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Spatial Dynamics of a Diffusive Prey-predator
Model with Stage Structure and Fear Effect∗

Nana Zhu1 and Sanling Yuan1,†

Abstract To understand the influence of fear effect on population dynamics,
especially for the populations with obvious stage structure characteristics, we
propose and investigate a diffusive prey-predator model with stage structure
in predators. First, we discuss the existence and stability of equilibrium of
the model in the absence of diffusion. Then, we obtain the critical conditions
for Hopf and Turing bifurcations. Some numerical simulations are also carried
out to verify our theoretical results, which indicate that the fear can induce
the prey population to show five pattern structures: cold-spot pattern, mixed
pattern with cold spots and stripes, stripes pattern, hot-spot pattern, mixed
pattern with hot spots and stripes. These findings imply that the fear ef-
fect induced by the mature predators plays an important role in the spatial
distribution of species.
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bifurcation, Turing bifurcation, Pattern formation.
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1. Introduction

For a long time, studying the dynamic behaviors of prey-predator models has been
a major topic in both ecology and evolutionary biology [23,26]. It has been long be-
lieved that the predators can impact prey populations only through directly killing.
However, many theoretical biologists [3,8,9] have argued that indirect effects caused
by the fear effect induced by predation may play a more important role on the prey
population.

Almost all animals respond risk caused by predators and show various anti-
predation behaviours such as adjusting foraging behaviors, changing their habitat
usage, guard and physiological changes [4, 13, 14, 17]. For example, the prey may
choose to give up the primal high-risk habitat and migrate to the low-risk habi-
tat, when they feel risk caused by predators [4], which can cause a large loss if
the quality of the low-risk habitats is worse than that of the primal one. In addi-
tion, individuals at different stages may be exposed to different levels of risk and
therefore react differently. For example, breeding birds will fly away from nests,

†the corresponding author.
Email address: Sanling@usst.edu.cn (S. Yuan), Nana zhu95@163.com (N.
Zhu)

1College of Science, University of Shanghai for Science and Technology, Shang-
hai 200093, China
∗The authors were supported by National Natural Science Foundation of China
(No. 12071293).

http://dx.doi.org/10.12150/jnma.2022.392


Spatial Dynamics of a Diffusive Prey-predator Model 393

leaving immature birds in danger and taking less care of them, as the mature bird-
s feel dangerous. Even the transient absence of mature birds may lower survival
probability of immatures, because immatures may undergo less suitable living en-
vironment and face more higher risk of predators [4]. In that case, although the
odds of survival for mature birds have increased in short-term, the whole fitness
of birds species will decrease, because the fear by predation may cause a reduction
in their reproduction [20]. Zanette [24] also conducted some field experiments on
song sparrows throughout the breeding season, using electric fences to test direct
predation on both young and adult song sparrows. There is no directly killing in
all experiments, but the vocal cues of the predators broadcast were used to imitate
predation risk in the wild. They tested two groups of female song sparrows, among
which one group was exposed to the predator sounds, and the other one was not.
The researchers [24] found the one exposed to the predators voice reduced 40 per-
cent fewer offspring than the other group, because fewer eggs were laid and fewer
nestlings survived. Therefore, the anti-predator behaviour of prey may be helpful
in increasing the probability of survival in a short term, but can cause large costs
on reproduction in the long term [4].

On the other hand, the predators may also exhibit different predation abilities at
different stage of their growth. For example, there exists a type lion living in South
America. Only the mature lions can attack and capture buffaloes as their food, while
the immature lions get living resources depending on their parents because they
have no ability to attack the buffaloes until they become almost one year old [15].
Notice that in this situation, the fear perceived by prey is only from the mature
predators. Therefore, it is essential to divide the predator individuals into different
stages when modeling the interaction dynamics between prey and predators. As
far as we know, the models with stage structure in prey-predator population have
been widely investigated in the following pieces of literature (see e.g., [1, 5, 10,25]).
However, there are relatively few investigations for the stage structure predator-
prey models with fear effect, especially for the diffusive predator-prey models with
both fear effect and stage structure in predators. To this end, in this paper, we will
focus on exploring the influence of fear induced by mature predators on the spatial
distribution of prey species by discussing a diffusive prey-predator model with stage
structure in predators.

