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Abstract The need for efficient statistical models has increased with the
flow of new data, which makes distribution theory a particularly interesting
and attractive field. Here, we provide a thorough study of the applications
of the Lindley distribution and its diverse generalizations. More precisely, we
review some special applications in various areas, such as time series analysis,
stress strength analysis, acceptance sampling plans and data analysis. We also
conduct a comparative study between the Lindley distribution and some of its
generalizations by using four real-life data sets.
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1. Introduction

In recent years, there has been a growing interest in introducing new distributions
and their generalizations because of the diversity of the data encountered in practice.
Therefore, the statisticians aim to develop different distributions presenting flexible
and original properties.

In this spirit, Lindley [46] coined the term “Lindley distribution” to refer to a
one-parameter distribution used in fiducial and Bayesian inferences. Its properties
and applications in reliability analysis were studied by Ghitany et al., [38], showing
that it may provide a better fit than the exponential distribution. The Lindley
distribution’s simplicity and moderate flexibility paved the way for generalized ver-
sions, with the goal of building models and with better goodness of fit to data
sets than the well-known basic distributions. Some of these generalizations are the
size-biased Poisson-Lindley distribution by Ghitany and Al-Mutairi [34], discrete
Poisson-Lindley distribution by Sankaran [57] and zero-truncated Poisson-Lindley
distribution by Ghitany et al., [36], two-parameter Lindley distribution by Shanker
and Mishra [62], power Lindley distribution by Ghitany et al., [35], inverse Lind-
ley distribution by Sharma et al., [65], exponentiated power Lindley distribution
by Ashour and Eltehiwy [13], generalized power Lindley distribution by Liyanage
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and Parai [47], extended Lindley distribution by Bakouch et al., [14], Akash distri-
bution by Shanker [59], quasi Akash distribution by Shanker [60], weighted Akash
distribution Shanker and Shukla [64], quasi Lindley distribution by Shanker and
Mishra [63], extended power Lindley distribution by Alkarni [4], discrete Lindley
distribution by Deniz and Ojeda [30], weighted Lindley distribution by Ghitany et
al., [37], discrete Poisson-Akash distribution by Shanker [61], new weighted Lindley
distribution by Asgharzadeh [12], transmuted Lindley distribution by Merovci [50],
new extended generalized Lindley distribution by Maya and Irshad [48], and trans-
muted two-parameter Lindley distribution by Kemaloglu and Yilmaz [41].

Some recent works based on the Lindley distribution are the Topp-Leone odd
Lindley family of distributions by Reyad et al., [55], wrapped Lindley distribu-
tion by Joshi and Jose [40], Marshall-Olkin extended quasi Lindley distribution
by Udoudo and Etuk [68], three-parameter generalized Lindley by Ekhosuehi and
Opone [33], Lindley Weibull distribution by Cordeiro et al., [29], alpha power trans-
formed power Lindley distribution by Hassan et al., [39], alpha power transformed
Lindley distribution by Dey et al., [31], Weibull Marshall-Olkin Lindley distribu-
tion by Afify et al., [2], inverted modified Lindley distribution by Chesneau et
al., [26], sum and difference of two Lindley distributions by Chesneau et al., [24],
modified Lindley distribution by Chesneau et al., [25], wrapped modified Lindley
distribution by Chesneau et al., [27], and Lindley-Lindley distribution by Chesneau
et al., [28]. Tomy [66] contains a previous review of the Lindley distribution and its
generalizations. Trigonometric extensions of the Lindley distribution derived from
trigonometric families of distributions (see Chesneau and Artault [23]) are under
development. As a first proposal, we may cite the sine-modified Lindley distribution
introduced by Tomy et al., [67].

The main motivation behind this study is to expose the diverse applications of
the Lindley distribution and its generalizations in various fields, like reliability, time
series, quality control, astrophysics and the analysis of various kinds of data as well.

The paper unfolds as follows: In Section 2, we consider some applications of the
Lindley distribution and some of its generalizations in time series modeling. Section
3 presents applications of stress-strength analysis. Section 4 contains applications
for various acceptance sampling plans. Section 5 discusses applications in real data
analysis. Finally, in Section 6, we conclude the paper.

