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Noise-induced Transitions for an SIV Epidemic
Model with Medical-resource Constraints∗

Ran Yu1, Anji Yang1 and Sanling Yuan1,†

Abstract We consider a stochastically forced epidemic model with medical-
resource constraints. In the deterministic case, the model can exhibit two
type bistability phenomena, i.e., bistability between an endemic equilibrium
or an interior limit cycle and the disease-free equilibrium, which means that
whether the disease can persist in the population is sensitive to the initial
values of the model. In the stochastic case, the phenomena of noise-induced
state transitions between two stochastic attractors occur. Namely, under the
random disturbances, the stochastic trajectory near the endemic equilibrium
or the interior limit cycle will approach to the disease-free equilibrium. Besides,
based on the stochastic sensitivity function method, we analyze the dispersion
of random states in stochastic attractors and construct the confidence domains
(confidence ellipse or confidence band) to estimate the threshold value of the
intensity for noise caused transition from the endemic to disease eradication.
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1. Introduction

Mathematical models play an indispensable role in epidemiological research. For
instance, Sun et al., [16] analyzed an SIS model incorporating the effects of aware-
ness spreading on epidemic. In the past few decades, scholars have proposed various
epidemic models to explore the complex spreading process and test the effectiveness
of disease control after the introduction of interventions [7–9,20,26]. In the classical
epidemic models, it is usually assumed that the medical resources such as drugs,
vaccines and hospital beds are very sufficient for the infectious disease. However,
the reality is that medical resources are usually limited. In order to investigate
the dynamics of disease transmission under the absence of medical resources, some
epidemic models with medical-resource constraints have been proposed. For exam-
ple, Zhang et al., [25] introduced a saturated treatment function in an SIR model
to describe the limited medical resources. Zhu et al., [14] defined a more complex
saturated function to characterize the impact of hospital beds on disease control,
and their results show that the model can experience a sequence of bifurcations
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including Hopf bifurcation, saddle-node bifurcation, backward bifurcation. Wang
et al., [19] first adopt a piecewise-defined treatment function to simulate a limited
capacity for treatment. Then, they further modified the treatment function into
the following form [18]

T (I) =

{
rI, 0 ≤ I ≤ I0,
rI0, I > I0,

which means that the treatment rate is proportional to the case number before
the capacity of treatment is reached, then take its maximum value rI0. Recently,
using a similar idea as described in Ref. [18], Wang and Xiao et al., [17] has put
forward an SIV epidemic model with a non-smooth but continuous function that
depicts vaccination strategies. Their analysis suggested that this model undergoes
the following three types of bistability: between two internal equilibrium, between
one disease-free equilibrium and one endemic equilibrium, or between one disease-
free equilibrium and one limit cycle.

Although the above deterministic models based on constant environmental set-
tings can always capture some hallmarks of disease transmission, unexpected s-
tochastic factors such as resource availability, humidity and temperature, play an
indispensable role in the spread of disease. For instance, Mecenas et al., [11] found
that the replicability and the transmission capacity of the COVID-19 virus goes
hand in hand with different weather conditions such as temperature and relative
humidity. In addition, the unpredictability of human-to-human contact is also one
of the stochastic drivers in the spread of epidemics when populations are small [15].
Therefore, it is necessary to probe the influence of noisy environmental fluctuation-
s on the disease transmission. To this end, Lan et al., [10] put forward a SIRS
epidemic model disturbed by a noisy environment and explored the influence of
hospital resources on the final scale of infection. Cai et al., [5] investigated a SIRS
model subject to stochastic noise and revealed that environmental fluctuations can
restrain disease outbreaks.

For highly nonlinear models, the stochasticity of the environment may push
the system back and forth between two metastable states. In recent years, the
work related to noise-induced transitions has been extensively considered by math-
ematicians, ecologists and physicists in various fields. For example, in the field of
meteorology, Yang et al., [23] used the maximum possible trajectory to simulate the
sudden jump behavior of a stochastic thermohaline circulation model between initial
and final states. In the field of biology, Chen et al., [6] multiplicatively introduced
non-Gaussian noise into a genetic regulatory model and implemented high-order
perturbation expansion technique to calculate the average transition time of pro-
tein concentration from low to high. In the field of ecosystem, Scheffer et al., [13]
proposed various warning signals for the bifurcation-induced critical transitions to
avoid the undesirable state of ecosystem. Xu [21] probed the dynamics mechanisms
behind the population size oscillatory transition in a predator-prey model.

