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Some Properties of Solutions to the Novikov
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Abstract In this paper, we investigate the Novikov equation with weak dissi-
pation terms. First, we give the local well-posedness and the blow-up scenario.
Then, we discuss the global existence of the solutions under certain conditions.
After that, on condition that the compactly supported initial data keeps its
sign, we prove the infinite propagation speed of our solutions, and establish
the large time behavior. Finally, we also elaborate the persistence property of
our solutions in weighted Sobolev space.

Keywords Blow-up scenario, Global existence, Large time behavior, Persis-
tence property.

MSC(2010) 34G20, 35A01.

1. Introduction

In this paper, we discuss the following Novikov equation with weak dissipation
terms:

yt + yxu
2 + byuux + λy = 0, t > 0, x ∈ R. (1.1)

When λ = 0, it is a special case of the Holm-Staley b-family equations:

yt + yxu
k + byuk−1ux = 0, t > 0, x ∈ R, (1.2)

where k > 1, λ ∈ R, u(x, t) denote the velocity field, y(x, t) = u− uxx.
Holm and Staley [28] got the exchange of stability in the dynamics of solitary

wave solutions under changes in the nonlinear balance, which was in a 1+1 evo-
lutionary partial differential equation both related to shallow water waves and to
turbulence.

When k = 1 and b = 2, equation (1.2) reduces to the famous Camassa-Holm
equation [4], while, if k = 1 and b = 3, it reduces to the Degasperis-Procesi equation.
These equations arise at various levels of approximation in shallow water theory, and
possess a physics background with shallow water propagation, the bi-Hamiltonian
structure, Lax pair and explicit solutions including classical soliton, cuspon and
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peakon solutions. Moreover, these two types of equations have been also extensively
studied in [5, 10,11,13,18,19,22,26,27,39,42,53].

We know that Camassa-Holm equation is completely integrable. Definitely, the
Camassa-Holm equation has many useful properties, for example, conservation rate,
blow-up scenario Global existence and large time behavior for the support of the
momentum density [30,40]. When it comes to the physical relevance of the Camassa-
Holm and Degasperis-Procesi equation, we suggest the readers reading the book
written by Constantin and Lannes [14]. In the Hs, s > 3

2 space, the solution of the
local well-posedness was proved in [11,36]. In [11,12,32,36,41], the blow up scenario
was widely used. For the Camassa-Holm, the solution of Global existence and local
solution was proved in [2, 3, 33]. They also proved orbital stability of the peak
solution in [15], In [27], Himonas et al., gave the persistence and unique continuity
of solution of Cassama-Holm equation. They discussed the large time behavior for
the support of momentum density of the Camassa-Holm equation. They proved the
limit of the support of momentum density as t goes to +∞ in some sense. Moreover,
the Degasperis-Procesi equation has been widely studied in [8, 9, 17,31,37,44,53].

When k = 1, for general b, the equation (1.2) was studied in [21, 54], which has
established the local well-posedness and sufficient conditions on the initial data to
guarantee the global existence of strong solutions in Hs, s > 3

2 . Blow-up scenario for
equation (1.2) has been studied in [20,43,45,47,52], and some blow-up criteria was
established in [16,50]. Guan and Yin [24] studied the global existence and blow-up
phenomenon of the integrable two-component Camassa-Holm shallow water system.
Moreover, Liu and Yin [55] presented several conditions for the existence of global
solutions. The large-time behavior of the supporting the momentum density for the
Camassa-Holm equation was studied in [33]. [49] proposed a new method to show
the persistence properties. Guo et al., [25] studied the large time behavior and
persistence properties of solutions to the Camassa-Holm-type equation with higher-
order nonlinearities. Here, we would like mention some related work of equation
(1.2) in [7, 23,29,35,38,48,51,57].

In 2011, Zhu and Jiang [59] discussed the case of k = 1 in (1.2):

yt + yxu+ byux + λy = 0, t > 0, x ∈ R, (1.3)

and got a new criterion on the blow-up phenomenon of the solution, the glob-
al existence and the persistence property of the solution. Zhang [56] considered
the Camassa-Holm equation with weak dissipation terms. Niu and Zhang [45] es-
tablished the local well-posedness of the inhomogeneous weak dissipation equation,
which included both the weakly dissipative Camassa-Holm equation and the weakly
dissipative Degasperis-Procesi equation as its special case. Zhou et al., [58] discussed
the following more general equation:

yt + yxu
k + byuk−1ux + λy = 0, t > 0, x ∈ R. (1.4)

For equation (1.4), Zhou et al., [6, 34, 58] listed some existing conditions of global
solution and some analytical properties of solution. When k = 2, the equation (1.4)
would be the equation (1.1). The equation (1.1) could be rewritten as:

ut + u2ux +G ∗z(u) + λu = 0, (1.5)

where

z(u) = (6− b)uuxuxx + 2u3x + bu2ux, (1.6)



222 S. Lin, Y. Cai, J. Luo, Z. Xuan & Y. Zhao

where y = (1− ∂2x)u is usually called the potential of fluid.
We organize this paper as follows: First, we give the local well-posedness and

the blow-up scenario of the solution in Section 2. Next, in Section 3, we discuss the
global existence under certain conditions. Then, we prove the infinite propagation
speed and establish the large time behavior properties of our solution in Section 4
and Section 5. Finally, we elaborate the persistence property in Section 6.

2. Local well-posedness and blow-up scenario

In this section, we give the local well-posedness of the equation (1.1) first. Then,
we show the blow-up scenario for the solution to (1.1).

Lemma 2.1. Give the u0 ∈ Hs(R) with s > 3
2 . Then, there exist a T > 0 and a

unique solution u(x, t) to (1.1) such that

u(x, t) ∈ C([0, T );Hs(R)) ∩ C1([0, T );H1/2(R)). (2.1)

Moreover, the map u0(x) ∈ Hs → u ∈ C([0, T );Hs(R)) is continuous but not
uniformly continuous.