Let u(x, t), v1(x, t), and v2(x, t) be respectively the densities of the prey, the
juvenile and mature predators at position x and time t. We suppose the prey
population grows logistically in the absence of predators, i.e., the per capital rate
of prey is r

(
1 − u

m

)
, where r is the intrinsic growth rate of the prey, m is the

environmental carrying capacity for the prey population. The mature predators
catch the prey by complying with Holling-type II functional response auv2

b+u [6], where
a stands for the maximal prey consumption rate of a mature predator individual, b
represents the half-saturation constant. Since only the mature predators can attack
the prey species, the fear perceived by prey is just from the mature predators.
Thus, the fear function can be written as 1

1+k1v2
, where k1 stands for the fear

level, and therefore, the prey population grows with the rate of ru
1+k1v2

(
1 − u

m

)
.

Assume that c is the per capita birth rate of predators, then cauv2
b+u describes the

birth rate of the juvenile predators. As we know, not all the juvenile predators can
mature into adults, say the lions in South America we have mentioned above. We
suppose the maturation rate of the juvenile predators as α and their death rate is
q1. Moreover, following [2], we assume that the death rate of mature predators is
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mainly dominated by their crowding effect, i.e., the mature predators die at rate
q2v

2
2 . It is well-known that, in the real ecosystem, both the prey and the predators

move randomly and their densities and distributions depend on the location [21].
Therefore, it is necessary to consider the diffusion of the individuals into our model,
and suppose the self-diffusion coefficients of the prey, juvenile and mature predators
are respectively d11, d22 and d33. Biologically, we assume that all the parameters
above are positive. Our model can be formulated as follows:

∂u

∂t
= d114u+

ru

1 + k1v2

(
1− u

m

)
− auv2

b+ u
, x ∈ Ω, t > 0,

∂v1

∂t
= d224v1 +

cauv2

b+ u
− (α+ q1)v1, x ∈ Ω, t > 0,

∂v2

∂t
= d334v2 + αv1 − q2v

2
2 , x ∈ Ω, t > 0,

∂u

∂~v
= 0,

∂v1

∂~v
= 0,

∂v2

∂~v
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v1(x, 0) = v10(x) ≥ 0, v2(x, 0) = v20(x) ≥ 0, x ∈ Ω, t > 0.
(1.1)

It is model (1.1) that will be investigated in this paper.
The rest of this paper is organized as follows: In Section 2, we analyze the

existence and local stability of equilibria and the related bifurcations of the model
(1.1) in the absence of diffusion. In Section 3, we mainly consider the dynamic
behaviours of the model with reaction-diffusion and deduce the condition for Turing
instability. In Section 4, some numerical simulations are performed to verify the
theoretical results we obtain. The results may reveal some potential patterns that
are caused by fear induced by mature predators. We end this paper by Section 5,
consisting of some conclusions and some discussions on the biological significance
of our results as well as possible future investigations.

2. Prey-predator model (1.1) without diffusion

In this section, we investigate the temporal version of model (1.1) as follows:

du

dt
=

ru

1 + k1v2

(
1− u

m

)
− auv2

b+ u
,

dv1

dt
=
cauv2

b+ u
− (α+ q1)v1,

dv2

dt
= αv1 − q2v

2
2 .

(2.1)

2.1. Existence of equilibria

Obviously, model (2.1) has three types physical equilibria:

(i) Trivial equilibrium E0(0, 0, 0), which always exists;

(ii) The prey only equilibrium E1(m, 0, 0);

(iii) Coexistence equilibrium E∗(u∗, v∗1 , v
∗
2), if exists, satisfies

u∗ =
(α+ q1)bq2v

∗
2

αac− (α+ q1)q2v∗2
, v∗1 =

q2v
∗2
2

α
. (2.2)
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Figure 1. The graphs of functions f(v2) and g(v2); The blue curve stands for f(v2); The red curve
represents g(v2); The black curve stands for v2 = αac

(α+q1)q2
; The parameters are set as r = 1.2, k1 =

0.3,m = 9, a = 0.2, b = 1, c = 0.8, α = 0.7, q1 = 0.01, q2 = 0.01.