For the noise-induced state transition phenomenon, a question worth exploring
is how large is the critical noise intensity that can cause a system state transi-
tion? The stochastic sensitivity function (SSF) method proposed by Bashkirtseva
et al., [1, 12] can effectively answer this problem. This method employs confidence
ellipse or confidence band to visualize the spatial arrangement of random states
near the deterministic attractors such as the endemic equilibrium or the interior
limit cycle. Therefore, we can regard the noise intensity when the confidence ellipse
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or confidence band is tangent to the boundary of the domain of attraction as the
critical noise intensity. Based on the SSF method, Yuan et al., [24] studied a stoi-
chiometric producer-grazer model subject to the Gaussian white noise and obtained
the critical noise intensity when the random trajectory transitions between a high
biomass state and a low biomass state. Moreover, Yang et al., [22] applied this
method to a stochastic non-smooth SIS epidemic model, and also gave the critical
noise intensity when the final number of infected people switched between low and
high.

This manuscript is organized as follows: In Section 2, we first summarize the key
results of the deterministic model (2.1), which is the basis of subsequent analysis,
and then introduce Gaussian white noise into the deterministic version to obtain
its random counterpart. The surveys of noise-induced state shifts from an endemic
equilibrium to a disease-free equilibrium by constructing the confidence ellipses will
be presented in Section 3. In Section 4, we analyze the phenomenon of noise-induced
state shifts from an internal limit cycle to a disease-free equilibrium by constructing
the confidence band. Section 5 is the conclusion.

2. Mathematical model

2.1. Deterministic model

In this section, we consider the following SIV epidemic model with nonlinear inci-
dence rate and medical-resource constraints:

dS

dt
= Λ− βSI2 −mS −H(S),

dI

dt
= βSI2 −mI − εI,

dV

dt
= H(s)−mV.

(2.1)

Here, S(t), I(t) and V (t) are the sizes of susceptible, infected and immune popu-
lation at time t, respectively. All parameters of the model (2.1) are non-negative.
Λ denotes the recruitment rate; β presents the transmission rate; m is the natural
death rate; ε denotes the disease-induced death rate. In [17], the authors proposed
the following function

H(S) =

{
rS, S ≤ Sc,
rSc, S > Sc,

(2.2)

which defines a vaccination strategy as follows: when the size of the susceptible
population is less than the threshold Sc, we take a vaccination rate that is directly
proportional to the susceptible population size. Otherwise, the vaccination rate is
a constant k = rSc.

Since the dynamics of the first two equations are not affected by the vaccination
compartment, we analyze the following equations:

dS

dt
= Λ− βSI2 −mS −H(S),

dI

dt
= βSI2 −mI − εI.

(2.3)
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We set N = S + I + V , and have

dN

dt
= Λ−mN − εI.

Denote

Ω =

{
(S, I) ∈ R2

+ : 0 < S + I <
Λ

m

}
.

It is easy to verify that Ω is a positively invariant set for system (2.3). Then, in [17],
a complete qualitative analysis of global dynamics for model (2.3) is presented by
Wang et al. Here, we just demonstrate the following essential results.

Lemma 2.1. (Theorem 5.6 of [17]) Assume that ε > m+ 2r, (i) if max{M4, η2} <
β < min{M2, η1} or β > M2, then model (2.3) has two internal equilibrium E∗, E1

and one boundary equilibrium E0, where E∗ and E0 are stable and E1 is a saddle.
All solutions above the stable manifold of E1 approach the endemic equilibrium E∗,
and the solutions below the stable manifold of E1 will tend to E0.
(ii) If max{M4, η1} < β < M2 or M4 < β < min{M2, η2} or β < M4, then model
(2.3) has a stable boundary equilibrium E0. Variation of system parameters leads
to a Hopf bifurcation, where internal equilibrium point E∗ loses its stability, and
the limit cycle Γ bifurcates from this equilibrium. The stable manifold of E1, the
boundary of the basin of the attraction, divides the first quadrant into two parts. All
solutions above the boundary approach Γ. Otherwise, they tend to E0, where