To prove this result, we will apply Kato’s theorem [46], with X = H1/2, Y = Hs,
S = Λs−1/2, A(u) = u2∂x, f(u) = (b − 6)uuxuxx − 2u3x − bu2ux and W = {ϕ ∈
Hs|‖ϕ‖Hs 6 R}.

Moreover, we obtain that u(x, t) ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)), be-
cause ut ∈ Hs−1.

Theorem 2.1. Assume that u0 ∈ H2(R), and let T be the maximal existence time
of the solution u(x, t) to the equation (1.1) with the initial data u0(x).

(1) If b > 1, then the corresponding solution of the equation (1.1) blows up in
finite time, if and only if

lim
t→T

∫ t

0

sup
x∈R

(uux)ds = −∞. (2.2)

(2) If b < 1, then the corresponding solution of the equation (1.1) blows up in
finite time, if and only if

lim
t→T

∫ t

0

inf
x∈R

(uux)ds = +∞. (2.3)

Proof. (1) If b > 1, by applying y on (1.1), we have

yyt + yyxu
2 + by2uux + λy2 = 0

Integrating it with respect to x in R, we have∫
R
yytdx = −

∫
R
yyxu

2ydx− b
∫
R
y2uuxdx− λ

∫
R
y2dx,

which is

1

2

d

dt
‖y‖2L2 =

∫
R

1

2
(y2)tdx
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= −
∫
R

1

2
u2(y2)xdx− b

∫
R
y2uuxdx− λ

∫
R
y2dx

= −1

2
u2y2

∣∣∣∣
R

+

∫
R
y2uuxdx− b

∫
R
y2uuxdx− λ

∫
R
y2dx

= (1− b)
∫
R
y2uuxdx− λ ‖y‖2L2 ,

implying

d

dt
‖y‖2L2 + 2λ ‖y‖2L2 = 2(1− b)

∫
R
y2uuxdx.

Letting M(t) = sup
x∈R

(uux), we have

d

dt
‖y‖2L2 > [2(1− b)M(t)− 2λ] ‖y‖2L2 .

Then, we obtain

‖y‖2L2 > ‖y0‖2L2 e
2(1−b)

∫ t
0
(M(s)− λ

1−b )ds.

For any finite time T , when t ∈ [0, T ], if and only if

lim
t→T

∫ t

0

sup
x∈R

(uux)ds = −∞.

Then, the corresponding solution of the equation (1.1) blows up in finite time.
(2) If b < 1, let m(t) = inf

x∈R
(uux), by using similar method that is used in case

(1), we have

d

dt
‖y‖2L2 > [2(1− b)m(t)− 2λ] ‖y‖2L2 .

It follows that

‖y‖2L2 > ‖y0‖2L2 e
2(1−b)

∫ t
0
(m(s)− λ

1−b )ds.

For any finite time T , when t ∈ [0, T ], if and only if

lim
t→T

∫ t

0

inf
x∈R

(uux)ds = +∞.

Then, the corresponding solution of the equation (1.1) blows up in finite time.

3. Global existence

In this section, we discuss some global existence. Now, we introduce the particle
trajectory. Let u(x, t) be a strong solution of (1.1) obtained in the local well-
posedness theorem.
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Assume that Λ = (1− ∂2x)
1
2 , by using the Green function G = 1

2e
−|x|, we have

u(x, t) = Λ−2y(x, t) = G ∗ y(x, t) =
1

2

∫
R
e−|x−ξ|y(ξ, t)dξ,

which is 
u(x, t) =

1

2
e−x

∫ x

−∞
eξy(ξ, t)dξ +

1

2
ex
∫ +∞

x

e−ξy(ξ, t)dξ,

ux(x, t) = −1

2
e−x

∫ x

−∞
eξy(ξ, t)dξ +

1

2
ex
∫ +∞

x

e−ξy(ξ, t)dξ.

(3.1)

It follows 
u(x, t) + ux(x, t) = ex

∫ +∞

x

e−ξy(ξ, t)dξ,

u(x, t)− ux(x, t) = e−x
∫ x

−∞
eξy(ξ, t)dξ.

(3.2)

Let q(x, t) be the solution of the following initial value problem
dq(x, t)

dt
= u2(q(x, t), t), t ∈ [0, T ], x ∈ R.

q(x, 0) = x, x ∈ R.
(3.3)

Taking derivative with respect to x, we have

dqt(x, t)

dx
= 2uux(q, t)qx.

Then, it follows that
qx(x, t) = exp {

∫ t

0

2uux(q, s)ds}, t ∈ [0, T ], x ∈ R.

qx(x, 0) = 1, x ∈ R.

Therefore, q(x, t) : R → R is an increasing diffeomorphism of the line before blow-
up. From (1.1), by direct calculation, we have

d

dt
(y(q(x, t), t)q

b
2
x ) = [yt(q(x, t), t) + u2(q(x, t), t)yx(q(x, t), t)

+ buy(q(x, t), t)ux(q(x, t), t)]q
b
2
x

= −λy(q(x, t), t)q
b
2
x .

Then, we can prove the following pointwise conservation law

y(q(x, t), t)q
b
2
x (x, t) = y0(x)e−λt. (3.4)

From (3.4), we can easily obtain

e
2λt
b

∫
R
y

2
b dx =

∫
R
y

2
b
0 dx. (3.5)
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Theorem 3.1. Assume that u0 ∈ H2(R), if b = 1 and λ > 0, the solution of
equation (1.1) exists globally in time.

Proof. Applying y on (1.1) and taking integral with respect to x, we have

d

dt
‖y‖2L2 + 2λ ‖y‖2L2 = 2(1− b)

∫
R
y2uuxdx.

If b = 1, we obtain

d

dt
(e2λt ‖y‖2L2) = e2λt(

d

dt
‖y‖2L2 + 2λ ‖y‖2L2) = 0.

When λ > 0, we have

‖y‖2L2 = e−2λt ‖y0‖2L2 6 ‖y0‖2L2 .

It follows that

‖u‖2L2 6 ‖y‖2L2 6 ‖y0‖2L2 6 C ‖u0‖2L2 .