2. Applications in time series modeling

Over the last decades, there has been increasing interest in developing time series
models for real-valued observations by using Gaussian or non-Gaussian distribution-
s. Among the existing time series models, let us evoke the autoregressive models,
integer valued models for discrete distributions, stochastic volatility and autore-
gressive conditional duration models. In this section, we consider autoregressive
minification processes, geometric processes and the first order non-negative integer
valued autoregressive processes.

2.1. Autoregressive minification process

Udoudo and Etuk [68] proposed different minification processes with a generalized
quasi Lindley distribution as a marginal distribution.
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More precisely, let us consider the AR(1) structure given by

Xn =

{
εn with probability p,

min(Xn−1, εn) with probability 1− p,

where p ∈ (0, 1) and {εn} is a sequence of independent and identically (iid) dis-
tributed random variables with the quasi Lindley distribution, and also indepen-
dent of {Xn}. Then, the process is a stationary AR(1) minification process with the
Marshall-Olkin extended quasi Lindley distribution as a marginal distribution. The
converse is also true. That is, if {Xn} is a stationary Markovian process with the
Marshall-Olkin extended quasi Lindley distribution as the marginal. Then, {εn}
follows the quasi Lindley distribution.
In addition, they gave a more general minification process, which is specified by

Xn =


Xn−1 with probability p2

εn with probability p1(1− p2)

min(Xn−1, εn) with probability (1− p1)(1− p2)

where p1, p2 ∈ (0, 1) and {εn} is a sequence of iid random variables independent
of {Xn}. Then, the process {Xn} is a stationary AR(1) minification process with
Marshall-Olkin extended quasi Lindley distribution as marginal, if and only if {εn}
follows the quasi Lindley distribution.

In the literature, Bakouch et al., [15] considered the Lindley AR(1) model, and
studied its applications.

2.2. Geometric process

Lam [44] introduced the Geometric process (GP) for modeling inter-arrival time
data with a monotone trend. Bicer [17] has recently proposed a GP with power
Lindley distribution as the first arrival time distribution. The GP was defined as
follows. A stochastic process {Xn} is said to be a GP, if there exists a real num-
ber a > 0 such that the random variables Yn = an−1Xn, n = 1, 2, . . . are valid,
where Xn is the inter-arrival time the (n−1)th and nth events of a counting process
{N(t), t ≥ 0}, the number a is called the ratio parameter of the GP, and X1 follows
the power Lindley distribution.

Similarly, Demirci Bicer [18] proposed a GP with two-parameter Lindley distri-
bution as the distribution of the first arrival time.

2.3. First order non-negative integer valued autoregressive
process

The pioneering work of the first order non-negative integer valued autoregressive
(INAR(1)) process was proposed by McKenzie [49], and Al-Osh and Alzaid [10]. It
was used as a tool for modeling counting processes consist of dependent random
variables. Mohammadpour [51] introduced a discrete stationary time series model
based on INAR(1), called Poisson Lindley INAR(1) model by using the binomial
thinning operator with a study on its properties. The model is given by

Xt = α ◦Xt−1 + εt, t ≥ 1,
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where ◦ is the binomial thinning operator defined by α ◦X =
∑X
i=0Wi, α ∈ [0, 1),

{Wi} is a sequence of iid random variables following the Bernoulli(α) distribution,
and {εt} is a sequence of iid random variables independent of the Bernoulli counting
process {Wt} and Xm for all m ≤ t. If {Xt} is a stationary process with the Poisson
Lindley distribution, then the innovation process {εt} has the following probability
generating function:

Φε(s) =
2 + θ − s

(1 + θ − s)2
[θ + α(1− s)]2

1 + θ + α(1− s)
, s ∈ R.

Similarly, Rostami [54] proposed a new stationary INAR(1) process based on
the power series thinning operator under Poisson-Lindley innovations. Lvio et al.,
[45] introduced the INAR(1) model for modeling nonnegative integer valued time
series with over dispersion using Poisson-Lindley innovations based on the binomial
thinning operator.

