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Abstract In this paper, we consider a class of third-order neutral impulsive
differential equations. An equivalent class of neutral differential equations is
obtained by using a suitable substitution. Some new oscillation results are
proved. Moreover, we discuss the asymptotic behavior of the solution. The
results presented here are illustrated via examples.
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1. Introduction

Here, we establish the oscillation results for the following model of neutral impulsive
differential equation of order three:

(
s1(t)υ(2)(t)

)(1)
+ s2(t)u(1)(η2(t)) = 0, t 6= tp,

u(r)(tp)− u(r)(t−p ) = dpu
(r)(t−p ), r = 0, 1, 2,

p = 1, 2, 3, . . . ,

(1.1)

where υ(t) = u(t)+αu(η1(t)), η1(t) ≤ t, η2(t) ≤ t, t > t0, α > 0, and υ(r)(t) denotes
the derivative of order r with respect to t.

It is well-known that the motions on the earth are not always uniform, as various
kinds of resistance appear during the motions. For example, suppose high-intensity
forces act for a short duration of time. In that case, motions caused by these forces
are called impulsive motions, and the differential equations describing these motions
are called impulsive differential equations.

The differential equations with impulsive effect can be used to simulate those
discontinuous processes in which impulses occur. Therefore, it has become an im-
portant tool to handle the real process of mathematical models and phenomena

†the corresponding author.
Email address: araheem.iitk3239@gmail.com (A. Raheem), areefakha-
toon@gmail.com (A. Khatoon), afreen.asma52@gmail.com (A. Afreen)

1Department of Mathematics, Aligarh Muslim University, Aligarh–202002, In-
dia
∗The authors were supported by University Grant Commission (UGC), In-
dia (Grant Nos. MANF F.82-27/2019 (SA-III)/4453, F.82-27/2019 (SA-
III)/191620066959).

http://dx.doi.org/10.12150/jnma.2022.475


476 A. Raheem, A. Afreen & A. Khatoon

such as optimal control, electric circuit, biotechnology, population dynamics, frac-
tals, neural network, viscoelasticity and chemical technology. For more details on
impulsive differential equations, please refer to [15]. One of the main advantages of
the impulses can be seen in [23], as they provided the model in which the mass point
might oscillate in the presence of impulsive effect and in the absence of impulsive
effect, the mass point did not oscillate. For more work on impulsive effect, please
refer to [7, 14,19].

In 1989, some researchers started to investigate the oscillatory nature of differ-
ential equations with impulses, and they were at the initial stage of development.
Later on, the authors of [7,9–11,18,23] extended the study of oscillation to parabolic
and hyperbolic impulsive partial differential equations. A hybrid evolution system
with impulsive conditions has been studied by Sadhasivam and Deepa [21]. In the
last few decades, many researchers [2, 4, 13, 20, 22, 25, 29] have applied the Riccati
technique to the study of the oscillatory behavior for various types of second-order
differential equations. Some works on the oscillatory and asymptotic behavior of
the solutions to higher-order impulsive differential equations have been carried out
in [8, 16, 27]. Li [16] investigated the oscillatory and asymptotic behavior of the
solutions to a higher-order delay differential equation with impulses by using com-
parison results with an associated non-impulsive delay differential equation.

Basic definitions and results on oscillation for neutral type differential equations
can be found in [5,15]. Due to the wide applicability of neutral differential equation-
s in various fields of science and engineering, there is a great interest in obtaining
new oscillation criteria for a different types of differential equations (see, for in-
stance, [2–4,6,12,13,17,22,25,26,29]). We have often seen that even non-impulsive
neutral delay differential equations may have solutions of oscillatory nature due to
some additional control. An improved sufficient condition for the oscillation and
asymptotic stability has been obtained in this paper [26]. Guan and Shen [12] ex-
amined the oscillation criteria of a first-order impulsive differential equation with
variable delays. Oscillation theorems for third-order delay differential equations
were discussed by Tiryaki and Aktas [24]. Arul and Shobha [2] generalized neutral
differential equations of order two and presented some new oscillation criteria by
using Riccati transformation under some conditions.

Recently, Zhang and Li [28] have studied the oscillatory behaviour of the solu-
tions to second-order impulsive neutral dynamic system with positive and negative
coefficients. Moreover, in [22], the authors have presented some new necessary
and sufficient conditions for the oscillation of a class of second-order neutral delay
impulsive differential equations.