Then, by using theorem 2.1, we prove the global existence of the solution for the
equation (1.1).

Theorem 3.2. Suppose that u0 ∈ H2(R), y0 = (1 − ∂2x)u0 does not change sign,
then we have

(1) if b = 2 and λ > 0, the corresponding solution to (1.1) exists globally.
(2) if b < 2 and λ > 0, the corresponding solution to (1.1) exists globally.

Proof. (1) Taking integral both sides of the equation (1.1) to x variable, we have∫
R
ytdx = −

∫
R
yxu

2dx− b
∫
R
yuuxdx− λ

∫
R
ydx.

It follows that

d

dt
‖y‖L1 + λ ‖y‖L1 = (2− b)

∫
R
yuuxdx.

If b = 2, by applying eλt on the formula above, we obtain

d

dt
(eλt ‖y‖L1) = eλt(

d

dt
‖y‖L1 + λ ‖y‖L1) = 0.

When λ > 0, we get

‖y‖L1 = e−λt ‖y0‖L1 6 ‖y0‖L1 .

Assume that y0 > 0, by the blow-up scenario, it is sufficient that u and ux are
bounded for all t. By equation (3.1), we have

u(x, t) =
1

2
e−x

∫ x

−∞
eξy(ξ, t)dξ +

1

2
ex
∫ +∞

x

e−ξy(ξ, t)dξ

6
∫
R
y(ξ, t)dξ
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= e−λt
∫
R
y0(ξ, t)dξ

6
∫
R
y0(ξ, t)dξ

and 
ux 6

1

2
ex
∫ +∞

x

e−ξy(ξ, t)dξ 6
1

2

∫
R
y(ξ, t)dξ 6

1

2

∫
R
y0(ξ, t)dξ,

ux > −1

2
e−x

∫ x

−∞
eξy(ξ, t)dξ > −1

2

∫
R
y(ξ, t)dξ > −1

2

∫
R
y0(ξ, t)dξ.

Based on the calculation above, we have
0 6 u 6

∫
R
y0(ξ, t)dξ,

−1

2

∫
R
y0(ξ, t)dξ 6 ux 6

1

2

∫
R
y0(ξ, t)dξ.

Hence, the conclusion is established, when y0 6 0. By the similar method that
is applied above, we could also obtain the global existence result. Therefore, when
y0 = (1− ∂2x)u0 does not change sign, the solution of equation (1.1) exists globally.

(2) If b < 2 and λ > 0, by (3.5), assume that y0 > 0, we have

e−x
∫ x

−∞
eξy(ξ, t)dξ

6 e−x(

∫ x

−∞
y

2
b (ξ, t)dξ)

b
2 (

∫ x

−∞
e

2ξ
2−b dξ)

2−b
2

= e−λt(
2− b

2
)

2−b
2 (

∫ x

−∞
y

2
b
0 (ξ, t)dξ)

b
2

6 (
2− b

2
)

2−b
2 (

∫
R
y

2
b
0 (ξ, t)dξ)

b
2

and

ex
∫ +∞

x

e−ξy(ξ, t)dξ

6 ex(

∫ +∞

x

y
2
b (ξ, t)dξ)

b
2 (

∫ +∞

x

e
−2ξ
2−b dξ)

2−b
2

= e−λt(
2− b

2
)

2−b
2 (

∫ +∞

x

y
2
b
0 (ξ, t)dξ)

b
2

6 (
2− b

2
)

2−b
2 (

∫
R
y

2
b
0 (ξ, t)dξ)

b
2 .

By the blow-up scenario, it is sufficient that u and ux are bounded for all t.
Therefore, by equation (3.1), we have

u(x, t) =
1

2
e−x

∫ x

−∞
eξy(ξ, t)dξ +

1

2
ex
∫ +∞

x

e−ξy(ξ, t)dξ
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6 (
2− b

2
)

2−b
2 (

∫
R
y

2
b
0 (ξ, t)dξ)

b
2

and

ux(x, t) 6
1

2
ex
∫ +∞

x

e−ξy(ξ, t)dξ

6
1

2
(
2− b

2
)

2−b
2 (

∫
R
y

2
b
0 (ξ, t)dξ)

b
2 .

ux(x, t) > −1

2
e−x

∫ x

−∞
eξy(ξ, t)dξ

> −1

2
(
2− b

2
)

2−b
2 (

∫
R
y

2
b
0 (ξ, t)dξ)

b
2 .

Based on the calculation above, we have
0 6 u 6 (

2− b
2

)
2−b
2 (

∫
R
y

2
b
0 (ξ, t)dξ)

b
2 ,

−1

2
(
2− b

2
)

2−b
2 (

∫
R
y

2
b
0 (ξ, t)dξ)

b
2 6 ux 6

1

2
(
2− b

2
)

2−b
2 (

∫
R
y

2
b
0 (ξ, t)dξ)

b
2 .

Hence, the conclusion is established, when y0 6 0. By the similar method that is
used above, we also get the global existence result. Therefore, when y0 = (1−∂2x)u0
does not change sign, the soltion of equation (1.1) exists globally.

4. Infinite propagation speed

Set

E(t) =

∫
R
eξy(ξ, t)dξ, F (t) =

∫
R
e−ξy(ξ, t)dξ. (4.1)

Theorem 4.1. If b > 0, λ ∈ R, assume the initial value u0 6≡ 0 has a compact
supported set [a, c]. For t ∈ (0, T ], the solution u(x, t) corresponding to the (1.1)
has the following properties:

u(x, t) =


1

2
e−xE(t) , if x > q(c, t).

1

2
exF (t) , if x < q(a, t).

(4.2)

In addition, if b ∈ [0, 6] , we have
(1) when y0 > 0, eλtE(t) is a strictly increasing function, eλtF (t) is a strictly

decreasing function.
(2) when y0 6 0, eλtE(t) is a strictly decreasing function, eλtF (t) is a strictly

increasing function.