Additionally, v∗2 can be solved from

(αac− (α+ q1)q2v2)v2

αbc
=

rmαac− (α+ q1)(m+ b)q2rv2

m(1 + k1v2)(αac− (α+ q1)q2v2)
. (2.3)

Clearly, (2.3) can be written as the following form:

(αac− (α+ q1)q2v2)2(1 + k1v2)mv2

αbc
= rmαac− (α+ q1)(m+ b)q2rv2. (2.4)

Denote

f(v2) =(αac− (α+ q1)q2v2)2(1 + k1v2)mv2, (2.5)

g(v2) =αbc(rmαac− (α+ q1)(m+ b)q2rv2). (2.6)

Notice first from (2.2) that u∗ > 0, if and only if 0 < v∗2 < v̄2 := αac
(α+q1)q2

and g(v2)

is a decreasing function with horizontal intercept ṽ2 := mαac
(m+b)(α+q1)q2

. It is easy

to check that ṽ2 < v̄2. Then, the existence and number of coexistence equilibria
can be determined by discussing the intersection of curves f(v2) and g(v2) over the
interval (0, ṽ2). Since f(0) = 0 < (αc)2abrm = g(0) and f(ṽ2) > 0 = g(ṽ2), the
curves f(v2) and g(v2) have at least one intersection in (0, ṽ2). That is, model (2.1)
has at least one coexistence equilibrium.

In Figure 1, we present a representative illustration of the coexistence equilibri-
um of model (2.1) for a set of fixed parameter values. The blue line stands for the
curve of f(v2), the red line represents the curve of g(v2) and the black vertical line
is v2 = v̄2. The intersection of the blue and red curves is v∗2 and model (2.1) has
exactly one coexistence equilibrium E∗(u∗, v∗1 , v

∗
2).

To summarize, we have the following result.

Theorem 2.1. Model (2.1) always has a trivial equilibrium E0(0, 0, 0), a prey only
equilibrium E1(m, 0, 0) and at least one coexistence equilibrium E∗(u∗, v∗1 , v

∗
2).

2.2. Stability of equilibria

The Jacobian matrix at any equilibrium E(u, v1, v2) is given by

J(E) =


a11 0 a13

a21 a22 a23

0 a32 a33

 ,
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where

a11 =
r

1 + k1v2
− 2ru

m(1 + k1v2)
− abv2

(b+ u)2
,

a13 =− k1ru

(1 + k1v2)2

(
1− u

m

)
− au

b+ u
,

a21 =
abcv2

(b+ u)2
, a22 = −(α+ q1),

a23 =
acu

b+ u
, a32 = α, a33 = −2q2v2.

Now, we state the stability of the equilibria in following theorems.

Theorem 2.2. The equilibrium E0(0, 0, 0) is always unstable.

Proof. Direct calculations lead to that the eigenvalues of Jacobian matrix J(E0)
are

λ1 = r > 0, λ2 = −(α+ q1) < 0, λ3 = 0, (2.7)

which indicates that E0(0, 0, 0) is always unstable.

Theorem 2.3. The equilibrium E1(m, 0, 0) is always unstable.

Proof. Direct calculations lead to that the eigenvalues of Jacobian matrix J(E1)
are

λ1 =− r < 0,

λ2 =
−(α+ q1) +

√
(α+ q1)2 + 4αacm(α+q1)

b+m

2
> 0,

λ3 =
−(α+ q1)−

√
(α+ q1)2 + 4αacm(α+q1)

b+m

2
< 0.

Thus, the equilibrium E1(m, 0, 0) is always unstable.
At the positive equilibrium E∗(u∗, v∗1 , v

∗
2), the characteristic equation has the

form
λ3 +Aλ2 +Bλ+ C = 0, (2.8)

where

A =
r(2u∗ −m)

m(1 + k1v∗2)
+

abv∗2
(b+ u∗)2

+ (α+ q1 + 2q2v
∗
2),

B =(α+ q1 + 2q2v
∗
2)
{ r(2u∗ −m)

m(1 + k1v∗2)
+

abv∗2
(b+ u∗)2

}
+ 2q2(α+ q1)v∗2 −

αacu∗

b+ u∗
,

C =
αacru∗(m− 2u∗)

m(1 + k1v∗2)(b+ u∗)
+

αabck1ru
∗v∗2

(1 + k1v∗2)2(b+ u∗)2

(
1− u∗

m

)
− 2(α+ q1)q2v

∗
2

{ r

1 + k1v∗2
− 2ru∗

m(1 + k1v∗2)
− abv∗2

(b+ u∗)2

}
.

