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Asymptotics of a Class of Singularly Perturbed
Weak Nonlinear Boundary Value Problem with a

Multiple Root of the Degenerate Equation∗

Qian Yang1 and Mingkang Ni1,2,†

Abstract A singularly perturbed boundary value problem with weak nonlin-
earity in the case when the degenerate equation has a multiple root is studied.
The asymptotic approximation of the solution is constructed by the modified
boundary layer function method. Based on the comparison principle, there
exist multizonal boundary layers in the neighborhood of the endpoints. The
existence of a solution is proved by using the method of asymptotic differential
inequalities.

Keywords Singularly perturbed problem, Multiple root of the degenerate
equation, Asymptotic method, Upper and lower solutions.

MSC(2010) 34B15, 34b16, 34E05, 34E15.

1. Problem statement

It is well-known that many scholars [9,10] have been attracted to the study of ordi-
nary differential equations. With the development of the times, it has been found
out that there are many mathematical models with small parameters in practical
problems. In particular, the singularly perturbed reaction-advection-diffusion equa-
tion plays an important role in practical application such as the propagation, decay
and chemical reaction of impurities in the atmosphere [8]. Therefore, this kind of
problem has attracted the attention of a great many of mathematical experts and
scholars. To the best of our knowledge, a lot of research in the case when the
degenerate equation has isolated roots has been carried out [7, 12, 14–18]. When
the degenerate equation has multiple roots, the critical manifold is not normally
hyperbolic, and cannot meet the stability condition of Tikhonov’s theorem. In this
case, it is necessary to use a modified boundary layer method to resolve difficulties.
As shown in [1–6,19], the boundary layers can be decomposed into three zones, and
their formal asymptotic solutions have different decay characters with respect to
diverse scales in distinct regions. The singularly perturbed reaction-diffusion equa-
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tions without advection terms in the case of multiple roots have been studied in [2,3].
In this paper, the stationary problem for a class of reaction-advection-diffusion e-
quation with weak nonlinearity and multiple root of the degenerate equation is
considered: ε

2 d2u

dx2
− a(x)

(
ε

du

dx

)2

= f(u, x, ε), 0 < x < 1,

u(0, ε) = u0, u(1, ε) = u1,

(1.1)

where ε > 0 is a small parameter, and u is a scalar function.
This singularly perturbed problem is sophisticated, and the modified boundary

layer function method shall be applied to construct the asymptotic solution. More
importantly, we obtain a result that the nature of boundary layer with a transition
from algebraic decay to exponential decay by comparison principle. Finally, the
existence of a solution is proved by the method of upper and lower solutions [11,13].

Let the following assumptions be satisfied.
Denote

D̄ = {(u, x, ε)| |u| ≤ l, 0 ≤ x ≤ 1, 0 ≤ ε ≤ ε0}.
Assumption 1.1. Let

f(u, x, ε) = h(u, x)(u− ϕ(x))2 − εf1(u, x, ε), (1.2)

where the functions h(u, x), ϕ(x) and f1(u, x, ε) are sufficiently smooth on the set
D̄, and one has the inequality

f̄1(x) := f1(ϕ(x), x, 0) > 0, 0 ≤ x ≤ 1.

Moreover, h(u, x) conforms to one of the following requirements:

(i)
h(u, x) > 0, ϕ(x) ≤ u < ψ(x), 0 ≤ x ≤ 1,

where ψ(x), 0 ≤ x ≤ 1 is a function that satisfies ψ(x) > φ(x), h(ψ(x), x) = 0;

(ii)
h(u, x) > 0, u ≥ ϕ(x), 0 ≤ x ≤ 1,

.

To be definite, we shall consider case (ii).

Assumption 1.1 shows that the degenerate equation

f(u, x, 0) = 0 (1.3)

has a multiple root
ū(x) = ϕ(x), 0 ≤ x ≤ 1. (1.4)

To determine the leading term in the asymptotic representation of the boundary
layers in the course of constructing the asymptotics of solution to problem (1.1),
the following condition is needed.