Remark 4.1. From the theorem above we know, even if the initial value u0 has
a compact supported set [a, c], for any t > 0, the solution u(x, t) does not have a
compact supported.
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Proof. From (3.4), we have

y(q(x, t), t) = 0, x < a or x > c.

Therefore, when x > q(c, t), we obtain

u(x, t) = G ∗ y(x, t)

=
1

2
e−x

∫ q(c,t)

q(a,t)

eξy(ξ, t)dξ

=
1

2
e−xE(t),

and when x < q(a, t), we have

u(x, t) = G ∗ y(x, t)

=
1

2
ex
∫ q(c,t)

q(a,t)

e−ξy(ξ, t)dξ

=
1

2
exF (t).

Now, we prove the monotonicity of eλtE(t) and eλtF (t).
(1) By (4.1), for E(t), taking derivative with respect to x variable, we have

dE(t)

dt
=

∫
R
eξyt(ξ, t)dξ.

From equation (1.1), we obtain

dE(t)

dt
= −

∫
R
eξ(u2yξ + buuξy)dξ − λ

∫
R
eξy(ξ, t)dξ

= −
∫
R
eξ(u2yξ + buuξy)dξ − λE(t).

Then, we have

d[eλtE(t)]

dt
= eλt[λE(t) +

dE(t)

dt
]

= −eλt
∫
R
eξ(u2yξ + buuξy)dξ.

Let

J1 = −
∫
R
eξ(u2yξ + buuξy)dξ

= −
∫
R
eξu2yξdξ − b

∫
R
eξyuuξdξ

= −eξu2y
∣∣∣∣
R

+

∫
R
yeξu2dξ + 2

∫
R
yeξuuξdξ − b

∫
R
eξyuuξdξ

= −eξu2y
∣∣∣∣
R

+

∫
R
yeξu2dξ + (2− b)

∫
R
eξuuξ(u− uξξ)dξ
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= −eξu2y
∣∣∣∣
R

+

∫
R
eξu3dξ −

∫
R
eξu2uξξdξ

+ (2− b)
∫
R
eξu2uξdξ − (2− b)

∫
R
eξuuξuξξdξ

= −eξu2y
∣∣∣∣
R
− eξu2uξ

∣∣∣∣
R
− 2− b

2
eξuu2ξ

∣∣∣∣
R

+
3− b

3
eξu3

∣∣∣∣
R

+
b

3

∫
R
eξu3dξ +

6− b
2

∫
R
eξuu2ξdξ +

2− b
2

∫
R
eξu3ξdξ

and

H1 = −eξu2y
∣∣∣∣
R
− eξu2uξ

∣∣∣∣
R
− 2− b

2
eξuu2ξ

∣∣∣∣
R

+
3− b

3
eξu3

∣∣∣∣
R

= −eξ(u2y + u2uξ +
2− b

2
uu2ξ −

3− b
3

u3)

∣∣∣∣
R

= −eξ( b
3
u3 +

2− b
2

uu2ξ)

∣∣∣∣
R

= −[ lim
ξ→+∞

eξ(
b

3
u3 +

2− b
2

uu2ξ)− lim
ξ→−∞

eξ(
b

3
u3 +

2− b
2

uu2ξ)]

= 0.

Then, we can obtain

d[eλtE(t)]

dt
= eλt(

b

3

∫
R
eξu3dξ +

6− b
2

∫
R
eξuu2ξdξ +

2− b
2

∫
R
eξu3ξdξ).

Since y0 6 0 with compact support in an internal [a, c], a direct consequence of
(3.1) and (3.2) implies that

u(x, t) 6 0, u(x, t) + ux(x, t) 6 0, u(x, t)− ux(x, t) 6 0. (4.3)

For all t ∈ [0, T ] and x ∈ R, it follows that

u3 + u3x = (u+ ux)(u2 − uux + u2x) = (u+ ux)[(u− 1

2
ux)2 +

3

4
u2x] 6 0 (4.4)

and

u3 − u3x = (u− ux)(u2 + uux + u2x) = (u− ux)[(u+
1

2
ux)2 +

3

4
u2x] 6 0. (4.5)

If 0 6 b 6 2, we have

d[eλtE(t)]

dt
= eλt(

b

3

∫
R
eξu3dξ +

6− b
2

∫
R
eξuu2ξdξ +

2− b
2

∫
R
eξu3ξdξ)

< eλt(m1

∫
R
eξ(u3 + u3ξ)dξ +m2

∫
R
eξu2ξ(u+ uξ)dξ)

< 0,

where m1,m2 > 0, and satisfy that m1 +m2 = 2−b
2 . If 2 < b 6 6, we have

d[eλtE(t)]

dt
= eλt(

b

3

∫
R
eξu3dξ +

6− b
2

∫
R
eξuu2ξdξ +

2− b
2

∫
R
eξu3ξdξ)
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= eλt(
b

3

∫
R
eξu3dξ +

6− b
2

∫
R
eξuu2ξdξ +

2− b
2

∫
R
eξu3ξdξ)

< eλt(m3

∫
R
eξ(u3 − u3ξ)dξ +m4

∫
R
eξu2ξ(u− uξ)dξ)

< 0,

where m3,m4 > 0, and satisfy that m1 + m2 = b−2
2 . Then, for any x ∈ R, all

t ∈ [0, T ] and b ∈ [0, 6], we have

d[eλtE(t)]

dt
< 0,

which is the eλtE(t) is a strictly decreasing function, when y0 6 0 and b ∈ [0, 6].
Since y0 > 0 with compact support in an internal [a, c], a direct consequence of

(3.1) and (3.2) implies that

u(x, t) > 0, u(x, t) + ux(x, t) > 0, u(x, t)− ux(x, t) > 0. (4.6)

For all t ∈ [0, T ] and x ∈ R, it follows that

u3 + u3x = (u+ ux)[(u− 1

2
ux)2 +

3

4
u2x] > 0 (4.7)

and

u3 − u3x = (u− ux)[(u+
1

2
ux)2 +

3

4
u2x] > 0. (4.8)

If 0 6 b 6 2, we have

d[eλtE(t)]

dt
> eλt(m̃1

∫
R
eξ(u3 + u3ξ)dξ + m̃2

∫
R
eξu2ξ(u+ uξ)dξ)

> 0,

where m̃1, m̃2 > 0, satisfying that m̃1 + m̃2 = 2−b
2 . If 2 < b 6 6, we have

d[eλtE(t)]

dt
> eλt(m̃3

∫
R
eξ(u3 − u3ξ)dξ + m̃4

∫
R
eξu2ξ(u− uξ)dξ)

> 0,

where m̃3, m̃4 > 0, satisfy that m̃3 + m̃4 = b−2
2 .