M1 =
2(m+ ε)2(m+ ε+ r)

Λ2
, M2 =

(m+ ε)2(m+ ε+ r)2

εΛ
,

M3 =
2(m+ ε)3

Λ2
, M4 =

(m+ ε)4

Λ2(ε− r)
.

and
η1 = (m+ ε)2[4m+ 4ε+ r +

√
12ε2 + 8εm+ r2 + 4m2 − 8εr],

η2 = (m+ ε)2[4m+ 4ε+ r −
√

12ε2 + 8εm+ r2 + 4m2 − 8εr],

η1 =
η2

1

2Λ2(m+ ε)2[2m+ 4ε− r +
√

12ε2 + 8εm+ r2 + 4m2 − 8εr]
,

η2 =
η2

2

2Λ2(m+ ε)2[2m+ 4ε− r −
√

12ε2 + 8εm+ r2 + 4m2 − 8εr]
.

We take the same parameters in [17]:

Λ = 3, m = 0.2, r = 0.25, ε = 0.8, Sc = 2.8128,

and vary the infectious rate β ∈ [0.231, 0.239]. Three different regimes of dynamics
for model (2.3) are showed in Figure 1.

When β > β∗ = 0.237, the endemic equilibrium E∗ is stable. As the parameter
β decreases gradually, the endemic equilibrium E∗ loses stability and a limit cycle
is formed around it. The parameter value β∗ is the Hopf bifurcation point. For
β = 0.239 > β∗, the attraction domains of the disease-free equilibrium E0 and
the endemic equilibrium E∗ are clearly separated by the stable manifold of E1 (see
Figure 1(c)). All solutions above the boundary approach the endemic equilibrium
E∗, and the solutions below the boundary will tend to E0. This indicates that
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(a) (b)

(c)

Figure 1. Phase plane of the deterministic model (2.3) for (a) β = 0.231; (b)
β = 0.235; (c) β = 0.239



376 Ran Yu, Anji Yang & Sanling Yuan

the initial number of susceptible and infected individuals determine the final state
of disease. For β = 0.235 < β∗, the stable manifold of E1 detach domains of
the attraction of disease-free equilibrium E0 and the stable limit cycle Γ (see Figure
1(b)). The solutions starting from above the boundary will ultimately approach the
limit cycle. At this point, the number of infected individuals changes periodically
and the disease can not be eliminated. As the parameter β continues to decrease,
the limit cycle gradually expands and eventually disappears (see Figure 2). For β =
0.231 < β∗ = 0.233, E∗ is unstable, and the boundary between the two attraction
basins (red dash-dotted) is broken. All the solutions of model (2.3) eventually
approach the disease-free equilibrium E0 (see Figure 1(a)). So this suggests that
the whole first quadrant coincides with the disease extinction region.

Figure 2. Separatrix (red dashed-dotted) and deterministic cycles (blue solid) for
β = 0.237(small), β = 0.235(middle), β = 0.233(large)

The Hopf bifurcation diagram of model (2.3) is shown in Figure 3. Here, dashed
line corresponds to the I-coordinate of the unstable endemic equilibrium E∗ and
the red star represents the bifurcation point β∗. Next, we describe the quantitative
dynamical features of the deterministic model (2.3) for endemic equilibrium E∗ by
the largest Lyapunov exponent (LLE). LLE Λ is commonly used as a quantitative
measure of the internal dynamics. When LLE is negative, the random trajectories
of model (2.3) mostly converge. Otherwise, the divergence dominates in stochastic
flow [2]. In Figure 4, as the parameter β changes from right to left, the sign of LLE
becomes positive from negative at the bifurcation point β∗. This indicates that the
stability of endemic equilibrium E∗ has changed.

