
Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn

Volume 4, Number 3, September 2022, 514–528 DOI:10.12150/jnma.2022.514

Stability Analysis of an Eco-epidemiological Model
with Time Delay and Holling Type-III Functional

Response∗
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Abstract In this paper, an eco-epidemiological model with diseases in the
predator and Holling type-III functional response is analyzed. A time delay
due to the gestation of the predator is considered in this model. By analyzing
the corresponding characteristic equations, the local stability of each of feasible
equilibria and the existence of Hopf bifurcations at the disease-free equilibrium
and the endemic-coexistence equilibrium are established respectively. By using
Lyapunov functionals and LaSalle’s invariance principle, sufficient conditions
are obtained for the global stability of the predator-extinction equilibrium, the
disease-free equilibrium and the endemic-coexistence equilibrium respectively.
Finally, numerical simulations are performed to illustrate the theoretical re-
sults.
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1. Introduction

Dynamics of predator-prey model is one of important subjects in mathematical
ecology, and some important results have been studied and derived by many re-
searchers ( [2, 8, 9, 13, 14, 16, 17, 22]). It is well-known that the effect of disease on
ecological system is an important topic. Since the pioneering work of Anderson and
May [1], many works have been devoted to the study of the effects of a disease on a
predator-prey model recently ( [3, 6, 7, 10,12,15,18–21]). Most of these works dealt
with predator-prey models with disease are in the prey. Recently, several authors
have proposed different eco-epidemiological predator-prey models by assuming that
the predator population suffers a transmissible disease ( [3,6,7,10,15,18,21]). In [10],
by assuming that a transmissible disease spreads among the predator population,
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Lu et al., considered the following eco-epidemiological model

ẋ(t) = rx(t)− ax2(t)− a1x(t)S(t),

Ṡ(t) = a2x(t− τ)S(t− τ)− r1S(t)− αS(t)I(t) + σI(t),

İ(t) = αS(t)I(t)− (r2 + σ)I(t),

(1.1)

where x(t), S(t) and I(t) represent the densities of the prey population, the sus-
ceptible predator and the infected predator at time t respectively. The parameters
a, a1, a2, r, r1, r2, α and σ are positive constants. In model (1.1), the following
assumptions have been made:

(A1) In the absence of predation, the prey population x grows logistically with the
intrinsic growth rate r and carrying capacity r/a.

(A2) The total predator population N(t) is divided into two distinct classes: sus-
ceptible (sound) predator S(t) and infected predator I(t). Therefore, at any
time t, the total density of predator population is N(t) = S(t) + I(t).

(A3) The disease spreads among the predator species only by contact, and the
disease cannot be transmitted vertically. The disease incidence is assumed to
be the bilinear incidence αSI, where α > 0 is called the disease transmission
coefficient. The parameter σ represents the recovery rate, i.e., the rate at
which the infected predators recover from the disease and become susceptible
again.

(A4) Only the susceptible predators have the ability to capture the prey with cap-
turing rate a1, and the infected predator are unable to catch the prey because
of a high infection. The ratio a2/a1 is the conversion rate of nutrients into
the reproduction of the susceptible predators by consuming prey. The param-
eters r1 and r2 are the natural death rate of the susceptible predator and the
infected predator respectively. Here, r1 ≤ r2.

(A5) The reproduction of the predator population after consuming prey ia not
instantaneous, and a duration of τ time units elapses when an individual prey
is killed and the moment when the corresponding addition is made to the
predator population.

In [10], the stability of each of feasible equilibria and the existence of Hopf bifur-
cations at the disease-free equilibrium and the positive equilibrium are established
respectively. By means of Lyaponov functionals and LaSalle’s invariance princi-
ple [4, 5], sufficient conditions for the global stability of each of the nonnegative
equilibria of model (1.1) have been figured out.