From Routh-Hurwitz criteria, we know that equation (2.8) will have negative roots
or the roots with negative real parts, if

A > 0, C > 0, AB − C > 0. (2.9)

Then, we have the following theorem.
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Theorem 2.4. The positive equilibrium E∗(u∗, v∗1 , v
∗
2) is local stable, if the condi-

tions in (2.9) are satisfied. Otherwise, it is unstable.

In what follows, we discuss Hopf bifurcation for model (2.1) for the interior equi-
librium point E∗(u∗, v∗1 , v

∗
2) [11]. We will choose the fear level k1 as the bifurcation

parameter.

Theorem 2.5. The model (2.1) will undergo Hopf bifurcation around the interior
equilibrium E∗(u∗, v∗1 , v

∗
2), when parameter k1 crosses the critical value k1 = k∗1 ,

and the following conditions are satisfied:

(1) A(k∗1), C(k∗1) > 0;

(2) A(k∗1)B(k∗1)− C(k∗1) = 0;

(3) C ′(k∗1)−A′(k∗1)B(k∗1)−A(k∗1)B′(k∗1) 6= 0.

Proof. As we know, Hopf bifurcation occurs when the characteristic equation
has a pair of pure imaginary roots. Then, to determine the condition where Hopf
bifurcation occurs for model (2.1), we assume that at the critical value k1 = k∗1 , the
roots of the characteristic equation (2.8) can be expressed as

λ1(k1) = iφ1(k∗1), λ2(k1) = −iφ1(k∗1), λ3(k1) = −φ2(k∗1).

Substituting λ1(k∗1) = iφ1(k∗1) into equation (2.8) and separating the real and imag-
inary components, we can get{

−A(k∗1)φ2
1(k∗1) + C(k∗1) = 0,

−φ3
1(k∗1) +B(k∗1)φ1(k∗1) = 0.

(2.10)

Solving (2.10), we obtain {
φ2

1(k∗1) =
C(k∗1 )
A(k∗1 ) ,

φ2
1(k∗1) = B(k∗1),

(2.11)

which indicates
C(k∗1 )
A(k∗1 ) = B(k∗1), i.e., A(k∗1)B(k∗1)− C(k∗1) = 0.

Now, we begin to examine the transversality condition. From (2.8), we have

d

dk1

[
Re(λ(k1))

]
k1=k∗1

=
B(k∗1)C ′(k∗1)−A′(k∗1)B2(k∗1)−A(k∗1)B(k∗1)B′(k∗1)

2(B2(k∗1) +A2(k∗1)B(k∗1))
,

=
C ′(k∗1)−A′(k∗1)B(k∗1)−A(k∗1)B′(k∗1)

2(B(k∗1) +A2(k∗1))
.

Then, when C ′(k∗1)−A′(k∗1)B(k∗1)−A(k∗1)B′(k∗1) 6= 0, the transversality condition
is satisfied.

3. Reaction-Diffusion prey-predator model

In the section, we perform the linear stability analysis for model (1.1) to discuss
the influence of fear level on the spatiotemporal patterns of populations [12].
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The linearized system of (1.1) at E∗(u∗, v∗1 , v
∗
2) can be given by

∂u(x, t)

∂t
= d114u(x, t) + a11u(x, t) + a13v2(x, t), x ∈ Ω, t > 0,

∂v1(x, t)

∂t
= d224v1(x, t) + a21u(x, t) + a22v1(x, t) + a23v2(x, t), x ∈ Ω, t > 0,

∂v2(x, t)

∂t
= d334v2(x, t) + a32v1(x, t) + a33v2(x, t), x ∈ Ω, t > 0,

∂u

∂~v
= 0,

∂v1

∂~v
= 0,

∂v2

∂~v
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v1(x, 0) = v10(x) ≥ 0, v2(x, 0) = v20(x) ≥ 0, x ∈ Ω, t > 0,
(3.1)

where aij(i, j = 1, 2, 3) is evaluated at E∗(u∗, v∗1 , v
∗
2).