2.2. Stochastic model

Considering the presence of ambient noise, the parameters of model (2.3) are never
constant but fluctuate around some certain values. Notice that the infectious rate
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Figure 3. Hopf bifuraction diagram of model (2.3)
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Figure 4. The largest Lyapunov exponents for endemic equilibrium E∗
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β is one of the important parameters in the model and is significantly affected by
environmental fluctuations. Thus, we introduce random factor into model (2.3) by
disturbing valid contact coefficient β by β+σḂ(t) and get the stochastic differential
equations as follows:

dS = [Λ− βSI2 −mS −H(S)]dt− σSI2dB,

dI = [βSI2 −mI − εI]dt+ σSI2dB,
(2.4)

where B(t) is a standard Brownian motion, σ denotes the noise intensities. We shall
verify that stochastic model (2.4) has a global positive solution.

Lemma 2.2. For any initial value (S(0), I(0)) ∈ Ω, there is a unique solution
(S(t), I(t)) of model (2.4) on t > 0, and the solution will remain in R2

+ with prob-
ability 1.

Proof. Let (S(0), I(0)) ∈ Ω. Summing equations of system (2.4), we can obtain
that

d(S(t) + I(t))

dt
=Λ−mS −mI − εI −H(s) ≤ Λ− (S + I)m.

Then, we have

lim
t→∞

sup(S(t) + I(t)) ≤ Λ

m
.

Namely, for any s ∈ [0, t], we get

S(s), I(s) ∈ (0,
Λ

m
) a.s..

We assume that S(0) > Sc. Let us introduce the following stopping time sequence
{τi}, i = 1, 2, · · ·

τ1 = inf{t ≥ 0, S(t) ≤ Sc}, τ2 = inf{t ≥ τ1, S(t) > Sc}

and

τ2n+1 = inf{t ≥ τ2n, S(t) ≤ Sc}, τ2n+2 = inf{t ≥ τ2n+1, S(t) > Sc}

for n = 1, 2, · · · . When t ∈ [τ2n, τ2n+1), model (2.4) becomes

dS =
[
Λ− βSI2 −mS − rSc

]
dt− σSI2dB,

dI =

[
βSI2 −mI − εI

]
dt+ σSI2dB,

(2.5)

and when t ∈ [τ2n+1, τ2n+2), model (2.4) becomes

dS =

[
Λ− βSI2 −mS − rS

]
dt− σSI2dB,

dI =
[
βSI2 −mI − εI

]
dt+ σSI2dB,

(2.6)

where n = 0, 1, 2, · · · and τ0 = 0. For any initial value (S(0), I(0)) ∈ <2
+, (2.5) and

(2.6) both have a unique global positive solution, which implies model (2.4) has a
unique local positive solution (S(t), I(t)) on [0, τe), where τe is the explosion time.
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To show the solution is global, we only need to prove τe = ∞ almost surely. Let
k0 > 0 be sufficiently large such that S(0) and I(0) both lie within the interval[

1
k0
, k0

]
. For all integer k > k0, we define the stopping time

τ̃k = inf

{
t ∈ [0, τe) : min{S(t), I(t)} ≤ 1

k
or max{S(t), I(t)} ≥ k

}
.

Clearly, τ̃k is an increasing function as k → ∞. Let τ̃∞ = limk→∞ τ̃k, whence
τ̃∞ ≤ τe, a.s. If we can prove τ̃∞ = ∞, then τe = ∞, and (S(t), I(t)) ∈ <2

+ for
all t ≥ 0, a.s. Hence, we only need to show that τ̃∞ = ∞, a.s. We prove this by
contradiction. If this assertion is false, then there exists a pair of constants T > 0
and ε ∈ (0, 1) such that P{τ̃∞ ≤ T} > ε. Hence, there exists k1 > k0 such that

P{τ̃k ≤ T} ≥ ε (2.7)

for all k ≥ k1. Define a nonnegative C2-function V : <2
+ → <+ by

V (S, I) = S − 1− lnS + I − 1− ln I.