Motivated by all the above works, we obtain some new oscillation results of
impulsive neutral differential equations of order three by converting them to the
non-impulsive neutral differential equations. Also, there are only a few papers that
deal with this technique.

The rest of this paper is organized as follows. Section 2 contains some basic
lemmas and assumptions, which are required for the next sections. In Section 3,
some new-type oscillation results are obtained for problem (1.1) by using Riccati
transformation. In the last section, the results are illustrated by examples.

2. Preliminaries and assumptions

Throughout the paper, we consider the following assumptions:
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(C1) The functions sr : (t0,∞) → R+, r = 1, 2 are continuous, and there exists
G > 0 such that s1(t) ≤ G.

(C2) ηr : (t0,∞) → R, r = 1, 2 are continuous functions with the following condi-
tions:

(i) η1(t) ≤ t, η2(t) ≤ t, η1(η2(t)) = η2(η1(t));

(ii) η
(1)
1 (t) = η

(1)
2 (t) = 1;

(iii) lim
t→∞

η1(t) =∞, lim
t→∞

η2(t) =∞.

Lemma 2.1. ζ(t) =
∏

t0<tp≤t
(1 + dp)

−1u(t) satisfies

(
s1(t)V (2)(t)

)(1)
+ s2(t)

∏
η2(t)<tp≤t

(1 + dp)
−1ζ(1)(η2(t)) = 0, (2.1)

where

V (t) = ζ(t) + α
∏

η1(t)<tp≤t

(1 + dp)
−1ζ(η1(t)), (2.2)

if u(t) satisfies (1.1) on the interval (t0,∞).

Proof. Let ζ(t) =
∏

t0<tp≤t
(1 + dp)

−1u(t) satisfy (2.1). Then, we will show that

u(t) satisfies (1.1) on the interval (t0,∞).
Obviously,

u(t) =
∏

t0<tp≤t

(1 + dp)ζ(t) and υ(t) =
∏

t0<tp≤t

(1 + dp)V (t).

Thus, (
s1(t)υ(2)(t)

)(1)
=

∏
t0<tp≤t

(1 + dp)
(
s1(t)V (2)(t)

)(1)
.

Using (2.1), we get(
s1(t)υ(2)(t)

)(1)
=

∏
t0<tp≤t

(1 + dp)
(
− s2(t)

∏
η2(t)<tp≤t

(1 + dp)
−1ζ(1)(η2(t))

)
= −s2(t)

∏
t0<tp≤η2(t)

(1 + dp)ζ
(1)(η2(t)).

Therefore, for t 6= tp, we have(
s1(t)υ(2)(t)

)(1)
+ s2(t)u(1)(η2(t)) = 0.

Also, we obtain

u(r)(t) =
∏

t0<tp≤t

(1 + dp)ζ
(r)(t), r = 0, 1, 2.
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=⇒ u(r)(tp) = (1 + dp)u
(r)(t−p ).

This shows that u(t) satisfies (1.1).
Conversely, assume that u(t) =

∏
t0<tp≤t

(1 + dp)ζ(t) satisfies (1.1). Then, we will

show that ζ(t) satisfies (2.1) on (t0,∞).
As V (t) =

∏
t0<tp≤t

(1 + dp)
−1υ(t), we have

(
s1(t)V (2)(t)

)(1)
=

∏
t0<tp≤t

(1 + dp)
−1
(
s1(t)υ(2)(t)

)(1)
.

Using (1.1), we obtain(
s1(t)V (2)(t)

)(1)
= −s2(t)

∏
t0<tp≤t

(1 + dp)
−1u(1)(η2(t))

= −s2(t)
∏

η2(t)<tp≤t

(1 + dp)
−1ζ(1)(η2(t)).

On the other hand, we can easily show that ζ(r)(t−p ) = ζ(r)(tp). This shows that
ζ(t) satisfies (2.1).

Lemma 2.2 ( [16]). A non-zero solution u(t) of (1.1) is oscillatory on (t0,∞), if
the corresponding solution ζ(t) =

∏
t0<tp≤t

(1 + dp)
−1u(t) of (2.1) is oscillatory on

(t0,∞). Moreover, lim
t→∞

u(r)(t) = 0, if lim
t→∞

ζ(r)(t) = 0, r = 0, 1, 2.