Assumption 1.2. Assume that the inequalities are satisfied:

u0 − ϕ(0) > 0, u1 − ϕ(1) > 0;

a(x) < 0, 0 ≤ x ≤ 1.
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2. Construction of the asymptotics of the solution
of problem (1.1)

The asymptotic expansion of the solution u(x, ε) to problem (1.1) shall be con-
structed on the interval [0, 1] as follows:

u(x, ε) = ū(x, ε) + Π(ξ, ε) + Π̃(ξ̃, ε), (2.1)

ξ =
x

ε
, ξ̃ =

1− x
ε

,

where ū(x, ε) is the regular part, Π(ξ, ε) and Π̃(ξ̃, ε) are respectively the boundary
layer parts in the neighborhood of endpoints x = 0 and x = 1. Due to the fact that
the degenerate equation (1.3) of problem (1.1) has a multiple root ϕ(x), the studies
have shown that each term of the asymptotics can be sought in the forms of power
series [2, 3]:

ū(x, ε) = ū0(x) + ε
1
2 ū1(x) + · · ·+ ε

k
2 ūk(x) + · · · , (2.2)

Π(ξ, ε) = Π0(ξ) + ε
1
4 Π1(ξ) + · · ·+ ε

k
4 Πk(ξ) + · · · , ξ =

x

ε
, (2.3)

Π̃(ξ, ε) = Π̃0(ξ̃) + ε
1
4 Π̃1(ξ̃) + · · ·+ ε

k
4 Π̃k(ξ̃) + · · · , ξ̃ =

1− x
ε

. (2.4)

For boundary layer functions Πk(ξ), Π̃k(ξ̃), k ≥ 0, it is necessary to impose the
standard boundary value conditions vanishing at infinity:

Πk(∞) = 0, Π̃k(∞) = 0. (2.5)

For the regular part of the asymptotics ū(x, ε), one can obtain

ε2 d2ū

dx2
− a(x)

(
ε

dū

dx

)2

= h(ū, x)(ū− ϕ(x))2 − εf1(ū, x, ε). (2.6)

By substituting series (2.2) into series (2.6) and comparing the coefficients of like
powers of ε on the left and right sides of (2.6), we have

ū0(x) = ϕ(x)

by virtue of (1.4). Moreover, for ū1(x), we obtain the following quadratic equation

h̄(x)(ū1(x))2 − f̄1(x) = 0,

where h̄(x) = h(ϕ(x), x).
Owing to the characteristic of boundary layers and Assumption 1.1, we take the
positive root

ū1(x) =

√
f̄1(x)

h̄(x)
> 0, 0 ≤ x ≤ 1. (2.7)

The subsequent coefficients ūk(x) can be represented in the form

ūk(x) =
fk(x)

2h̄(x)ū1(x)
, k = 1, 2, · · · .
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Here, fk(x) are known functions that depend on ūj(x), j < k. From Assumption
1.1 and (2.7), ūk(x) can be uniquely determined.

In the following, we write out the problems for determining the boundary layer
part of the asymptotics Π(ξ, ε) in the neighborhood of x = 0

d2Π

dξ2
− a(x)

(
dΠ

dξ

)2

= Πf,

Π(0, ε) = u0 − ū(0, ε), Π(+∞, ε) = 0,

(2.8)

where

Πf =h
(
ū(ε

3
4 ζ) + Π(ξ, ε), ε

3
4 ζ
)
×
[
ū(ε

3
4 ζ) + Π(ξ, ε)− ϕ(ε

3
4 ζ)
]2
−

− h
(
ū(ε

3
4 ζ), ε

3
4 ζ
) [
ū(ε

3
4 ζ)− ϕ(ε

3
4 ζ)
]2
− εΠf1.

Here, ζ = ε
1
4 ξ = x

ε3/4
. Note that Πk(ξ) depend on ξ and ε, but Πk(ξ, ε) is still de-

noted as Πk(ξ) for simplicity. In this case, the algorithm for constructing equations
of the functions Πk(ξ) from problem (2.8) is qualitatively different from the bound-
ary layer function method [18]. Given the specific character of boundary layers, the
equation and boundary value conditions for Π0(ξ) have the form

d2Π0

dξ2
− a(0)

(
dΠ0

dξ

)2

= h(ϕ(0) + Π0, 0)
[
(Π0)2 + 2

√
εū1(0)Π0

]
,

Π0(0, ε) = u0 − ϕ(0), Π0(∞, ε) = 0,

(2.9)

which can be reduced to the initial value problem
dΠ0

dξ
= −

√
2

∫ Π0

0

h(ϕ(0) + s, 0)
(
s2 + 2

√
εū1(0)s

)
e2a(0)(Π0−s) ds,

Π0(0, ε) = u0 − ϕ(0).