Then, for any x ∈ R, all t ∈ [0, T ] and b ∈ [0, 6], we have

d[eλtE(t)]

dt
> 0.

Therefore, the conclusion is right, eλtE(t) is a strictly increasing function, when
y0 6 0 and b ∈ [0, 6].

(2) For F (t), similar as the method of case (1), we have

dF (t)

dt
=

∫
R
e−ξyt(ξ, t)dξ
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= −
∫
R
e−ξ(u2yξ + buuξy)dξ − λF (t)

and

d[eλtF (t)]

dt
= −eλt

∫
R
e−ξ(u2yξ + buuξy)dξ = −e−λtJ2.

For J2, we have

J2 = −
∫
R
e−ξ(u2yξ + buuξy)dξ

= −
∫
R
e−ξu2yξdξ − b

∫
R
e−ξyuuξdξ

= −e−ξu2y
∣∣∣∣
R
−
∫
R
ye−ξu2dξ + 2

∫
R
ye−ξuuξdξ − b

∫
R
e−ξyuuξdξ

= −e−ξu2y
∣∣∣∣
R

+

∫
R
ye−ξu2dξ + (2− b)

∫
R
e−ξuuξ(u− uξξ)dξ

= −e−ξu2y
∣∣∣∣
R
−
∫
R
e−ξu3dξ +

∫
R
e−ξu2uξξdξ

+ (2− b)
∫
R
e−ξu2uξdξ − (2− b)

∫
R
e−ξuuξuξξdξ

= −e−ξu2y
∣∣∣∣
R

+ e−ξu2uξ

∣∣∣∣
R
− 2− b

2
e−ξuu2ξ

∣∣∣∣
R

+
3− b

3
e−ξu3

∣∣∣∣
R

− b

3

∫
R
e−ξu3dξ − 6− b

2

∫
R
e−ξuu2ξdξ −

2− b
2

∫
R
e−ξu3ξdξ

= − b
3

∫
R
e−ξu3dξ − 6− b

2

∫
R
e−ξuu2ξdξ −

2− b
2

∫
R
e−ξu3ξdξ.

Considering y0 6 0, from (4.3), (4.4) and (4.5), if 0 6 b 6 2, we have

d[eλtF (t)]

dt
> eλt(n1

∫
R
e−ξ(u3ξ − u3)dξ + n2

∫
R
e−ξu2ξ(uξ − u)dξ)

> 0,

where n1, n2 > 0 and n1 + n2 = 2−b
2 . If 2 < b 6 6, we obtain

d[eλtF (t)]

dt
> −eλt(n3

∫
R
e−ξ(u3 + u3ξ)dξ + n4

∫
R
e−ξu2ξ(u+ uξ)dξ)

> 0,

where n3, n4 > 0 and n3 + n4 = b−2
2 . Therefore, eλtF (t) is a strictly increasing

function, when y0 6 0 and b ∈ [0, 6] for any x ∈ R and all t ∈ [0, T ].
On the other hand, when y0 > 0, from (4.6), (4.7) and (4.8), if 0 6 b 6 2, we

have

d[eλtF (t)]

dt
< eλt(ñ1

∫
R
e−ξ(u3ξ − u3)dξ + ñ2

∫
R
e−ξu2ξ(uξ − u)dξ)

< 0,
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where ñ1, ñ2 > 0 and ñ1 + ñ2 = 2−b
2 . Further, if 2 < b 6 6, we obtain

d[eλtF (t)]

dt
< −eλt(ñ3

∫
R
e−ξ(u3 + u3ξ)dξ + ñ4

∫
R
e−ξu2ξ(u+ uξ)dξ)

< 0,

where ñ3, ñ4 > 0 and ñ3 + ñ4 = b−2
2 . Therefore, for any x ∈ R and all t ∈ [0, T ],

when b ∈ [0, 6], eλtF (t) is a decreasing function as y0 > 0. Therefore, the conclusion
is established based on the calculation above.

5. Large time behavior for the support of momen-
tum density

In this section, we will discuss the large time behavior for the support of momentum
density.

Lemma 5.1. If b > 0, λ 6 0, assume the initial value u0 6≡ 0 has a compact
supported set [a, c] , say y0 ≡ 0 , if x < a or x > c. Then, if y0(x)( 6≡ 0) does not
change sign, x ∈ [a, c], we have

lim
t→+∞

eλtF (t) = 0.

Proof. When y0(x)( 6≡ 0) does not change sign, x ∈ [a, c], assume that

lim
t→+∞

eλtF (t) 6= 0.

Therefore, there is a constant ε0 > 0, for any T > 0, there will exist a t > T such
that |eλtF (t)| > ε0. Then, by calculation, we have

dq(a, t)

dt
= u2(q(a, t), t)

= (
1

2
eq(a,t)F (t))2

=
1

4
e2q(a,t)

(eλtF (t))2

e2λt

>
1

4
e2q(a,t)

ε0
2

e2λt
.

It follows that

e−2q(a,t) 6
ε0

2

4λ
(e−2λt − 1) + e−2c.

Taking T = − ln(1−4λe−2c/ε0
2)

2λ , for any t > T , we obtain

ε0
2

4λ
(e−2λt − 1) + e−2c 6 0.

This is the contradiction. Therefore, we have

lim
t→+∞

eλtF (t) = 0.
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Theorem 5.1. If b > 2, λ 6 0 , suppose that y0(x) ∈ L 2
b

has a compact supported

set [a, c]. Then, if y0(x)(6≡ 0) does not change sign, x ∈ [a, c], we have

e
2q(c,t)
b−2 − e

2q(a,t)
b−2 → +∞, as t→ +∞.