3. Main results

Theorem 3.1. Suppose one of the following three conditions:∫ ∞
t0

ν2s2(ν)Υ (ν)dν = −∞, (3.1)

∫ t

t0

J(ν)Υ (ν)dν =∞ (3.2)

and ∫ t

t0

(
S1(ν)J(ν)Υ (ν)− s1(ν) + αs1(η1(ν))

4S1(ν)s21(ν)

)
dν =∞, (3.3)

where

J(t) = min{s2(t), s2(η1(t))}, Υ (t) =
∏

η2(t)<tp≤t

(1 + dp)
−1, S1(t) =

∫ ∞
t

dν

s1(ν)

holds. Then, all solutions u(t) of (1.1) such that u(t)u(1)(t) > 0 or u(t)u(1)(t) < 0,
for t ≥ % are oscillatory.
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Proof. On contrary, assume that ζ(t) 6= 0 be a non-oscillatory solution of (2.1).
Further, if we assume that ζ(t) > 0 for t ≥ %, then the following three cases arise.

Case 1: If there exists % ≥ t0 such that ζ(t) > 0, ζ(1)(t) < 0, ζ(2)(t) > 0, or
V (t) > 0, V (1)(t) < 0, V (2)(t) > 0, for t ≥ %. Since ζ(2)(η2(t)) > 0, ζ(1)(η2(t)) is
increasing for t ≥ %. Therefore, for t ≥ %, from (2.1), we get(

s1(t)V (2)(t)
)(1)

= −s2(t)
∏

η2(t)<tp≤t

(1 + dp)
−1ζ(1)(η2(t))

≤ −s2(t)
∏

η2(t)<tp≤t

(1 + dp)
−1ζ(1)(η2(%))

≤ −Ms2(t)Υ (t),

where M = ζ(1)(η2(%)) < 0. Integrating % and t after multiplying by ν2, we get∫ t

%

ν2
(
s1(ν)V (2)(ν)

)(1)
dν ≤ −M

∫ t

%

ν2s2(ν)Υ (ν)dν. (3.4)

On the other hand,∫ t

%

ν2
(
s1(ν)V (2)(ν)

)(1)
dν =

∫ t

%

ν2d
(
s1(ν)V (2)(ν)

)
=
[
ν2s1(ν)V (2)(ν)

]t
%
−
∫ t

%

2νs1(ν)V (2)(ν)dν

≥
[
ν2s1(ν)V (2)(ν)

]t
%
− 2G

∫ t

%

νV (2)(ν)dν

=
[
ν2s1(ν)V (2)(ν)

]t
%
− 2G

[
νV (1)(ν)

]t
%

+2G

∫ t

%

V (1)(ν)dν

= t2s1(t)V (2)(t)− %2s1(%)V (2)(%)

−2G
[
tV (1)(t)− %V (1)(%)

]
+ 2G

[
V (t)− V (%)

]
≥ −%2s1(%)V (2)(%) + 2G%V (1)(%)− 2GV (%).

From (3.4), we have

−
∫ t

%

ν2s2(ν)Υ (ν)dν ≤ 1

M

{
%2s1(%)V (2)(%)− 2G%V (1)(%) + 2GV (%)

}
<∞.

On letting t→∞, we get a contradiction to condition (3.1).
Case 2: If there exists %′ > t0 such that ζ(t) > 0, ζ(1)(t) > 0, ζ(2)(t) > 0, or

V (t) > 0, V (1)(t) > 0, V (2)(t) > 0, for t ≥ %′. From (2.1), we have(
s1(t)V (2)(t)

)(1)
+ α

(
s1(η1(t))V (2)(η1(t))

)(1)
+ J(t)Υ (t)

×
[
ζ(1)(η2(t)) + α

∏
η1(η2(t))<tp≤η2(t)

(1 + dp)
−1ζ(1)(η1(η2(t)))

]
≤ 0.
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Using (2.2), for t ≥ %′, we obtain(
s1(t)V (2)(t)

)(1)
+ α

(
s1(η1(t))V (2)(η1(t))

)(1)
+ J(t)Υ (t)V (1)(η2(t)) ≤ 0. (3.5)