Let

u(x, t) = Ueλt cos kx, v1(x, t) = V1e
λt cos kx, v2(x, t) = V2e

λt cos kx,

and substitute them into the system (3.1). Then, we can obtain the characteristic
equation of (3.1)

λ3 +Dkλ
2 + Ekλ+ Fk = 0, (3.2)

where

Dk =(d11 + d22 + d33)k2 − (a11 + a22 + a33),

Ek =(d11k
2 − a11)(d22k

2 − a22) + (d11k
2 − a11)(d33k

2 − a33)

+ (d22k
2 − a22)(d33k

2 − a33)− a23a32,

Fk =(d11k
2 − a11)(d22k

2 − a22)(d33k
2 − a33)

− (d11k
2 − a11)a23a32 − a13a21a32.

In the rest of this section, we focus on Turing instability analysis [18,22]. Turing
theory implies that Turing instability occurs, if the constant equilibrium E∗ is stable
for model (2.1), and unstable for model (1.1). Therefore, in what follows, we assume
that (2.9) holds.

When one of the eigenvalues passes through zero, the real parts of other two
eigenvalues remain negative, Turing instability emerges [7]. Without any loss of

generality, we use λ̃1, λ̃2 and λ̃3 to represent the roots of the characteristic equation
(3.2). Then, we obtain

λ̃1 + λ̃2 + λ̃3 =−Dk,

λ̃1λ̃2 + λ̃2λ̃3 + λ̃1λ̃3 =Ek,

λ̃1λ̃2λ̃3 =− Fk.

We use kT to denote the critical wave number at Turing bifurcation threshold.
Therefore, at the critical wave number k = kT , we assume

λ̃1 |k2=k2T
= 0, Re(λ̃2) |k2=k2T

< 0 and Re(λ̃3) |k2=k2T
< 0. (3.3)

Thus, we can get Fk = 0 at the critical wave number k = kT . Further, the conditions
for Turing instability presented in (3.3) lead to Dk > 0, Ek > 0 and DkEk − Fk =
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DkEk > 0. Therefore, the coexistence steady state E∗ is Turing unstable, when
Fk < 0 holds for at lease one k > 0. Also, besides Turing bifurcation threshold,
there exists a range k-values around kT for which the inequality Fk < 0 can hold
true.

Let Fk = h(k2), then we have

h(k2) = Ã · (k2)3 + B̃ · (k2)2 + C̃ · k2 + D̃, (3.4)

where

Ã =d11d22d33,

B̃ =
{ 2ru∗

m(1 + k1v∗2)
+

abv∗2
(b+ u∗)2

− r

1 + k1v∗2

}
d11d22

+ (α+ q1)d11d33 + 2q2v
∗
2d11d22,

C̃ =
{ 2ru∗

m(1 + k1v∗2)
+

abv∗2
(b+ u∗)2

− r

1 + k1v∗2

}
{(α+ q1)d33 + 2q2v

∗
2d22}

+
{

2q2v
∗
2(α+ q1)− αacu∗

b+ u∗
}
d11,

D̃ =
αacru∗(m− 2u∗)

m(1 + k1v∗2)(b+ u∗)
+

αabck1ru
∗v∗2

(1 + k1v∗2)2(b+ u∗)2

(
1− u∗

m

)
− 2(α+ q1)q2v

∗
2

{ r

1 + k1v∗2
− 2ru∗

m(1 + k1v∗2)
− abv∗2

(b+ u∗)2

}
.