(2.10)

It turns out that by virtue of Assumptions 1.1-1.2, problem (2.10) has a solution
Π0(ξ), which satisfies the estimate

Πκ2
(ξ) ≤ Π0(ξ) ≤ Πκ1

(ξ), ξ ≥ 0, (2.11)

where κ1 > 0, κ2 > 0, and Πκ(ξ) can be represented as

Πκ(ξ) =
12
√
εū1(0)(1 +O(ε1/4))

[1− (1− c0ε1/4 +O(
√
ε)) exp(−ε1/4k0κξ)]2

exp(−ε1/4k0κξ). (2.12)

Here, k0 =
√

2ū1(0), c0 =
√

12ū1(0)/(u0 − ϕ(0)). It is easy to see that estimate
(2.12) provides the same behavior of Π0(ξ) as that of Πκ(ξ). Let us justify this fact.

Since Π0(0) = u0 − ϕ(0) > 0 and h(s) > 0 for 0 ≤ s ≤ Π0(ξ) by Assumptions
1.1-1.2, there exist positive numbers κ1 and κ2 such that for all 0 ≤ s ≤ Π0(ξ),

κ2
1 ≤ h(ϕ(0) + s, 0)e2a(0)(Π0(s)−s) ≤ κ2

2. (2.13)

At first, we consider the following two problems
dΠκi

dξ
= −
√

2κi

√
1

3
Πκi +

√
εū1(0) Πκi , ξ > 0,

Πκi(0) = u0 − ϕ(0), i = 1, 2,
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whose solutions Πκi(ξ) and Πκ2
(ξ) can be represented as (2.12). Then, from (2.10),

we have

−
√

2κ2

√
1

3
Π0 +

√
εū1(0) Π0 ≤

dΠ0

dξ
≤ −
√

2κ1

√
1

3
Π0 +

√
εū1(0) Π0.

Thus, problem (2.10) has a solution Π0(ξ) that satisfies the inequality (2.11) by the
comparison principle.

A simple analysis of the expression (2.12) shows that different decay nature of
the boundary layer function Πκ(ξ) (i.e., Π0(ξ)) appears in three distinct regions.
If 0 ≤ ξ ≤ ε−γ(0 ≤ γ < 1

4 ), then Πκ(ξ) = O(1/(1 + ξ2)) decreases by a power

function, as the variable ξ → +∞. If ε−γ ≤ ξ ≤ ε−1/4, then the characteristic of
Πκ(ξ) changes from power law decay to exponential decay. Moreover, if ξ ≥ ε−1/4,
then Πκ(ξ) = O(

√
ε) exp(−k0κζ) has an exponential decay with respect to the new

variable ζ = x/ε3/4.
For Πk(ξ), k = 1, 2, · · · , one can obtain

d2Πk

dξ2
− 2a(0)

dΠ0

dξ

dΠk

dξ
= α(ξ, ε)Πk + πk(ξ, ε),

Πk(0) =

{
− ū k

2
(0), k = 2n,

0, k = 2n− 1, n = 1, 2, · · · ,
Πk(∞, ε) = 0,

(2.14)

where

α(ξ, ε) =hu(ϕ(0) + Π0(ξ), 0)
[
(Π0(ξ))2 + 2

√
εū1(0)Π0(ξ)

]
+ 2h(ϕ(0) + Π0(ξ), 0)

[
Π0(ξ) +

√
εū1(0)

]
.

Here, πk(ξ, ε) depends on Πj(ξ), j < k. In particular, π1(ξ, ε) = 0,

π2(ξ, ε) =
√
ε
(
h(ϕ(0) + Π0(ξ), 0)− h̄(0)

)
(ū1(0))

2

+ 2
√
εh(ϕ(0) + Π0(ξ), 0)ū2(0)Π0(ξ)

+ hu(ξ)ū1(0)
[
(Π0(ξ))2 + 2

√
εū1(0)Π0(ξ)

]
+
√
εΠ0f1.

Here,
Π0f1 = f1(ϕ(0) + Π0(ξ), 0, 0)− f1(ϕ(0), 0, 0).