Proof. (1) When y0 > 0( 6≡ 0), x ∈ [a, c], for any t > 0, we have F (t) > 0. By
direct calculation, we have

e−λt[

∫ c

a

(y0)
2
b dx]

b
2 = [

∫ c

a

(y0e
−λt)

2
b dx]

b
2

= [

∫ c

a

(y(q, t)q
b
2
x )

2
b dx]

b
2

= [

∫ c

a

(y(q, t))
2
b qxdx]

b
2

= [

∫ q(c,t)

q(a,t)

(y(ξ, t))
2
b dξ]

b
2

6 (

∫ q(c,t)

q(a,t)

y(ξ, t)e−ξdξ)(

∫ q(c,t)

q(a,t)

e
2ξ
b−2 dξ)

b−2
2

= F (t)[(
b− 2

2
)(e

2q(c,t)
b−2 − e

2q(a,t)
b−2 )]

b−2
2 .

Therefore, we obtain

e
2q(c,t)
b−2 − e

2q(a,t)
b−2 > (

2

b− 2
)[

(
∫ c
a
y

2
b
0 dx)

b
2

F (t)eλt
]

2
b−2 .

According to limit that lim
t→+∞

eλtF (t) = 0, we have

e
2q(c,t)
b−2 − e

2q(a,t)
b−2 → +∞, as t→ +∞.

(2) When y0 6 0(6≡ 0), x ∈ [a, c], for any t > 0, we have F (t) < 0. By direct
calculation, we have

e−λt[

∫ c

a

(−y0)
2
b dx]

b
2 = [

∫ c

a

(−y0e−λt)
2
b dx]

b
2

= [

∫ c

a

(−y(q, t)q
b
2
x )

2
b dx]

b
2

= [

∫ c

a

(−y(q, t))
2
b qxdx]

b
2

= [

∫ q(c,t)

q(a,t)

(−y(ξ, t))
2
b dξ]

b
2

6 (

∫ q(c,t)

q(a,t)

−y(ξ, t)e−ξdξ)(

∫ q(c,t)

q(a,t)

e
2ξ
b−2 dξ)

b−2
2

= −F (t)[(
b− 2

2
)(e

2q(c,t)
b−2 − e

2q(a,t)
b−2 )]

b−2
2 .
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Hence, we obtain

e
2q(c,t)
b−2 − e

2q(a,t)
b−2 > (

2

b− 2
)[

(
∫ c
a

(−y0)
2
b dx)

b
2

−F (t)eλt
]

2
b−2 .

Therefore, we finally have

e
2q(c,t)
b−2 − e

2q(a,t)
b−2 → +∞, as t→ +∞.

Theorem 5.2. If b = 2, λ 6 0 , suppose that y0(x) ∈ L1 has a compact supported
set [a, c], then if y0(x)( 6≡ 0) does not change sign, x ∈ [a, c], we have

q(c, t)→ +∞, as t→ +∞.

Proof. (1) When y0 > 0(6≡ 0), x ∈ [a, c], for any t > 0, we have F (t) > 0.
Therefore, by direct calculation, we obtain

e−λt
∫ c

a

y0dx =

∫ c

a

y0e
−λtdx

=

∫ c

a

y(q, t)qxdx

6 eq(c,t)
∫ q(c,t)

q(a,t)

y(ξ, t)e−ξdξ

= eq(c,t)F (t).

Then, according to the limit that lim
t→+∞

eλtF (t) = 0, we have

eq(c,t) >

∫ c
a
y0dx

F (t)eλt
→ +∞, as t→ +∞,

which is

q(c, t)→ +∞, as t→ +∞.

(2) When y0 6 0( 6≡ 0), x ∈ [a, c], for any t > 0, we have F (t) < 0. Therefore, by
direct calculation, we obtain

e−λt
∫ c

a

−y0dx =

∫ c

a

−y0e−λtdx

=

∫ c

a

−y(q, t)qxdx

6 eq(c,t)
∫ q(c,t)

q(a,t)

−y(ξ, t)e−ξdξ

= −eq(c,t)F (t).

Then, we have

eq(c,t) >

∫ c
a
−y0dx

−F (t)eλt
→ +∞, as t→ +∞,
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which is

q(c, t)→ +∞, as t→ +∞.

Theorem 5.3. Let λ 6 0, when 0 < b < 2, y0(x) ∈ L 2
b

or b = 0, y0(x) ∈ L∞,

assume that y0(x) ∈ L 2
b

has a compact supported set [a, c], then

(1) if y0(x) > 0( 6≡ 0), x ∈ [a, c], we have

e
−4

∫ t
0

inf
x∈R

(uux)ds
(e

2q(c,t)
2−b − e

2q(a,t)
2−b )→ +∞, as t→ +∞.

(2) if y0(x) 6 0( 6≡ 0), x ∈ [a, c], we have

e
−4

∫ t
0
sup
x∈R

(uux)ds
(e

2q(c,t)
2−b − e

2q(a,t)
2−b )→ +∞, as t→ +∞.

Proof. (1) When y0 > 0 and λ 6 0, if x ∈ [a, c] and 0 < b < 2, we obtain

d

dt
‖y‖L1 = (2− b)

∫
R
yuuxdx− λ ‖y‖L1

> [(2− b) inf
x∈R

(uux)− λ] ‖y‖L1 ,

which is

‖y‖L1 > e

∫ t
0
[(2−b) inf

x∈R
(uux)−λ]ds ‖y0‖L1

= e

∫ t
0
(2−b) inf

x∈R
(uux)ds−λt ‖y0‖L1 .