In model (1.1), it is assumed that the per capita rate of predation depends on
the prey numbers only. However, Holling found that each predator increased its
consumption rate when exposed to a higher prey density, and also predator density
increased with growing prey density. In 1965, Holling [8] used the following function

p(x) =
x2

1 +mx2

as one of the predator response functions. It is now referred to as the Holling type-
III response function. Holling type-III functional response reveals that the risk of
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being preyed upon is small at low prey density, but rises to a certain point as prey
density increases, which is in accordance with some phenomena of natural world.
Also, we know that many factors contribute to a type III functional response such
as prey refuge, predator learning and the presence of alternative.

To this end, we study the following epidemiological model

ẋ(t) = rx(t)− ax2(t)− a1x
2(t)S(t)

1 +mx2(t)
,

Ṡ(t) =
a2x

2(t− τ)S(t− τ)

1 +mx2(t− τ)
− r1S(t)− αS(t)I(t) + σI(t),

İ(t) = αS(t)I(t)− (r2 + σ)I(t),

(1.2)

where all the parameters are defined as in (A1)-(A5).

The initial conditions for model (1.2) take the form

x(θ) = ϕ(θ) ≥ 0, S(θ) = φ1(θ) ≥ 0, I(θ) = φ2(θ) ≥ 0, θ ∈ [−τ, 0),

ϕ(0) > 0, φ1(0) > 0, φ2(0) > 0, (ϕ(θ), φ1(θ), φ2(θ)) ∈ C([−τ, 0], R3
+0),

(1.3)

where

R3
+0 = {(y1, y2, y3) : yi ≥ 0, i = 1, 2, 3}. (1.4)

By the fundamental theory of functional differential equations [11], it is well-known
that model (1.2) has a unique solution (x(t), S(t), I(t)) satisfying initial conditions
(1.3). It is easy to show that all solutions of model (1.2) with initial conditions (1.3)
are defined on [0,+∞], and remain positive for all t ≥ 0.

This paper is organized as follows. In Section 2, by using the theory on character-
istic equation of delay differential equations developed by [11], we discuss the local
stability of each of feasible equilibria of model (1.2). We establish the existence of
Hopf bifurcations at the disease-free equilibrium and the endemic-coexistence equi-
librium. In Section 3, by means of Lyaponov functionals and LaSalle’s invariance
principle, we obtain sufficient conditions for the global stability of the endemic-
coexistence equilibrium, the disease-free equilibrium and the predator-extinction
equilibrium of model (1.2) respectively. In Section 4, some numerical simulations
are presented to illustrate the main results. The paper ends with a brief discussion
in Section 5.

2. Local stability and Hopf bifurcations

In this section, we discuss the local stability of each of feasible equilibria of model
(1.2) by analyzing the corresponding characteristic equations respectively.

It is easy to show that model (1.2) always has a trivial equilibrium E0(0, 0, 0)
and a predator-extinction equilibrium E1(r/a, 0, 0). Model (1.2) has a disease-free
equilibrium E2(x2, S2, 0) provided that

R0 =
a2r

2

r1(a2 +mr2)
> 1, (2.1)

where
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x2 =

√
r1

a2 −mr1
, S2 =

a2(r − ax2)

a1x2(a2 −mr1)
. (2.2)

Further, if the following holds:

R1 =
αS2

r2 + σ
> 1, (2.3)

then model (1.2) has a positive (endemic-coexistence) equilibrium E+(x+, S+, I+),
where

S+ =
r2 + σ

α
, I+ =

r2 + σ

αr2

(
a2x

2
+

1 +mx2+
− r1

)
, (2.4)

in which x+ is a positive real root of the following cubic equation

aαmx3 − αmrx2 + (aα+ a1r2 + a1σ)x− αr = 0. (2.5)

2.1. Local stability of boundary equilibria and Hopf bifurca-
tion

It is not difficult to show that E0(0, 0, 0) is always unstable.
The characteristic equation of model (1.2) at the equilibrium E1(r/a, 0, 0) is of

the form

(λ+ r)(λ+ r2 + σ)

(
λ+ r1 −

a2r
2

a2 +mr2
e−λτ

)
= 0. (2.6)

Note that equation (2.1) always has two negative real roots: λ1 = −r, λ2 = −(r2 +
σ). All other roots of (2.1) are determined by the following equation:

λ+ r1 −
a2r

2

a2 +mr2
e−λτ = 0. (2.7)

Let

g(λ) = λ+ r1 −
a2r

2

a2 +mr2
e−λτ .