Applying Itô’s formula, we obtain respectively from (2.5) and (2.6) that for t ∈
[τ2n, τ2n+1),

LV (S, I) =

(
1− 1

S

)[
Λ− βSI2 −mS −H(S)

]
+

(
1− 1

I

)[
βSI2 −mI − εI

]
+

1

2
σ2I4 +

1

2
σ2S2I2

≤Λ + 2m+ ε+
1

2
σ2

(
Λ

m

)4

+
1

2
σ2

(
Λ

m

)4

+ β

(
Λ

m

)2

+
H(S)

S
,

and that for t ∈ [τ2n+1, τ2n+2),

LV (S, I) =

(
1− 1

S

)[
Λ− βSI2 −mS −H(S)

]
+

(
1− 1

I

)[
βSI2 −mI − εI

]
+

1

2
σ2I4 +

1

2
σ2S2I2

≤Λ + 2m+ ε+
1

2
σ2

(
Λ

m

)4

+
1

2
σ2

(
Λ

m

)4

+ β

(
Λ

m

)2

+
H(S)

S
.

From (2.2). we know

H(S)

S
=

{
r, S ∈ [0, Sc),

(0, r], S ∈ [Sc,+∞).

Therefore, for t ∈ [τ2n, τ2n+1),

LV (S, I) ≤ Λ + 2m+ ε+
1

2
σ2

(
Λ

m

)4

+
1

2
σ2

(
Λ

m

)4

+ β

(
Λ

m

)2

+ r := M1

and

dV (S, I) ≤M1dt− σ(1− 1

S
)SI2dB + σ(1− 1

I
)SI2dB, (2.8)
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and that for t ∈ [τ2n+1, τ2n+2),

LV (S, I) ≤ Λ + 2m+ ε+
1

2
σ2

(
Λ

m

)4

+
1

2
σ2

(
Λ

m

)4

+ β

(
Λ

m

)2

+ r := M2

and

dV (S, I) ≤M2dt− σ(1− 1

S
)SI2dB + σ(1− 1

I
)SI2dB (2.9)

We assume that (τ̃k ∧ T ) ∈ [τ2m, τ2m+1) for some n = m (same logic follows when
(τ̃k ∧ T ) ∈ [τ2m+1, τ2m+2)). This together with (2.8) and (2.9) yields

V (S(τ̃k ∧ T ), I(τ̃k ∧ T ))

≤V (S(0), I(0)) +

m−1∑
n=0

(∫ τ2n+1

τ2n

M1dt−
∫ τ2n+1

τ2n

σ(1− 1

S
)SI2dB +

∫ τ2n+1

τ2n

σ(1− 1

I
)SI2dB

)

+

m−1∑
n=0

(∫ τ2n+2

τ2n+1

M2dt−
∫ τ2n+2

τ2n+1

σ(1− 1

S
)SI2dB +

∫ τ2n+2

τ2n+1

σ(1− 1

I
)SI2dB

)

+

∫ τ̃k∧T

τ2m

M1dt−
∫ τ̃k∧T

τ2m

σ(1− 1

S
)SI2dB +

∫ τ̃k∧T

τ2m

σ(1− 1

I
)SI2dB.

Taking the expectations on both sides of the above inequality leads to

EV (S(τ̃k ∧ T ), I(τ̃k ∧ T )) ≤ V (S(0), I(0)) +ME(τ̃k ∧ T ),

where M = max{M1,M2}. Thus,

EV (S(τ̃k ∧ T ), I(τ̃k ∧ T )) ≤ V (S(0), I(0)) +MT. (2.10)

Let Ωk = {ω ∈ Ω : τ̃k = τ̃k(ω) ≤ T} for k ≥ k1 and, by (2.6), P{Ωk} ≥ ε.
Note that for every ω ∈ Ωk, we have either S(τ̃k, ω) or I(τ̃k, ω) equals either k or
1
k . Hence, V (S(τ̃k, ω), I(τ̃k, ω)) is no less than either

k − 1− ln k or
1

k
− 1 + ln k,

Then, it follows from (2.10) that

V (S(0), I(0)) +MT

≥E[IΩk
V (S(τ̃k, ω), I(τ̃k, ω))]

≥ε
[
(k − 1− ln k) ∧

(
1

k
− 1 + ln k

)]
,

where IΩk
is the indicator function of Ωk. Letting k →∞, we have

∞ > V (S(0), I(0)) +MT =∞,

a contradiction. Therefore, we must have τ∞ = ∞, a.s. This completes the proof.
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3. Study of noise-induced transitions via confidence
ellipse