From equation (3.5), we have

‖y‖L1 =

∫
R
ydx

=

∫
R
y

1
2 (ye−ξ)

1
2 e

ξ
2 dξ

6 (

∫
R
y

2
b dξ)

b
4 (

∫
R
ye−ξdξ)

1
2 (

∫ q(c,t)

q(a,t)

e
2ξ

2−b dξ)
2−b
4

= (

∫
R
y

2
b
0 dx)

b
4 (e−λtF (t))

1
2 [

2− b
2

(e
2q(c,t)
2−b − e

2q(a,t)
2−b )]

2−b
4 .

Then, we obtain

e
−4

∫ t
0

inf
x∈R

(uux)ds
(e

2q(c,t)
2−b − e

2q(a,t)
2−b ) >

2

2− b
[

‖y0‖L1

‖y0‖
1
2

L
2
b

(eλtF (t))
1
2

]
4

2−b → +∞,

as t→ +∞.

If b = 0, we have

‖y‖L1 > e
2
∫ t
0

inf
x∈R

(uux)ds−λt ‖y0‖L1
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and

‖y‖L1 =

∫
R
ydx

=

∫
R
y

1
2 (ye−ξ)

1
2 e

ξ
2 dξ

6 lim
b→0

(

∫
R
y

2
b dξ)

b
4 (

∫
R
ye−ξdξ)

1
2 (

∫ q(c,t)

q(a,t)

e
2ξ

2−b dξ)
2−b
4

= lim
b→0

[(

∫
R
y

2
b
0 dx)

b
4 (e−λtF (t))

1
2 [

2− b
2

(e
2q(c,t)
2−b − e

2q(a,t)
2−b )]

2−b
4 ].

Finally, we obtain

e
−4

∫ t
0

inf
x∈R

(uux)ds
(eq(c,t) − eq(a,t)) > [

‖y0‖L1

(lim
b→0
‖y0‖

1
2

L
2
b
)(eλtF (t))

1
2

]2 → +∞, as t→ +∞.

(2) When y0 6 0, if x ∈ [a, c] and 0 < b < 2, we obtain

d

dt
‖y‖L1 6 [(2− b) sup

x∈R
(uux)− λ] ‖y‖L1 ,

which is

‖−y‖L1 > e

∫ t
0
[(2−b) sup

x∈R
(uux)−λ]ds

‖−y0‖L1

= e

∫ t
0
(2−b) sup

x∈R
(uux)ds−λt

‖−y0‖L1 ,

and we have

‖−y‖L1 =

∫
R
−ydx

=

∫
R

(−y)
1
2 (−ye−ξ) 1

2 e
ξ
2 dξ

6 (

∫
R

(−y)
2
b dξ)

b
4 (

∫
R
−ye−ξdξ) 1

2 (

∫ q(c,t)

q(a,t)

e
2ξ

2−b dξ)
2−b
4

= (

∫
R

(−y0)
2
b dx)

b
4 (−e−λtF (t))

1
2 [

2− b
2

(e
2q(c,t)
2−b − e

2q(a,t)
2−b )]

2−b
4 .

Then, we get

e
−4

∫ t
0
sup
x∈R

(uux)ds
(e

2q(c,t)
2−b − e

2q(a,t)
2−b ) >

2

2− b
[

‖y0‖L1

‖y0‖
1
2

L
2
b

(eλtF (t))
1
2

]
4

2−b → +∞, as t→ +∞.

If b = 0, we have

‖−y‖L1 > e
2
∫ t
0
sup
x∈R

(uux)ds−λt
‖−y0‖L1

and

‖−y‖L1 =

∫
R
−ydx
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=

∫
R

(−y)
1
2 (−ye−ξ) 1

2 e
ξ
2 dξ

6 lim
b→0

(

∫
R
(−y)

2
b dξ)

b
4 (

∫
R

(−y)e−ξdξ)
1
2 (

∫ q(c,t)

q(a,t)

e
2ξ

2−b dξ)
2−b
4

= lim
b→0

[(

∫
R

(−y0)
2
b dx)

b
4 (−e−λtF (t))

1
2 [

2− b
2

(e
2q(c,t)
2−b − e

2q(a,t)
2−b )]

2−b
4 ].

Hence, we obtain

e
−4

∫ t
0
sup
x∈R

(uux)ds
(eq(c,t) − eq(a,t)) > [

‖y0‖L1

(lim
b→0
‖y0‖

1
2

L
2
b
)(eλtF (t))

1
2

]2 → +∞, as t→ +∞.

Therefore, the conclusion is established.

6. Persistence property

In this section, we will consider the persistence property in Sobolev space.

Definition 6.1. A nonnegative function v : Rn → R is called sub-multiplicative,
if v(x + y) ≤ v(x)v(y) holds for all x, y ∈ Rn. Given a sub-multiplicative function
v, a positive function φ is called v-moderate, if there exists a constant C > 0 such
that φ(x+ y) ≤ Cv(x)φ(y) holds for all x, y ∈ Rn.

It is proved in Brandolese [46] that φ is v-moderate, if and only if the weighted
Young inequality

‖(f1 ∗ f2)φ‖Lp ≤ C‖f1v‖L1‖f2φ‖Lp (6.1)

holds for any two measurable functions f1, f2 and 1 ≤ p ≤ ∞.

Definition 6.2. We say that φ : R → (0,+∞) is an admissible weight for (1.1),
if it is locally absolutely continuous such that |φ′(x)| ≤ A|φ(x)| for some A > 0
and a.e. x ∈ R, and is v-moderate with a sub-multiplicative function v satisfying
infR v > 0 and

∫
R

v(x)e−|x|dx <∞. (6.2)

Theorem 6.1. Let u0 ∈ Hs(R) with s > 5
2 , λ ∈ R, 2 ≤ p ≤ ∞ and u ∈

C([0, t);Hs(R)) ∩ C1([0, t);Hs−1(R)) be the strong solution to (1.1) starting from
u0 such that φu0, φu0x ∈ Lp(R) for an admissible weight function φ of (1.1). Then,
for all t ∈ [0, T ), we have the estimate

‖φu(., t)‖L∞ + ‖φux(., t)‖L∞ ≤ eC(M+|λ|)t(‖φu0(., t)‖L∞ + ‖φu0x(., t)‖L∞),

where the constant C depends only on the weight v, φ and

M = sup
t∈[0,T )

‖u‖Hs .
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Remark 6.1. The example for admissible weight functions can be found in [18]

φ(x) = φα,β,γ,δ(x) = eα|x|
β

(1 + |x|)γ log(e+ |x|δ, (6.3)

where we require that α ≥ 0, 0 ≤ β ≤ 1, αβ < 1.