For λ is real, a direct calculation shows that

g(0) = r1 −
a2r

2

a2 +mr2
= r1(1−R0), lim

λ→+∞
g(λ) = +∞.

Hence, if R0 > 1, then g(λ) = 0 has at least one positive real root. Accordingly, the
equilibrium E1 is unstable. If R0 < 1, we show that E1 is locally asymptotically
stable. Otherwise, there is a root λ satisfying Reλ ≥ 0. It follows from (2.2) that

Reλ =
a2r

2e−τReλ

a2 +mr2
cos(τImλ)− r1 ≤

a2r
2

a2 +mr2
− r1 = r1(R0 − 1) < 0.

A contradiction occurs. Hence, if R0 < 1, the equilibrium E1 is locally asymptoti-
cally stable.

The characteristic equation of model (1.2) at the equilibrium E2(x2, S2, 0) takes
the form

(λ+ r2 + σ − αS2)[λ2 + h1λ+ h0 + (l1λ+ l0)e−λτ ] = 0, (2.8)
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where

h1 = r1 + 2ax2 − r +
2a1x2S2

(1 +mx22)2
, h0 = r1

(
2ax2 − r +

2a1x2S2

(1 +mx22)2

)
,

l1 = −r1, l0 = −r1(2ax2 − r).

Clearly, equation (2.3) always has a root

λ1 = αS2 − (r2 + σ).

If R1 > 1, then λ1 > 0. Thus, the equilibrium E2 is unstable in this case.
If R1 < 1, then λ1 < 0. All other roots of equation (2.3) are determined by the

following equation:
λ2 + h1λ+ h0 + (l1λ+ l0)e−λτ = 0. (2.9)

When τ = 0, equation (2.4) reduces to

λ2 + (h1 + l1)λ+ (h0 + l0) = 0. (2.10)

It is easy to show that

h1 + l1 = 2ax2 − r +
2a1x2S2

(1 +mx22)2
,

h0 + l0 =
2a1r1x2S2

(1 +mx22)2
> 0.

Hence, if R1 < 1 and h1 + l1 > 0, then the equilibrium E2 is locally asymptotically
stable, when τ = 0.

If iω(ω > 0) is a solution of (2.4), we obtain that

ω4 + (h21 − 2h0 − l21)ω2 + h20 − l20 = 0. (2.11)

It is easy to show that

h21 − 2h0 − l21 = (h1 + l1)2 > 0,

h20 − l20 = 2r1(h0 + l0)

(
2ax2 − r +

a1x2S2

(1 +mx22)2

)
.

Let

γ0 = 2ax2 − r +
a1x2S2

(1 +mx22)2
.

Hence, if γ0 > 0, then equation (2.6) has no positive real roots. Note that γ0 > 0
implies h1 + l1 > 0. Therefore, if R1 < 1 and γ0 > 0, the equilibrium E2 is locally
asymptotically stable, for all τ ≥ 0.

If γ0 < 0, equation (2.6) has a unique positive root ω0. Accordingly, equation
(2.4) has a pair of imaginary roots of the form ±iω0. Denote

τk =
1

ω0
arccos

l0(ω2
0 − h0)− h1l1ω2

0

l20 + h21ω
2
0

+
2kπ

ω0
, k = 0, 1, 2, · · ·.
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By Theorem 3.4.1, in the work of Kuang [11], we see that if R1 < 1 and γ0 < 0
hold, then E2 remains stable for τ < τ0.