For stochastic model (2.4), when the noise is very small, the random trajectory will
leave endemic equilibrium E∗ and form a random attractor around it (see Figure
5 (a)-(b)). While for relatively large noise, the dynamic behavior of model (2.4)
changed fundamentally. More specifically, the random trajectory can leave the
attraction basin of E∗, then cross the boundary (the stable manifold of E1), and
eventually enter the attraction basin of E0 (see Figure 5(c)-(d)). From a biological
perspective, under the random disturbances, the steady state of model (2.4) can
switch from the endemic equilibrium to the disease-free equilibrium. In Fig.ure
6, we show random trajectories of model (2.4) with σ = 0.005 and β1 = 0.239
(left), β2 = 0.237 (right) respectively. Obviously, with the same noise intensity,
the dispersion degree of random trajectory of model (2.4) is significantly different.
The reason for this significant difference is that the stochastic sensitivity of endemic
equilibrium E∗ increases greatly when the parameter β is close to the bifurcation
point β∗.
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Figure 5. Phase trajectory and time series for stochastic model (2.4) with different
noise intensity: (a) and (b) σ = 0.005, (c) and (d) σ = 0.05

Next, we apply the SSF method [3] to explain the above qualitative analysis in
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Figure 6. Random trajectories of model (2.4) with σ = 0.005 and (a) β1 = 0.239,
(b) β2 = 0.237

details. To this end, denote E∗ = (S∗, I∗) and define

G =

 g11 g12

g21 g22

 , F =

 f11 0

0 f22

 , S = FFT ,

where g11 = −βI2
∗ − m, g12 = −2βS∗I∗, g21 = βI2

∗ , g22 = m + ε and f11 = S∗,
f22 = I∗. Solving the system of linear equations as follows:

2g11w11 + g12w12 + g12w21 = −f2
11,

g21w11 + (g11 + g22)w12 + g12w22 = 0,

g21w11 + (g11 + g22)w21 + g12w22 = 0,

g21w12 + g21w21 + 2g22w22 = −f2
22,

and we obtain the stochastic sensitivity matrix

W =

w11 w12

w21 w22

 .

Here, the diagonal elements w11 and w22 of matrix W represent the sensitivity of
endemic equilibrium E∗ along S-axis and I-axis. We plot the function curves w11(β)
and w22(β) in Figure 7. As the picture shows, the sensitivity level of the equilibrium
point E∗ ascends to infinity as the parameter β approaches the bifurcation point
β∗. In comparison with Figure 4 and Figure 7, the significant increase in sensitivity
is in agreement with the change in the sign of the LLE near the bifurcation point
β∗. Indeed, the stability of E∗ decreases significantly as the parameter β tends to
β∗. This indicates that noise-induced transitions is likely occur. Next, we construct
confidence ellipse for E∗ by utilizing the SSF method and analyze the phenomenon
of stochastic trajectories transitions from E∗ to E0. The confidence ellipse is a
geometrical model which can describe the configurational arrangement of random
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states near equilibrium E∗. According to [3], the confidence ellipse of E∗ is expressed
as 〈

(S − S∗, I − I∗)T ,W−1((S − S∗, I − I∗)T )
〉

= 2σ2 ln
1

1− P
, (3.1)

where P is a fiducial probability.
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Figure 7. Stochastic sensitivity of equilibrium E∗: w11 (red line), w22 (green line)

For endemic equilibrium E∗ = (2.26, 1.85), in addition to fix parameter β =
0.239, we take the same parameters as Figure 1, and obtain the stochastic sensitivity
matrix and its inverse

W =

 1034.94 −525.05

−525.05 427.33

 ,W−1 =

 0.002565 0.003152

0.003152 0.006213

 .

Thus, the confidence ellipse equation of E∗ is

0.002565(S−2.26)2+0.006304(S−2.26)(I−1.85)+0.006213(I−1.85)2 = 2σ2 ln
1

1− P
.