As E∗ is assumed to be stable, we have h(0) = D̃ > 0. Furthermore, Ã =
d11d22d33 > 0 for positive diffusion coefficients, then h(k2)→∞ as k →∞. Hence,
we need to find a little neighbourhood that has h(k2) < 0, and Turing instability
occurs at that time. If so, there should exist a local minimum value on 0 < k2 <∞,
and the minimum value should be less than zero. To achieve Turing instability, we
seek kT1

and kT2
which satisfy

dh(k2
T1

)

dk2
T1

=
dh(k2

T2
)

dk2
T2

= 0, (3.5)

with kT2
> 0,

h(k2
T2

) ≤ 0. (3.6)

Solving
dh(k2T2

)

dk2T2
= 0, we obtain the formula for kT1

and kT2
in the terms of Ã,

B̃, C̃, which are given by

k2
T1

=
−B̃ −

√
B̃2 − 3ÃC̃

3Ã
, (3.7)

k2
T2

=
−B̃ +

√
B̃2 − 3ÃC̃

3Ã
. (3.8)

To make sure that both k2
T1

and k2
T2

are real numbers, then we can get B̃2−3ÃC̃ > 0.

In order to ensure k2
T2

> 0, we consider two cases: (i) if B̃ > 0, then we require
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C̃ < 0; (ii) if B̃ ≤ 0, then we require C̃ < B̃2

3Ã
. Assuming one of these cases holds

and substituting kT2
given by (3.8) into (3.4), and we get

h(k2
T2

) =
2B̃2 − 9ÃB̃C̃ − 2(B̃2 − 3ÃC̃)

3
2 + 27D̃Ã2

27Ã2
. (3.9)

Therefore, we obtain the Turing bifurcation condition as

2B̃2 − 9ÃB̃C̃ − 2(B̃2 − 3ÃC̃)
3
2 + 27D̃Ã2 ≤ 0. (3.10)

Then, we have the following theorem.

Theorem 3.1. If (3.10) can hold, model (1.1) undergoes Turing instability at
E∗(u∗, v∗1 , v

∗
2).

4. Numerical Simulations

In order to verify our theoretical results, we choose a two-dimensional space with
200×200 grids. We employ the non-zero initial and Neumann boundary conditions
to conduct all our numerical simulations. We set the space step and time step as
4h = 1, 4t = 0.002. The initial density distributions are random spatial distribu-
tions of the species. In model (1.1), k1 denotes the fear level induced by the mature
predators, and d33 stands for the diffusion coefficient of the mature predators. In
this section, we will show the effect of the fear level induced by the mature predators
and the diffusion coefficient of the mature predators on pattern formation. During
the process of numerical simulations, the prey and predators always exhibit the
same pattern structures. Hence, we only show the spatial distribution of the prey
populations.

4.1. The effect of the varied k1 on pattern formation

In this subsection, we fix a = 0.2, b = 1, c = 0.8, q1 = 0.01, q2 = 0.01, α = 0.7,m =
9, r = 1.2, d11 = 0.2, d22 = 0.1, d33 = 20, and we choose different k1 to observe the
dynamic behavior of model (1.1). We find that for different fear levels, there are five
basic types of pattern structures: cold-spot pattern, mixed pattern with cold spots
and stripes, stripes pattern, hot-spot pattern and mixed pattern with hot spots and
stripes.

When k1 = 0.027, E∗(u∗, v∗1 , v
∗
2) = (3.730, 2.211, 12.440), and in the meantime

the roots of equation (2.8) are −0.0217±0.0965i,−0.8730, where i is the imaginary
unit and i2 = −1. That is, E∗(u∗, v∗1 , v

∗
2) is linearly stable for the temporal version

of model. However, equation (3.2) has a positive root, when the wave number
k belongs to (0.125, 0.437), which indicates that Turing patterns will occur. The
spatiotemporal patterns of prey are shown in Figure 2, the prey populations show
a cold-spot pattern, which suggests the prey species have lower population density
and they will have less biological activities in the cold-spot domain.