Using the fact V (1)(η2(t)) ≥ c > 0 and integrating from %′ to t, we get∫ t

%′
J(ν)Υ (ν)dν <∞,

which is a contradiction to condition (3.2).
Case 3: If there exists %′′ ≥ t0 such that ζ(t) > 0, ζ(1)(t) > 0, ζ(2)(t) < 0, or

V (t) > 0, V (1)(t) > 0, V (2)(t) < 0, for t ≥ %′′.
Define

χ(t) =
s1(t)V (2)(t)

V (1)(t)
, t ≥ %′′. (3.6)

Since s1(ν)V (2)(ν) is decreasing, for ν ≥ t, we have

s1(ν)V (2)(ν) ≤ s1(t)V (2)(t).

=⇒ V (2)(ν) ≤ s1(t)
V (2)(t)

s1(ν)
.

Integrating from t to µ, we get

V (1)(µ)− V (1)(t) ≤ s1(t)V (2)(t)

∫ µ

t

dν

s1(ν)
, µ ≥ t ≥ %′′.

Taking limit as µ→∞, we get

s1(t)V (2)(t)

V (1)(t)
S1(t) > −1, t ≥ %′′.

=⇒ −1 < χ(t)S1(t) < 0, t ≥ %′′. (3.7)

On the other hand, we define

κ(t) =
s1(η1(t))V (2)(η1(t))

V (1)(t)
, t ≥ %′′. (3.8)

Since s1(t)V (2)(t) is decreasing, we have s1(t)V (2)(t) ≤ s1(η1(t))V (2)(η1(t)). Then,
χ(t) ≤ κ(t). From (3.7), we have

−1 < κ(t)S1(t) < 0, t ≥ %′′. (3.9)

Differentiating (3.6), we get

χ(1)(t) =

(
s1(t)V (2)(t)

)(1)
V (1)(t)

− s1(t)V (2)(t)

(V (1)(t))2
V (2)(t)

=

(
s1(t)V (2)(t)

)(1)
V (1)(t)

− χ2(t)

s1(t)
, t ≥ %′′. (3.10)
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Differentiating (3.8), we get

κ(1)(t) ≤

(
s1(η1(t))V (2)(η1(t))

)(1)
V (1)(t)

− Y 2(t)

s1(η1(t))
, t ≥ %′′. (3.11)

Using (3.10) and (3.11), we get

χ(1)(t) + ακ(1)(t) ≤

(
s1(t)V (2)(t)

)(1)
V (1)(t)

+ α

(
s1(η1(t))V (2)(η1(t))

)(1)
V (1)(t)

−χ
2(t)

s1(t)
− α κ2(t)

s1(η1(t))
.

Using (3.5), we get

χ(1)(t) + ακ(1)(t) ≤ −J(t)Υ (t)− χ2(t)

s1(t)
− α κ2(t)

s1(η1(t))
.

Integrating the above inequality from %′′ to t after multiplying by S1(t), we get∫ t

%′′
S1(ν)

[
χ(1)(ν) + ακ(1)(ν)

]
dν ≤ −

∫ t

%′′
S1(ν)J(ν)Υ (ν)dν

−
∫ t

%′′
S1(ν)

(
χ2(ν)

s1(ν)
+ α

κ2(ν)

s1(η1(ν))

)
dν.

After some simplification, by using (3.7) and (3.9), we obtain

−(1 + α) +

∫ t

%′′

(
S1(ν)χ2(ν)

s1(ν)
+
χ(ν)

s1(ν)

)
dν − S1(%′′)

(
χ(%′′) + ακ(%′′)

)
+α

∫ t

%′′

(
S1(ν)κ2(ν)

s1(η1(ν))
+
κ(ν)

s1(ν)

)
dν < −

∫ t

%′′
S1(ν)J(ν)Υ (ν)dν.

Using the inequality λABλ−1 −Aλ ≤ (λ− 1)Bλ, λ ≥ 1, we obtain∫ t

%′′

(
S1(ν)J(ν)Υ (ν)− s1(ν) + αs1(η1(ν))

4S1(ν)s21(ν)

)
dν

≤ (1 + α) + S1(%′′)
(
χ(%′′) + ακ(%′′)

)
<∞,

which is a contradiction to condition (3.3). Applying Lemma 2.2, the result follows.