Throughout the whole article, we take fiducial probability P = 0.95. Figure 8
show that the stochastic states of model (2.4) with noise intensity σ = 0.005 and a
corresponding confidence ellipse. In Figure 8, the random states of model (2.4) are
distributed around E∗, and their probability of falling inside the confidence ellipse
is 0.95. This confidence ellipse can grow and eventually cross the boundary into
the attraction basin of disease-free equilibrium E0 as the noise intensity increases
(see Figure 9). This means that the random trajectory of model (2.4) with high
probability escapes from the attraction basin of E∗ and being captured by attractor
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E0. The noise intensity when the initial intersection of confidence ellipse with
the boundary can be considered as a threshold of noise σ̃ (here, σ̃ ≈ 0.015). A
classic example that the stochastic trajectory leaves the attraction basin of E∗ and
converges to disease-free equilibrium E0 is shown in Figure 5(c) where σ = 0.05 > σ̃.

1.6 1.8 2 2.2 2.4 2.6 2.8 3

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

S

I

Figure 8. Stochastic states (blue) of model (2.4) and a confidence ellipse (green) for
σ = 0.005

4. Study of noise-induced transitions via confidence
band

According to the analysis in the section 2, when the parameter β is in the interval
(β∗, β

∗), stochastic model (2.4) exists a stable limit cycle Γ around unstable endemic
equilibrium E∗. Due to the presence of environmental noise, the random trajectory
will leave the deterministic limit cycle Γ and form a stochastic cycle, but the random
trajectory will remain in a small neighborhood of Γ for small noise (see Figure 10(a)-
(b)). For relatively large noise, the random trajectory will escape from the basin of
attraction of Γ and be attracted by attractor E0 (see Figure 10(c)-(d)). Stochastic
cycles of model (2.4) with σ = 0.005 for β1 = 0.233 and β2 = 0.235 are shown in
Figure 11. It is worth noting that under the influence of the same noise intensity,
the distribution of the stochastic cycle around Γ is nonuniform. The above dynamic
behavior can be explained by stochastic sensitivity function technique.

Then, we will construct the confidence band for the deterministic limit cycle of
model (2.4) by using SSF technique. To this end, let

G1(S, I) = Λ− βSI2 −mS − rSc,
G2(S, I) = βSI2 −mI − εI,
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Figure 9. Boundary of attraction basins (red dashed-dotted) and confidence ellipses
(green solid) for different noise intensity σ: 0.005 (small), 0.015 (middle), 0.02
(large)

and Γ(S(t), I(t)), t ∈ [0, T ] represent the limit cycle, where T is the period. We
obtain the following matrices:

G(t) =

 g11(t) g12(t)

g21(t) g22(t)

 , F (t) =

 f11(t) 0

0 f22(t)

 , S(t) = F (t)F (t)T ,

where
g11(t) = (−βI2 −m) |Γ, g12(t) = (−2βSI) |Γ,

g21(t) = (βI2) |Γ, g22(t) = (2βSI −m− ε) |Γ,

and
f11(t) = S |Γ, f22(t) = I |Γ .

From [3], µ(t) satisfies the boundary problem as follows:
dµ(t)

dt
= a(t)µ(t) + b(t),

µ(0) = µ(T ),

where

a(t) = 2g11(t)p2
1(t) + 2(g12(t) + g21(t))p1(t)p2(t) + 2g22(t)p2

2(t),

b(t) = f11(t)p2
1(t) + f22(t)p2

2(t).
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Here,

p1(t) =
G2(S, I)√

G2
1(S, I) +G2

2(S, I)

∣∣∣∣
Γ

, p2(t) = − G1(S, I)√
G2

1(S, I) +G2
2(S, I)

∣∣∣∣
Γ

are elements of a vector function p(t) = (p1(t), p2(t))T orthogonal to vector (G1(S, I),
G2(S, I))|Γ. It follows from [3] that the boundaries Γ1,2(t) of the confidence band
have the following explicit parametrical form:

Γ1(t) = Γ(t) + σk
√

2µ(t)p(t),

Γ2(t) = Γ(t)− σk
√

2µ(t)p(t).