3. Stress-strength analysis

When assessing system reliability, satisfactory performance is achieved when the
strength applied to the component exceeds stress. It is a branch of reliability that
aims to assess system performance. The pioneering work is given by Birnbaum [19]
and Birnbaum and McCarty [20]. Al-Mutairi et al. [6] investigated stress-strength
reliability inferences from the Lindley distribution. In this case, the reliability
coefficient R is given by

R = P (Y < X)

= 1− θ21[θ1(θ1 + 1) + θ2(θ1 + 1)(θ1 + 3) + θ22(2θ2 + 3) + θ32]

(θ1 + 1)(θ2 + 1)(θ1 + θ2)3
,

where θ1, θ2 > 0 and X and Y are two independent random variables following the
Lindley distribution with parameters θ1 and θ2 respectively. They provide uniformly
minimum variance unbiased estimator, maximum likelihood estimator and Bayesian
inference of R, and study their effectiveness.

Furthermore, Khamnei [42] studied the reliability of the Lindley distribution
when an outlier is present in the strength component, Krishna and Kumar [43]
provided a reliability estimator by using the progressively type II censored sam-
ple, Al-Mutairi et al., [6] examined inferences on stress-strength reliability from the
weighted Lindley distribution, Sadek et al., [56] discussed estimation of the stress-
strength reliability for the quasi Lindley distribution, Pak et al., [53] studied the
reliability of a multicomponent stress-strength model by assuming that the compo-
nents follow the power Lindley distribution, and Akgul et al., [3] derived estimator
of system reliability for the generalized inverse Lindley distribution by using several
sampling designs.

4. Acceptance sampling plan

An acceptance sampling plan (ASP) is an important inspection and decision mak-
ing tool, which has been often used by quality assurance managers to determine
either to accept or to reject a product based on pre-specified quality standards.
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The objective of acceptance sampling is not to estimate the quality of the product,
but to decide if the product is likely to be acceptable. There are different types of
ASPs. Some of them are the single sampling plan, double sampling plan, multiple
sampling plan, time truncated ASP, sequential sampling plan, skip lot sampling
plan and continuous sampling plan. If the quality characteristic is related to the
product’s lifetime, the acceptance sampling problem becomes a life’s test.

Al-Omari and Al-Nasser [9] proposed an ASP based on a truncated life test, as-
suming the product’s lifetime follows the two-parameter quasi Lindley distribution.
By considering the minimum sample size, time and cost, it encourages practitioners
to use this sampling plan. Al-Nasser et al., [8] developed a double ASP based on a
truncated life test when the lifetime of the product follows the quasi Lindley distri-
bution. Double sampling is used when the first sample does not give a decision and
they recommend it to the researchers, Shahbaz et al., [58] introduced single and
double ASP for the power Lindley distribution, and Dhanunjaya et al., [32] studied
a continuous ASP for the truncated Lindley distribution.

5. Application in real data analysis

In this section, we perform a comparative study between Lindley, Akash, quasi
Akash, two-parameter Lindley, inverse Lindley, quasi Lindley, power Lindley, ex-
ponentiated power Lindley, extended power Lindley, three-parameter generalized
Lindley and new weighted Lindley distributions. The expressions of the probability
density functions (pdfs) are given in the Appendix. These distributions were fitted
to four different data sets. We estimate the unknown parameters of each model by
the maximum likelihood method of estimation. Also, the statistics of the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC) are used
to compare the eleven models. It is worth noting that AIC = 2k − 2LogL and
BIC = k log(n) − 2LogL, where k is the number of parameters, n is the sam-
ple size, and LogL is the maximized value of the log-likelihood function under the
considered model.

5.1. The carbon fibers data set

This data set was given by Nichols and Padgett [52]. The carbon fibers data set
consisting of 63 observations on breaking stress of carbon fibers (in Gba). The data
are given below: {0.81, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42,
2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 3.22, 3.39, 2.81,
4.20, 3.33,2.55, 3.31, 3.31, 2.85, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79,
4.70, 2.03, 1.89, 2.88, 2.82, 2.05, 3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.35, 2.55,
2.59, 2.03,1.61, 2.12, 3.15, 1.08}.