Theorem 3.2. Let u(t) be an eventually positive solution of (1.1) such that u(1)(t) >
0, u(2)(t) < 0, and there exists a constant K > 0 such that∏

t0<tp≤t

(1 + dp)
−1 ≤ K.
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Further, if ∫ ∞
t

1

s1(ν1)

[ ∫ ν1

%

s2(ν)dν

]
dν1 =∞, (3.12)

then lim
t→∞

u(1)(t) = 0.

Proof. Since u(t) has the property u(t) > 0, u(1)(t) > 0, u(2)(t) < 0, or ζ(t) > 0,
ζ(1)(t) > 0, ζ(2)(t) < 0, and consequently V (t) > 0, V (1)(t) > 0, V (2)(t) < 0, for
t ≥ %. Let lim

t→∞
V (1)(t) = A ≥ 0. Then, we need to prove that A = 0. On contrary,

assume A > 0. Since V (1)(t) is decreasing for t ≥ %, we have A+ ε > V (1)(t) > A,

for all ε > 0. Choosing 0 < ε < A(1−αK)
αK , it is easy to see that

ζ(1)(t) = V (1)(t)− α
∏

η1(t)<tp≤t

(1 + dp)
−1ζ(1)(η1(t))

≥ A− α
∏

η1(t)<tp≤t

(1 + dp)
−1V (1)(η1(t))

≥ A− α
∏

η1(t)<tp≤t

(1 + dp)
−1(A+ ε)

≥ A− αK(A+ ε) = P (A+ ε) > PV (1)(t), (3.13)

where P = A−αK(A+ε)
A+ε > 0.

Therefore, from (2.1), we have(
s1(t)V (2)(t)

)(1)
= −s2(t)

∏
η2(t)<tp≤t

(1 + dp)
−1ζ(1)(η2(t))

≤ −s2(t)KPV (1)(t)

≤ −s2(t)KPA.

Integrating from % to t, we get

s1(t)V (2)(t) ≤ −KPA
∫ t

%

s2(ν)dν.

=⇒ V (2)(t) ≤ −KPA
s1(t)

∫ t

%

s2(ν)dν.

Again, integrating from t to ∞, we get

−V (1)(t) ≤ −KPA
∫ ∞
t

1

s1(ν1)

[ ∫ ν1

%

s2(ν)dν

]
dν1.

=⇒ V (1)(t) ≥ KPA
∫ ∞
t

1

s1(ν1)

[ ∫ ν1

%

s2(ν)dν

]
dν1,

which contradicts condition (3.12). Hence, lim
t→∞

V (1)(t) = 0.
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Since ζ(1)(t) ≤ V (1)(t), we have

lim
t→∞

ζ(1)(t) = 0.

Therefore, by applying Lemma 2.2, we get

lim
t→∞

u(1)(t) = 0.

4. Applications

In this section, we provide some examples to interpret the main results.

Example 4.1. Consider the given system
(
t−3
(
u(t) + αu(t− π)

)(2))(1)
+ t−4u(1)(t− 2π) = 0, t 6= tp,

u(r)(tp)− u(r)(t−p ) = 1
pu

(r)(t−p ), r = 0, 1, 2 p = 1, 2, 3, . . . .
(4.1)

Here, s1(t) = t−3, s2(t) = t−4, η1(t) = t− π, η2(t) = t− 2π,

dp = 1
p , tp = pπ, Υ (t) =

∏
t−2π<tp≤t

(
p
p+1

)
.

We see that∫ ∞
t0

ν2s2(ν)Υ (ν)dν =

∫ ∞
t0

ν−2
∏

ν−2π<tp≤ν

( p

p+ 1

)
dν

=

∫ t1

t0

ν−2
∏

ν−2π<tp≤ν

( p

p+ 1

)
dν +

∫ t2

t1

ν−2
∏

ν−2π<tp≤ν

( p

p+ 1

)
dν

+

∫ t3

t2

ν−2
∏

ν−2π<tp≤ν

( p

p+ 1

)
dν + · · ·

=
1

2
t0 − π

[
1

2
+

1

3
+

1

4
+ · · ·

]
= −∞.

