chavarriga and J. Giné, Integrability of a linear center perturbed by a fifth
degree homogeneous polynomial, Publicacions Matemàtiques, 1997, 41, 335–
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