Table 1 gives the relevant numerical summaries for the fits of the considered
distributions based on this data set.
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Table 1. Estimated values, minus log-likelihood (−LogL), AIC and BIC for the
carbon fibers data set

Distribution Estimates −LogL AIC BIC

Lindley θ̂ = 0.5947 116.568 235.1361 237.2792

Akash θ̂ = 0.8894 110.1611 222.3222 224.4654

Quasi Akash α̂ = −0.1404 96.4044 196.8089 201.0952

θ̂ = 1.1615

Two-parameter
Lindley

α̂ = −0.3721 97.9329 199.8658 204.1521

θ̂ = 0.9219

Inverse Lindley θ̂ = 2.8076 128.4222 258.8445 260.9876

Quasi Lindley α̂ = −0.3431 97.9329 199.8658 204.1521

θ̂ = 0.9220

Power Lindley β̂ = 2.4048 84.61056 173.2211 177.5074

θ̂ = 0.1404

Exponentiated
power Lindley

α̂ = 0.5380

β̂ = 3.2614 83.95305 173.9061 180.3355

θ̂ = 0.03651

Extended power
Lindley

α̂ = 2.7625

β̂ = 0.1592 84.06479 174.1296 180.559

θ̂ = 0.0812

Three-parameter
generalized Lindley

α̂ = 2.7620

β̂ = 6.2712 84.06479 174.1296 180.559

λ̂ = 0.0812

New weighted
Lindley

α̂ = 0.00017 102.1854 208.3708 212.6571

λ̂ = 0.9767

Figures 1 and 2 give the graphs of the estimated pdfs and cumulative density
functions (cdfs) respectively.
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Figure 1. Estimated pdfs of the considered generalized Lindley distributions for the
carbon fibers data set
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Figure 2. Estimated cdfs of the considered generalized Lindley distributions for the
carbon fibers data set

At the end of the section, there will be comments on these results as well as
those of the coming applications.

5.2. Guinea pigs data set

This data set was given by Bjerkedal [22]. It is the survival times (in days) of 72
guinea pigs infected with virulent tubercle bacilli. It is given below: {12, 15, 22,
24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60,
60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87,
91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233,
258, 258, 263, 297, 341, 341, 376}
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Table 2 gives the relevant numerical values for the fits of the considered distri-
butions based on long-axis orientations of guinea pigs data set.

Table 2. Estimated values, −LogL, AIC and BIC for the guinea pigs data set

Distribution Estimates −LogL AIC BIC

Lindley θ̂ = 0.0198 394.5197 791.0395 793.3161

Akash θ̂ = 0.03004 397.3508 796.7017 798.9783

Quasi Akash α̂ = −0.2197 397.3555 798.7109 803.2643

θ̂ = 0.0301

Two-parameter
Lindley

α̂ =
−10.3902

391.5727 787.1454 791.6987

θ̂ = 0.0232

Inverse Lindley θ̂ = 61.05642 402.6685 807.3371 809.6137

Quasi Lindley α̂ = −0.2413 391.5727 787.1454 791.6987

θ̂ = 0.0232

Power Lindley β̂ = 0.9951 394.5179 793.0358 797.5891

θ̂ = 0.0203

Exponentiated
power Lindley

α̂ = 19.6531

β̂ = 0.4107 390.0966 786.1933 793.0233

θ̂ = 0.7839

Extended power
Lindley

α̂ = 0.9863

β̂ = 1.9751 394.3916 794.7832 801.6132

θ̂ = 0.02131

Three-parameter
generalized Lindley

α̂ = 0.9943

β̂ = 0.9228 394.4989 794.9978 801.8278

λ̂ = 0.0204

New weighted
Lindley

α̂ = 3.0381 393.2794 790.5588 795.1121

λ̂ = 0.0209

Figures 3 and 4 give the graphs of the estimated pdfs and cdfs respectively.



A Retrospective Study on Applications of the Lindley Distribution 299

x

D
e
n
s
it
y

0 100 200 300 400

0
.
0
0
0

0
.
0
0
2

0
.
0
0
4

0
.
0
0
6

0
.
0
0
8

0
.
0
1
0 L

A
QA

TL

IL
QL

PL

EPL

ExPL

TGL

NWL

Figure 3. Estimated pdfs of the considered generalized Lindley distributions for the
guinea pigs data set
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Figure 4. Estimated cdfs of the considered generalized Lindley distributions for the
guinea pigs data set