Problem (2.14) has solutions Πk(ξ) that can be written as

Πk(ξ) = Πk(0)Φ(ξ)Φ−1(0)− Φ(ξ)

∫ ξ

0

p−1(η)Φ−2(η)Jk(η) dη, (2.15)

where

Jk(η) =

∫ ∞
η

p(s)Φ(s)πk(s) ds, Φ(ξ) =
dΠ0

dξ
(ξ), p(ξ) = e−2a(0)(Π0(ξ)−Π0(0)).

Taking (2.15) into consideration and the proof of lemma in [2], it can be concluded
that all boundary layer functions Πk(ξ), k ≥ 0 admit the estimate

|Πk(ξ)| ≤ CΠκ(ξ), ξ ≥ 0. (2.16)

Finally, the right boundary layer part of the asymptotics Π̃(ξ̃, ε) near the right
endpoint x = 1 can be determined by analogy with the series Π(ξ, ε), and Π̃k(ξ̃), k ≥
0 satisfy the estimate similar to (2.16). It is worth mentioning that Π̃0(ξ̃) > 0 and
Π0(ξ) > 0. Moreover, Π1(ξ) = 0 and Π̃1(ξ̃) = 0.
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3. Justification of the constructed asymptotic solu-
tion

Denote

Un(x, ε) =

n∑
i=0

ε
i
2 ūi(x) +

2n+1∑
i=0

ε
i
4

(
Πi(ξ) + Π̃i(ξ̃)

)
.

The following main theorem can be derived.

Theorem 3.1. If Assumptions 1.1-1.2 are satisfied, for sufficiently small ε > 0,
problem (1.1) has a solution u(x, ε) that can be written as

u(x, ε) = Un(x, ε) +O(ε
n+1
2 ), 0 ≤ x ≤ 1. (3.1)

Proof. To prove the theorem by using the asymptotic method of differential in-
equalities, we recall the definition of upper and lower solutions to problem (1.1).

Definition 3.1. The functions β(x, ε) and α(x, ε) are called the ordered upper and
lower solutions to problem (1.1), if they satisfy the following three conditions:

(i) α(x, ε) ≤ β(x, ε), 0 ≤ x ≤ 1.

(ii) Lεα ≥ 0 ≥ Lεβ, 0 < x < 1, where

Lεα = ε2 d2α

dx2
− a(x)

(
ε

dα

dx

)2

− f(α, x, ε),

Lεβ = ε2 d2β

dx2
− a(x)

(
ε

dβ

dx

)2

− f(β, x, ε).

(iii) α(0, ε) ≤ u0 ≤ β(0, ε), α(1, ε) ≤ u1 ≤ β(1, ε).

We shall construct the upper and lower solutions as follows:

β(x, ε) = Un(x, ε) + ε
n+1
2 γ,

α(x, ε) = Un(x, ε)− ε
n+1
2 γ,

(3.2)

where γ is a positive number that is not relied on ε.
For sufficiently small ε > 0 , it is clear that β(x, ε) and α(x, ε) satisfy Condition

(i) and Condition (iii).
Taking α(x, ε) for example, we shall justify the fact that Condition (ii) is fulfilled.

From the algorithm for constructing the asymptotics, one can obtain

LεUn = O(ε
n
2 +1) +O(ε

n+1
2 )
(

Πκ(ξ) + Π̃(ξ̃)
)
, 0 ≤ x ≤ 1.

Therefore,

Lεα(x, ε) = LεUn + h(Un, x)
[
(Un − ϕ(x))2 − (Un − ϕ(x)− ε

n+1
2 γ)2

]
+

+ hu(Un, x)(Un − ϕ(x))2 − ε
[
f1(Un, x, ε)− f1(Un − ε

n+1
2 γ, x, ε)

]
= O(ε

n+1
2 )
(

Πκ + Π̃κ + 2γh(ϕ(x) +O(
√
ε), x)(Π0(ξ) + Π̃0(ξ̃))

)
+O(ε

n
2 +1).
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Considering Π0(ξ) > 0, Π̃0(ξ̃) > 0 and h(ϕ(x) + O(
√
ε), x) > 0, we can conclude

that for sufficiently large γ, Lεα(x, ε) > 0 is valid.
Similarly, if we take sufficiently large γ > 0, for sufficiently small ε > 0,

Lεβ(x, ε) < 0 is also valid.
By Nagumo theorem, (1.1) has a solution u(x, ε), which satisfies the inequality

α(x, ε) ≤ u(x, ε) ≤ β(x, ε), 0 ≤ x ≤ 1.