Let λ(τ) = υ(τ) + iω(τ) be a root of equation (2.4) satisfying υ(τ0) = 0, ω(τ0) =
ω0. Differentiating equation (2.4) with respect to τ , we obtain that(

dλ

dτ

)−1
=

2λ+ h1
−λ(λ2 + h1λ+ h0)

+
l1

λ(l1λ+ l0)
− τ

λ
.

A direct calculation shows that

sign

{
d(Reλ)

dτ

}
λ=iω0

= sign

{
dλ

dτ

}−1
λ=iω0

= sign

{
2ω2

0 + h21 − 2h0
(h0 − ω2

0)2 + h21ω
2
0

− l21
l20 + l21ω

2
0

}
= sign

{
2ω2

0 + h21 − 2h0 − l21
l20 + l21ω

2
0

}
> 0.

This shows that there exists at least one eigenvalue with positive real part for τ > τ0.
Moreover, the conditions for the existence of a Hopf bifurcation [5] are then satisfied
by yielding a periodic solution.

In conclusion, we have the following results.
Theorem 2.1. For model (1.2), we have

(i) if R0 < 1, then the equilibrium E1(r/a, 0, 0) is locally asymptotically stable; if
R0 > 1, then E1 is unstable.

(ii) let R0 > 1 hold, and if γ0 > 0, then the equilibrium E2(x2, S2, 0) is locally
asymptotically stable for all τ ≥ 0; if R1 < 1 and γ0 < 0, then there exists a
positive number τ0 such that E2 is locally asymptotically stable, if 0 < τ < τ0
and unstable, if τ > τ0. Further, model (1.2) undergoes a Hopf bifurcation at
E2, when τ = τ0; if R1 > 1, then the equilibrium E2 is unstable.

2.2. Local stability of positive equilibrium and Hopf bifurca-
tion

Now, we study the local stability of the positive equilibrium E+(x+, S+, I+) of
model (1.2). The characteristic equation of model (1.2) at the equilibrium E+ takes
the form

λ3 + p2λ
2 + p1λ+ p0 + (q2λ

2 + q1λ)e−λτ = 0, (2.12)

where

p2 = r1 + αI+ + 2ax+ − r +
2a1x+S+

(1 +mx2+)2
,

p1 = r2αI+ + (r1 + αI+)

(
2ax+ − r +

2a1x+S+

(1 +mx2+)2

)
,

p0 = r2αI+

(
2ax+ − r +

2a1x+S+

(1 +mx2+)2

)
,

q2 = −(r1 + αI+) + σ
I+
S+

,

q1 = (2ax+ − r)
(
−(r1 + αI+) + σ

I+
S+

)
.
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When τ = 0, equation (2.7) reduces to

λ3 + (p2 + q2)λ2 + (p1 + q1)λ+ p0 = 0. (2.13)

By direct calculation, we obtain

p2 + q2 = 2ax+ − r +
2a1x+S+

(1 +mx2+)2
+ σ

I+
S+

,

(p2 + q2)(p1 + q1)− p0

= r2ασ
I2+
S+

+

(
σ
I+
S+

(2ax+ − r +
2a1x+S+

(1 +mx2+)2
) +

2αa1x
2
+S+

(1 +mx2+)2

)
(p2 + q2).

Hence, if γ0 > 0, then
p2 + q2 > 0, and (p2 + q2)(p1 + q1) > p0,

Hence, by Routh-Hurwitz theorem, the positive equilibrium E+ is locally asymp-
totically stable, when τ = 0.

If λ = iω(ω > 0) is a solution of (2.7), separating the real and imaginary parts,
we obtain that

q2ω
2 cosωτ − q1ω sinωτ = −p2ω2 + p0,

q2ω
2 sinωτ + q1ω cosωτ = ω3 − p1ω.

(2.14)

Squaring and adding the two equations of (2.9), it follows that

ω6 + h2ω
4 + h1ω

2 + h0 = 0, (2.15)

where

h2 = p22 − q22 − 2p1, h1 = p21 − q21 − 2p0p2, h0 = p20.