Proof. For the sake of convenience, we rewrite (1.1) as a transport equation (1.5)
with

z(u) = [(6− b)uuxuxx + 2u3x + bu2ux],

where G(x) = e−
|x|
2 is again the Green’s function of the operator (1− ∂2x). For any

N ∈ N\{0}, we define N-truncation:

φN (x) = min{φ(x), N}.

Then, it is easy to check that φN (x) : R → R is a locally absolutely continuous
function satisfying ‖φN (x)‖L∞ ≤ N and |φ′N | ≤ AφN (x) a.e. on R. For p ∈ [2,+∞),
multiplying (1.5) by φN |φNu|p−2φNu and integrating both sides on the lines, one
can get

‖φNu‖p−1Lp
d

dt
‖φNu‖Lp +

∫
R

u|φNu|puxdx+

∫
R

φNG ∗z(u)|φNu|p−2φNudx

+ λ

∫
R
uφN |φNu|p−2φNudx = 0.

We observe that

|
∫
R
u|φNu|puxdx| ≤ C1[‖u‖2L∞ + ‖ux‖2L∞ ]‖φNu‖pLp ,

and by Hölder’s inequality that

|
∫
R
φNG ∗z(u)|φNu|p−2φNudx| ≤ ‖φNG ∗z(u)‖Lp‖φNu‖p−1Lp .

Moreover, by using (6.1) and (6.2), we have

‖φNG ∗z(u)‖Lp ≤ ‖Gv‖L1‖φNz(u)‖Lp ≤ ‖φNz(u)‖Lp .

Besides, we have

|λ
∫
R
uφN |φNu|p−2φNudx| = |λ| ‖φNu‖pLp .

Hence, we obtain

d

dt
‖φNu‖Lp ≤ C2(‖u‖2L∞ + ‖ux‖2L∞ + |λ|)‖uφN‖Lp + ‖φNz(u)‖Lp . (6.4)

Differentiating (1.5) with respect to the variable x produces the following equation

utx + 2uu2x + ∂x(G ∗z(u)) + u2uxx + λux = 0.
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Multiplying the above equation by φN |φNux|p−2φNux and integrating over the line,
one has

‖φNux‖p−1Lp
d

dt
‖φNux‖Lp +

∫
R
φN∂x(G ∗z(u))|φNux|p−2φNuxdx

+

∫
R
u2uxxφN |φNux|p−2φNuxdx

+ 2

∫
R
uu2xφN |φNux|p−2φNuxdx

+ λ

∫
R
uxφN |φNu|p−2φNudx = 0,

and also∫
R
u2uxxφN |φNux|p−2φNuxdx =

∫
R
u2|φNux|p−2φNux[(uxφN )x − ux∂xφN ]dx

=

∫
R
u2∂x(

|φNux|p

p
)dx−

=

∫
R
u2|φNux|p−2φNux(uxφ

′

N )dx.

Note that since |φ′N (x)| ≤ AφN (x) a.e. on R, it follows that

|
∫
R
u2uxxφN |φNux|p−2φNuxdx| ≤ C3(‖u‖2L∞ + ‖ux‖2L∞)(1 +A)‖φNux‖pLp ,

and

|
∫
R
uu2xφN |φNux|p−2φNuxdx| ≤ C4(‖u‖2L∞ + ‖ux‖2L∞)‖φNux‖pLp .

Then,

|
∫
R
φN∂x(G ∗z(u))|φNux|p−2φNuxdx| ≤ ‖φN∂x(G ∗z(u))‖Lp‖φNux‖p−1Lp .

By using the fact ∂xG = − 1
2sgn(x)e−|x| in the weak sense and applying (6.1) and

(6.2) again, we have

‖φN∂x(G ∗z(u))‖Lp ≤ ‖(∂xG)v‖L1‖φNz(u)‖Lp ≤ ‖φNz(u)‖Lp .

Besides, we have

|λ
∫
R
uxφN |φNu|p−2φNudx| = |λ| ‖φNux‖pLp .

Thus, we get

d

dt
‖uxφN‖Lp ≤ C5(‖u‖2L∞ + ‖ux‖2L∞ + |λ|)‖φNux‖Lp + ‖φNz(u)‖Lp .

Combining above results together,
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d

dt
(‖uφN‖Lp + ‖uxφN‖Lp) ≤ C6(‖u‖2L∞ + ‖ux‖2L∞ + |λ|)

(‖uφN‖Lp + ‖uxφN‖Lp) + ‖φNz(u)‖Lp . (6.5)

Further, we can easily conclude by using the definition of z(u) that

‖φNz(u)‖Lp ≤ C7(‖u‖2L∞ + ‖ux‖2L∞ + ‖uxx‖2L∞ + |λ|)(‖uφN‖Lp + ‖uxφN‖Lp).

Combining with (6.5), we obtain

d

dt
(‖uφN‖Lp + ‖uxφN‖Lp) ≤ C(‖u‖2L∞ + ‖ux‖2L∞ + ‖uxx‖2L∞ + |λ|)

(‖uφN‖Lp + ‖uxφN‖Lp)

≤ C(M + |λ|)(‖uφN‖Lp + ‖uxφN‖Lp).

By Gronwalls’ inequality, we have

(‖uφN‖Lp + ‖uxφN‖Lp) ≤ eC(M+|λ|)t(‖u0φN‖Lp + ‖u0xφN‖Lp).

Letting p → +∞, due to the term eC(M+|λ|)t is independent on p, which implies
that

(‖uφN‖L∞ + ‖uxφN‖L∞) ≤ eC(M+|λ|)t(‖u0φN‖L∞ + ‖u0xφN‖L∞).

This completes the proof.
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