As the fear level k1 increases, for example, when k1 = 0.05, E∗(u∗, v∗1 , v
∗
2) =

(0.899, 0.797, 7.467), the roots of equation (2.8) are 0.1094, 0.1418 and −0.8256, and
equation (3.2) has a positive root, when the wave number k belongs to (0.0563, 1.1914).
We present the evolution of prey in Figure 3, from which we can see that the mixed
form of stripe patterns and cold spots emerges gradually, when t = 100 and presents
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t = 0 t = 400 t = 510

t = 600 t = 808 t = 1500

Figure 2. Evolution of the prey population at different instants with parameters k1 = 0.027, a =
0.2, b = 1, c = 0.8, q1 = 0.01, q2 = 0.01, α = 0.7,m = 9, r = 1.2, d11 = 0.2, d22 = 0.1, d33 = 20

clearly, when t = 600. The mixed form is completely stable as t = 1500. When the
fear level k1 = 0.08, E∗(u∗, v∗1 , v

∗
2) = (0.633, 0.535, 6.117) and equation (3.2) has a

positive root, when the wave number k belongs to (0.0703, 1.0779). The evolution
of prey is presented in Figure 4, from which we can see that the labyrinth pattern
emerges gradually, when t = 160 and presents clearly, when t = 800. The labyrinth
pattern is completely stable as t = 1500. The dynamic behaviour of model (1.1)
shows a change from spot-stripe growth to stripe pattern as k1 increases gradually
like a labyrinth, i.e., cold-spot fades away and stripe pattern appears gradually.

As the fear level k1 increases into 0.135, the equilibrium E∗(u∗, v∗1 , v
∗
2) = (0.46,

0.35, 4.97) and the roots of equation (2.8) are 0.0817± 0.1202i and −0.7949, and e-
quation (3.2) has a positive root, when the wave number k belongs to (0.0819, 0.9392).
In this case, interesting situations occur. We present the evolution of prey in Figure
5, from which we can see that hot spots seem to present when t = 80, but almost
disappear, when t = 120. When t = 260, hot spots present again, but almost dis-
appear, when t = 284. Hot spots pattern present stable ultimately, when t = 1500.
As k1 increases into 0.135, stripes have disappeared, and hot spots have emerged
in the meantime. The circumstance indicates that the prey population gathers in
the regions. From biological significance, the regions where the prey is plentiful are
called colonies. They are ordinary in ecological models, as the colony formation
allows the populations to be more effective in reproduction, feeding and defending
risks.

When the fear level k1 reaches 0.14, E∗(u∗, v∗1 , v
∗
2) = (0.45, 0.34, 4.90) and the

roots of equation (2.8) are 0.0801± 0.1211i and −0.7939, and equation (3.2) has a
positive root, when the wave number k belongs to (0.0826, 0.9295), Turing pattern
is different from the above discussion again. In Figure 6, when t = 360, hot stripes
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t = 0 t = 42 t = 86

t = 100 t = 600 t = 1500

Figure 3. Evolution of the prey population at different instants with parameters k1 = 0.05, a = 0.2, b =
1, c = 0.8, q1 = 0.01, q2 = 0.01, α = 0.7,m = 9, r = 1.2, d11 = 0.2, d22 = 0.1, d33 = 20.

t = 0 t = 50 t = 80

t = 160 t = 800 t = 1500

Figure 4. Evolution of the prey population at different instants with parameters k1 = 0.08, a = 0.2, b =
1, c = 0.8, q1 = 0.01, q2 = 0.01, α = 0.7,m = 9, r = 1.2, d11 = 0.2, d22 = 0.1, d33 = 20
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t = 0 t = 60 t = 80

t = 120 t = 228 t = 260

t = 284 t = 1000 t = 1500

Figure 5. Evolution of the prey population at different instants with parameters k1 = 0.135, a =
0.2, b = 1, c = 0.8, q1 = 0.01, q2 = 0.01, α = 0.7,m = 9, r = 1.2, d11 = 0.2, d22 = 0.1, d33 = 20
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t = 0 t = 60 t = 360

t = 404 t = 494 t = 1502

t = 2026 t = 4760 t = 5000

Figure 6. Evolution of the prey population at different instants with parameters k1 = 0.14, a = 0.2, b =
1, c = 0.8, q1 = 0.01, q2 = 0.01, α = 0.7,m = 9, r = 1.2, d11 = 0.2, d22 = 0.1, d33 = 20.
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t = 0 t = 148 t = 190

t = 452 t = 734 t = 1832

t = 1854 t = 1922 t = 1948

Figure 7. Evolution of the prey population at different instants with parameters k1 = 0.3, a = 0.2, b =
1, c = 0.8, q1 = 0.01, q2 = 0.01, α = 0.7,m = 9, r = 1.2, d11 = 0.2, d22 = 0.1, d33 = 20.

seem to present. However, when t = 404, Turing pattern seems to become hot
spots. Gradually increase over time, hot stripes present again, when t = 1502.
Turing pattern present stable ultimately, when t = 5000. From Figure 6, we can
see that hot spot also exists, but in the meantime some stripes have emerged, i.e.,
mixed pattern with hot spots and stripes.