Thus, condition (3.1) is satisfied. If u(t) > 0, u(1)(t) < 0, u(2)(t) > 0, for t ≥ %,
then by using Case (1) of Theorem 3.1, every non-zero solution u(t) of system (4.1)
such that u(t)u(1)(t) > 0 or u(t)u(1)(t) < 0 is oscillatory.

Example 4.2. Consider the following system
(
t−

1
2

(
u(t) + αu(t− π)

)(2))(1)
+ tu(1)(t− 2π) = 0, t 6= tp,

u(r)(tp)− u(r)(t−p ) = 1
pu

(r)(t−p ), r = 0, 1, 2, p = 1, 2, 3, . . . .
(4.2)

Here, s1(t) =
1√
t
, s2(t) = t, η1(t) = t− π, η2(t) = t− 2π,

dp = 1
p , tp = pπ, J(t) = min{t, t− π} = t− π,
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Υ (t) =
∏

η2(t)<tp≤t
(1 + dp)

−1 =
∏

t−2π<tp≤t

(
p
p+1

)
, S1(t) =

∫ ∞
t

√
νdν =∞.

We see that∫ ∞
t0

J(ν)Υ (ν)dν =

∫ ∞
t0

(ν − π)
∏

ν−2π<tp≤ν

( p

p+ 1

)
dν

=
1

2

∫ t1

t0

(ν − π)dν +
1

3

∫ t2

t1

(ν − π)dν +
1

4

∫ t3

t2

(ν − π)dν + · · ·

=
1

2

[
(t1 − π)2

2
− (t0 − π)2

2

]
+

1

3

[
(t2 − π)2

2
− (t1 − π)2

2

]
+

1

4

[
(t3 − π)2

2
− (t2 − π)2

2

]
=∞.

Thus, condition (3.2) is satisfied. If u(t) > 0, u(1)(t) > 0, u(2)(t) > 0, for t ≥ %,
then by using Case (2) of Theorem 3.1, every non-zero solution u(t) of system (4.1)
such that u(t)u(1)(t) > 0 or u(t)u(1)(t) < 0 is oscillatory.

Further, we can easily check that∫ ∞
t0

(
S1(ν)J(ν)Υ (ν)− s1(ν) + αs1(η1(ν))

4S1(ν)s21(ν)

)
dν =∞.

Thus, condition (3.3) is satisfied. If u(t) > 0, u(1)(t) > 0, u(2)(t) < 0, for t ≥ %,
then by using Case (3) of Theorem 3.1, every non-zero solution u(t) of system (4.1)
such that u(t)u(1)(t) > 0 or u(t)u(1)(t) < 0 is oscillatory.

Example 4.3. Consider the given system
(
t−1
(
u(t) + αu(t− π)

)(2))(1)
+ t−4u(1)(t− 2π) = 0, t 6= tp,

u(r)(tp)− u(r)(t−p ) =
(

1+2p
p2

)
u(r)(t−p ), r = 0, 1, 2 p = 1, 2, 3, . . . .

(4.3)

Here, s1(t) = t−1, s2(t) = t−4, η1(t) = t− π, η2(t) = t− 2π,

dp =
1 + 2p

p2
, tp = pπ.

Obviously, ∏
t0<tp≤t

( p

p+ 1

)2
≤ K, for some K > 0.

We see that ∫ ∞
t

1

s1(ν1)

[ ∫ ν1

%

s2(ν)dν

]
dν1 =∞.

Thus, condition (3.12) is satisfied. If u(t) > 0, u(1)(t) > 0, u(2)(t) > 0, for t ≥ %,
then by using Theorem 3.2, we get lim

t→∞
u(1)(t) = 0.
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5. Conclusion

In this work, we have established some sufficient conditions for the oscillation of
solutions for a class of neutral impulsive differential equations of order three, and
discussed the asymptotic behavior of solutions. The results are demonstrated by
examples.

Acknowledgements

The authors would like to thank the reviewer and editors for their valuable sugges-
tions.

References

[1] S. H. Abdallah, Oscillatory and non-oscillatory behaviour of second-order neu-
tral delay differential equations, Applied Mathematics and Computation, 2003,
135(2–3), 333–344.

[2] R. Arul and V. S. Shobha, Oscillation of Second Order Nonlinear Neutral Dif-
ferential Equations with Mixed Neutral Term, Journal of Applied Mathematics
and Physics, 2015, 3(9), 1080–1089.
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