where k = erf−1(P ). We take different β and plot the function cures µ(t, β) in
Figure 12. As seen, the stochastic sensitivity value tends to infinity as the parame-
ter β approaches β∗ = 0.233. This means that the stability of the stochastic cycle
will be greatly reduced, so that the noise-induced transitions will occur with high
probability. In Figure 13, limit cycle Γ (red line), the bundle of stochastic trajecto-
ries (blue line), and confidence band (green dashed) are demonstrated. Obviously,
the stochastic trajectories are distributed around Γ, and their probability of falling
inside the confidence band is 0.95. The influence of noise intensity on the size of
confidence band is shown in Figure 14. As noise intensity increases, the external
boundaries of the confidence band will gradually expand and eventually cross the
boundary into the attraction basin of disease-free equilibrium E0.

5. Discussion

Infectious diseases have always been the great enemy of human health. Through
out the history, the epidemics of infectious diseases have brought great disasters
to human survival and national economy. To study the propagation dynamics and
curb strategies of infectious diseases, the mathematical compartmental model is an
important method [4]. In this paper, we proposed a stochastic epidemic model and
studied noise-induced state shifts from an endemic equilibrium to a disease extinc-
tion equilibrium. The corresponding deterministic model can occur bistability (sta-
ble equilibria E∗, E0 or the limit cycle Γ). As the basic transmission rate β changes,
we observe the local bifurcations, and the stochastic sensitivity of equilibrium E∗
and limit cycle Γ increases sharply when the parameter β approaches β∗ and β∗,
respectively. The endemic and eradication region are clearly separated by boundary
(the stable manifold of E1). If the initial size of the sub-population is above the
boundary, then the disease becomes endemic or the number of infected individuals
varies periodically. On the contrary, if the initial size of the sub-population is below
the boundary, the disease eventually can be eradicated. However, this boundary
can be broken due to the noise fluctuations. The random trajectory may escape
from the basins of attraction of attractor (E∗ or Γ) and tend to the disease-free
equilibrium E0 (see Figures 5(c) and 10(c)).

We employ the SSF method to construct confidence ellipse for stochastic model
to probe the dynamic behaviors of noise-induced state shifts. For weak noise, the
confidence ellipse of E∗ near E∗ and completely belong to attraction basin of E∗ (see
Figure 9). However, the confidence ellipse gradually expands and enters into the
attraction basin of E0 as σ increases. The confidence ellipse crossing the boundary
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Figure 10. Phase trajectory and time series for stochastic model (2.4) with different
noise intensity: (a) and (b) σ = 0.005, (c) and (d) σ = 0.015
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Figure 11. Random trajectories of model (2.4) with σ = 0.005 and (a) β1 = 0.233,
(b) β2 = 0.235
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Figure 12. Stochastic sensitivity µ(t, β) of limit cycle Γ for β1 = 0.235 (sky blue
line), β2 = 0.234 (red line), β3 = 0.2335 (green line), β4 = 0.233 (blue line)
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Figure 13. Random trajectories (blue) of stochastic model (2.4) around determin-
istic limit cycle Γ (red) and confidence band (green) for σ = 0.005
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Figure 14. Deterministic cycle for β = 0.235 and external boundaries (green dashed)
of the confidence bands for σ = 0.007 (small), σ = 0.01 (middle), σ = 0.015 (large)

means that the stochastic trajectory with a high probability will escape the basin
of attraction of E∗ and localize near the E0 (see Figure 5(c)). From a biological
perspective, the environmental noise may be benefit to the disease controlling and
result in the steady state switching from endemic to disease eradicated. We also
constructed the confidence band for limit cycle Γ. The corresponding confidence
band assists us to determine the configurational arrangement of stochastic trajectory
near the deterministic limit cycle. Then, we study the phenomenon of noise-induced
state shifts from a limit cycle to a disease-free equilibrium via confidence band.
This paper extends the study of the asymptotic behavior of epidemic models and
assists us better understand the dynamics in a random sense. The method in the
paper allows to avoid time-consuming direct numerical simulations of the random
trajectories in studying noise-induced phenomena. In our future studies, we mainly
consider the change of stability of the attraction basin under the disturbance of
random factors.
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