It follows from expressions (3.2) of upper and lower solutions that

α(x, ε) = Un(x, ε) +O(ε
n+1
2 ),

β(x, ε) = Un(x, ε) +O(ε
n+1
2 ).

Thus, formula (3.1) is satisfied.

4. Numerical example

Consider singularly perturbed boundary value problemε
2 d2u

dx2
+ (x+ 0.2)

(
ε

du

dx

)2

= (y − x)2 − ε, 0 < x < 1,

u(0, ε) = 0.2, u(1, ε) = 1.2.

(4.1)

Here, h(x) = 1, ϕ(x) = x, f1(u, x, ε) = 1.
It is easy to verify Assumptions 1.1-1.2. The degenerate equation of problem

(4.1) has a multiple root

ū0(x) = ϕ(x) = x, 0 ≤ x ≤ 1.

From (2.7), one can obtain
ū1(x) = 1.

The problems for zero-order boundary layer functions Π0(ξ) and Π̃0(ξ̃) have the
forms 

dΠ0

dξ
= −

√
2

∫ Π0

0

(
s2 + 2

√
εs
)

e−2(s+0.2)(Π0−s) ds,

Π0(0, ε) = 0.2

and 
dΠ̃0

dξ̃
= −

√
2

∫ Π̃0

0

(
s2 + 2

√
εs
)

e−2(s+0.2)(Π̃0−s) ds,

Π̃0(0, ε) = 0.2,

whose solutions Π0(ξ) and Π̃0(ξ̃) admit

Π0(ξ) ≥ Πκ(ξ), Π̃0(ξ̃) ≥ Π̃κ(ξ̃).

Here, Πκ(ξ) and Π̃κ(ξ̃) are found from the problems
dΠκ

dξ
= −

√
2

∫ Πκ

0

(
s2 + 2

√
εs
)

ds,

Πκ(0, ε) = 0.2
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and 
dΠ̃κ

dξ̃
= −

√
2

∫ Π̃κ

0

(
s2 + 2

√
εs
)

ds,

Π̃κ(0, ε) = 0.2,

whose solutions are

Πκ(ξ) =
12
√
ε
(

1 + 30
√
ε− 5

√
2.4
√
ε+ 36ε

)
[
1−

(
1 + 30

√
ε− 5

√
2.4
√
ε+ 36ε

)
exp(−(4ε)

1/4
ξ)
]2 exp(−(4ε)

1/4
ξ);

Π̃κ(ξ̃) =
12
√
ε
(

1 + 30
√
ε− 5

√
2.4
√
ε+ 36ε

)
[
1−

(
1 + 30

√
ε− 5

√
2.4
√
ε+ 36ε

)
exp(−(4ε)

1/4
ξ̃)
]2 exp(−(4ε)

1/4
ξ̃).

Therefore, zero-order asymptotics U0(x, ε) of the singularly perturbed Dirichlet
boundary value problem (4.1) is constructed, and Theorem 3.1 leads to

u(x, ε) = x+ Πκ(ξ) + Π̃κ(ξ̃) +O(
√
µ), 0 ≤ x ≤ 1.

Figures 1-4 show the agreement between numerical solution and the zero-order
asymptotic solution obtained by our algorithm for very sufficiently small values of
ε.
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Figure 1. Numerical solution of problem (4.1)
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Figure 2. Zero-order asymptotic solution of problem (4.1)
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Figure 3. Zero-order asymptotic solution and numerical solution of problem (4.1)
(ε = 0.000625)
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Figure 4. Zero-order asymptotic solution and numerical solution of problem (4.1)
(ε = 0.0001)

5. Concluding remarks

In the above sections, the stationary equation of a class of reaction-advection-
diffusion type with multiple root of the degenerate equation has been investigated.
By using modified boundary layer function layer method and comparison principle,
the asymptotics of the solution is constructed, and the character of boundary layer
is obtained. Moreover, we prove the existence of a smooth solution by the asymp-
totic differential inequalities technique. Further, a numerical example is presented
to illustrate the obtained results. Additionally, the theoretical results can be ex-
tended to reaction-advection-diffusion equation with discontinuous right-hand side
and triple root of the degenerate equation.
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