On the above analysis, we have considered the situation where the fear level k1 is
smaller, and we can see the model shows abundant kinetics phenomenon. However,
when k1 becomes a little bigger, what behaviour will happen? We have also done
some numerical simulations, which indicates that when k1 > 0.3, Turing pattern
will disappear. The results presented in Figure 7 show that the densities of preys
and predators change periodically over time.

4.2. The effect of the varied d33 on pattern formation

In biology, self-diffusion is one of the vital factors causing Turing instability for
model (1.1). In this subsection, we consider self-diffusion of mature predators and
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d33 = 10 d33 = 100 d33 = 300

Figure 8. The three categories of Turing pattern of the prey population at t = 1000 with different
self-diffusion of the mature predators d33. Fixing a = 0.2, b = 1, c = 0.8, q1 = 0.01, q2 = 0.01, α =
0.7,m = 9, r = 1.2, k1 = 0.028, d11 = 0.2, d22 = 0.1, t = 1000, and we choose different d33 to observe
the patterns.

conduct some numerical simulations. We fix a = 0.2, b = 1, c = 0.8, q1 = 0.01, q2 =
0.01, α = 0.7,m = 9, r = 1.2, d11 = 0.2, d22 = 0.1, and select different values
d33 = 10, 100, 300 to observe the results. From Figure 8, we can see that as the
increase of the self-diffusion of mature predators, the cold spots become fewer but
bigger. As the increase of diffusion coefficients of the mature predators, the prey
populations are more tightly packed together. Therefore, we can observe that the
population density of prey becomes even enhanced, but the size of spots becomes
bigger. This phenomenon suggests that when the diffusion coefficient of the mature
predators becomes faster, which can impact on the densities of the prey species, the
prey will tend to bond more closely to defend the predation from mature predators.

5. Conclusion and discussion

In this paper, we consider a fearful predator-prey model in which the predators are
divided into juvenile and mature predators. The fear perceived by prey is assumed
to only come from the mature predators. In the absence of diffusion, we discuss
the existence and stability of equilibria of the temporal model. Also, we deduce the
critical conditions of Hopf bifurcation for model (1.1) without diffusion and Turing
bifurcation for model (1.1).

We choose the fear level k1 induced by the mature predators as bifurcation
parameter to reveal the influences of model (1.1) on the pattern dynamics. More
specifically, when the fear level k1 = 0.027, model (1.1) presents cold spot pattern
as shown in Figure 2, when k1 = 0.05, prey presents cold spot-stripe pattern as
shown in Figure 3. When k1 = 0.08, prey shows labyrinth pattern as shown in
Figure 4; When k1 = 0.135, prey presents hot spot pattern as shown in Figure 5,
which suggests that the prey population is concentrated, and in this way, the prey
can spawn and guard together, which pattern may be helpful for the living of the
prey population. When k1 = 0.14, model (1.1) presents hot spot-stripe pattern
as shown in Figure 6. When k1 = 0.3, model (1.1) cannot present pattern, but
the densities of prey and predators change periodically over time, which indicates
when k1 is large, Hopf bifurcation is dominant in the dynamic behaviors of model
(1.1). Additionally, in the real world, self-diffusion of the mature predators is one of
the vital factors affects pattern formation. Therefore, we also choose d33 to conduct
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numerical simulations. From Figure 8, we can see that the spot patterns grow larger
in size, but become far fewer in number as d33 increases. This suggests the prey
tends to scatter less, as the mature predators disperse more efficiently.

The results obtained in this paper can help one better understand the dynamic
behaviors of prey-predator model and enrich the research of pattern formation.
However, further analysis are also necessary to study the dynamic behaviour of
more complex spatial models such as stage-structured prey-predator models with
delay, noise, cross-diffusion or other terms [16,19].
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