5.3. The vinyl chloride data set

The real data represent 34 observations of the vinyl chloride data (in mg/L) that
was obtained from cleaned-up gradient ground-water monitoring wells. The data
are obtained from Bhaumik et al., [21] and are presented below. {5.1, 1.2, 1.3, 0.6,
0.5, 2.4, 0.5, 1.1, 8, 0.8, 0.4, 0.6, 0.9, 0.4, 2, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1, 0.2,
0.1, 0.1, 1.8, 0.9, 2, 4, 6.8, 1.2, 0.4, 0.2}
Table 3 gives the relevant numerical values for the fits of the considered distributions
based on vinyl chloride data set.
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Table 3. Estimated values, −LogL, AIC and BIC for vinyl chloride data set

Distribution Estimates −LogL AIC BIC

Lindley θ̂ = 0.8238 56.30364 114.6073 116.1336

Akash θ̂ = 1.1657 57.57463 117.1493 118.6756

Quasi Akash α̂ = 15.9587 55.34411 114.6882 117.7409

θ̂ = 0.6946

Two-parameter
Lindley

α̂ = 176.972 55.45269 114.9054 117.9581

θ̂ = 0.5376

Inverse Lindley θ̂ = 0.8774 61.81358 125.6272 127.1535

Quasi Lindley α̂ =
538.4519

55.4526 114.9052 117.9579

θ̂ = 0.5329

Power Lindley β̂ = 0.8831 55.75992 115.5198 118.5726

θ̂ = 0.9139

Exponentiated
power Lindley

α̂ = 3.7939

β̂ = 0.4988 54.9229 115.8458 120.4249

θ̂ = 2.1571

Extended power
Lindley

α̂ = 1.0101

β̂ = 0.00015 55.44962 116.8992 121.4783

θ̂ = 0.5264

Three-parameter
generalized Lindley

α̂ = 1.0099

β̂ = 507.164 55.44963 116.8993 121.4783

λ̂ = 0.5283

New weighted
Lindley

α̂ = 29.2320 55.97061 115.9412 118.9939

λ̂ = 0.8348

Figures 5 and 6 give the graphs of the estimated pdfs and cdfs respectively.
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Figure 5. Estimated pdfs of the generalized Lindley distributions for the vinyl
chloride data set
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Figure 6. Estimated cdfs of the generalized Lindley distributions for the vinyl
chloride data set

5.4. Fatigue fracture data set

The fatigue fracture data set is extracted from Abdul-Moniem and Seham [1], and
it has previously been used by Andrews and Herzberg [11] and Barlow et al., [16].
It represents the life of fatigue fracture of Kevlar 373/epoxy subjected to constant
pressure at 90% stress level until all had failed. The data are as follows:0.0251,
0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751,
0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483,
1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880,
1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808,
1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460,
2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846,
3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960}.
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Table 4 gives the relevant numerical values for the fits of the distributions based
on this data set.

Table 4. Estimated values, −LogL, AIC and BIC for the fatigue fracture data set

Distribution Estimates −LogL AIC BIC

Lindley θ̂ = 0.7947 123.6751 249.3503 251.681

Akash θ̂ = 1.1324 124.5755 251.151 253.4817

Quasi Akash α̂ = 0.3095 122.4782 248.9563 253.6178

θ̂ = 1.3542

Two-parameter
Lindley

α̂ = 0.1567 121.6503 247.3006 251.962

θ̂ = 0.9544

Inverse Lindley θ̂ = 0.9459 177.1091 356.2183 358.549

Quasi Lindley α̂ = 0.1497 121.6503 247.3006 251.962

θ̂ = 0.9543

Power Lindley β̂ = 1.1423 122.4001 248.8001 253.4616

θ̂ = 0.7047

Exponentiated
power Lindley

α̂ = 1.5372

β̂ = 0.9496 121.8663 249.7326 256.7248

θ̂ = 1.0213

Extended power
Lindley

α̂ = 1.3256

β̂ = 0.00012 122.5247 251.0494 258.0416

θ̂ = 0.3666

Three-parameter
generalized Lindley

α̂ = 0.9931

β̂ = 0.1478 121.6487 249.2973 256.2895

λ̂ = 0.9634

New weighted
Lindley

α̂ = 2.4729 122.8925 249.7851 254.4465

λ̂ = 0.9090

Figures 7 and 8 give the graphs of the estimated pdfs and cdfs respectively.
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Figure 7. Estimated pdfs of the considered generalized Lindley distributions for
the fatigue fracture data set
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Figure 8. Estimated cdfs of the considered generalized Lindley distributions for
the fatigue fracture data set

In Tables 1, 2, 3 and 4, the maximum likelihood estimates of the parameters for
the fitted distributions along with the −LogL, AIC and BIC values are presented
for the four different data sets. It is observed that the power Lindley distribution is
appropriate for modeling carbon data, exponentiated power Lindley distribution is
appropriate for modeling guinea pigs data, Lindley and quasi Akash distributions
are appropriate for modeling vinyl chloride data, and quasi Lindley distribution is
appropriate for modeling fatigue fracture data. These conclusions can also be drawn
visually from Figures 1, 3, 5, and 7 for the estimated pdfs, and Figures 2, 4, 6 and
8 for the estimated cdfs.

In full generality, the Lindley distribution and its generalized versions are used
for analyzing different types of data. In this regard, for circular type data, Joshi and
Jose [40] introduced the wrapped Lindley distribution, Chesneau et al., [27] studied



304 L. Tomy, C. Chesneau & M. Jose

the wrapped modified Lindley distribution, and Al-khazaleh and Alkhazaleh [5]
suggested the wrapped quasi Lindley distribution. Zaninetti [69] applied Lindley
and truncated Lindley distribution to model initial mass function in stars. This work
also introduced the Lindley luminosity function and truncated Lindley luminosity
function for galaxies. Similarly, Zaninetti [70] studied a three-parameter double
truncated Lindley distribution and applied it to model initial mass function in
stars. Therefore, we can say that the Lindley distribution and its generalizations
have promising applications in Astrophysics.

6. Conclusion

In this article, we provide an overview on applications of the Lindley distribution
and its generalizations. This review is based on applications in time series analysis,
stress-strength analysis, ASP and various kinds of datas. Modeling of four real life
data sets shows the suitability of the Lindley distribution and its generalizations
for fitting real lifetime data. For researchers and practitioners, we hope that this
review will give a summary of applications of the Lindley distribution and its gen-
eralizations as well as references for further study in the theory and applications of
statistical distributions.

Appendix

Here, we provide the pdfs of the distributions, which are used in comparative study.

• Lindley distribution

f(x; θ) =
θ2

1 + θ
(1 + x)e−θx ; x > 0, θ > 0

• Akash distribution

f(x, θ) =
θ3

θ2 + 2
(1 + x2)e−θx ; x > 0, θ > 0

• Quasi Akash distribution

f(x;α, θ) =
θ2

αθ + 2
(α+ θx2)e−θx; x > 0, α > 0, θ > 0

• Two-parameter Lindley distribution

f(x;α, θ) =
θ2

αθ + 1
(α+ x)e−θx ; x > 0, θ > 0, αθ > −1

• Inverse Lindley distribution

f(x; θ) =
θ2

1 + θ

(
1 + x

x3

)
e−

θ
x ; x > 0, θ > 0

• Quasi Lindley distribution

f(x;α, θ) =
θ(α+ θx)

α+ 1
e−θx ; x > 0, α > −1, θ > 0
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• Power Lindley distribution

f(x;α, θ) =
αθ2

θ + 1
(1 + xα)xα−1e−θx

α

; x > 0, α > 0, θ > 0

• Exponentiated power Lindley distribution

f(x;α, β, θ) =
αθ2βxβ−1

θ + 1
(1 + xβ)e−θx

β

[
1−

(
1 +

θxβ

θ + 1

)
e−θx

β

]α−1

x > 0, α > 0, β > 0, θ > 0

• Extended power Lindley distribution

f(x;α, β, θ) =
αθ2

θ + β
(1 + βxα)xα−1e−θx

α

; x > 0, α > 0, β > 0, θ > 0

• Three-parameter generalized Lindley distribution

f(x;α, β, λ) =
αλ2(β + xα)xα−1e−λx

α

1 + λβ
; x > 0, α > 0, β > 0, λ > 0

• New weighted Lindley distribution

f(x;α, λ) =
λ2(1 + α)2

αλ(1 + α) + α(2 + α)
(1+x)(1−e−λαx)e−λx; x > 0, α > 0, λ > 0
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