Letting z = ω2, equation (2.10) can be written as

h(z) = z3 + h2z
2 + h1z + h0 = 0. (2.16)

Denote 4 = h22 − 3h1. It is easy to show that if 4 ≤ 0, function h(z) is strictly
monotonically increasing. If 4 > 0 and z∗ = (

√
4 − h2)/3 < 0 or 4 > 0, z∗ =

(
√
4 − h2)/3 > 0 but h(z∗) > 0, then h(z) has always no positive roots. Hence,

under these conditions, equation (2.7) has no purely imaginary roots, for any τ > 0
and accordingly the equilibrium E+ is locally asymptotically stable, for all τ ≥ 0.

In the following, we assume that
(H1) 4 > 0, z∗ = (

√
4− h2)/3 > 0, h(z∗) ≤ 0.

In this case, by Lemma 2.2 in [17], we see that equation (2.11) has at least one
positive root. Without loss of generality, we assume that (2.11) has two positive
roots, namely, z1 and z2 respectively. Accordingly, equation (2.10) has two positive
roots ωk =

√
zk(k = 1, 2).

For k=1, 2, from (2.10), one can obtain the corresponding τ jk > 0 such that (2.7)
has a pair of purely imaginary roots ±iωk given by

τ jk =
1

ωk
arccos

[
− (p2q2 − q1)ω2

k + p1q1 − p0q2
q22ω

2
k + q21

]
+

2πj

ωk
, j = 0, 1, 2, · · · . (2.17)

Let λ(τ) = υ(τ)+iω(τ) be a root of equation (2.7) satisfying υ(τ jk) = 0, ω(τ jk) = ωk
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Differentiating the two sides of (2.7) with respect τ , it follows that(
dλ

dτ

)−1
=

3λ2 + 2p2λ+ p1
−λ(λ3 + p2λ2 + p1λ+ p0)

+
2q2λ+ q1

λ(q2λ2 + q1λ)
− τ

λ
.

By direct calculation, one obtains that

sign

{
d(Reλ)

dτ

}
λ=iωk

= sign

{
Re

(
dλ

dτ

)−1}
λ=iωk

= sign

{
Re

[
3λ2 + 2p2λ+ p1

−λ(λ3 + p2λ2 + p1λ+ p0)
+

2q2λ+ q1
λ(q2λ2 + q1λ)

]
λ=iωk

}

= sign

{
− (p1 − 3ω2

k)(ω2
k − p1) + 2p2(p0 − p2ω2

k)

(ω3
k − p1ωk)2 + (p0 − p2ω2

k)2
− q21 + 2q22ω

2
k

(q2ω2
k)2 + q21ω

2
k

}
.

It follows from (2.9) that

(ω3
k − p1ωk)2 + (p0 − p2ω2

k)2 = (q2ω
2
k)2 + q21ω

2
k.

Hence, we obtain that

sign

{
d(Reλ)

dτ

}
λ=iωk

= sign

{
3ω4

k + 2(p22 − 2p1 − q22)ω2
k + p21 − 2p0p2 − q21

(q2ω2
k)2 + q21ω

2
k

}
= sign

[
h′(zk)

(q2ω2
k)2 + q21ω

2
k

]
.

Accordingly, if (H1) holds, then we have that

sign

{
d(Reλ)

dτ

}
τ=τ0

> 0.

Therefore, the transversal condition holds and a Hopf bifurcation occurs at τ = τ0.
From what has been discussed previously, we obtain the following results.
Theorem 2.2. For model (1.2), assume that R1 > 1 and γ0 > 0 hold. Then,

the following results hold true:

(i) If4 ≤ 0 or4 > 0 and z∗ = (
√
4−h2)/3 < 0 or4 > 0, z∗ = (

√
4−h2)/3 > 0

and h(z∗) > 0, then the equilibrium E+ is locally asymptotically stable for all
τ ≥ 0.

(ii) Let (H1) hold, then h(z) has at least one positive root zk, and all roots of (2.7)
have negative real parts for τ ∈ [0, τ0k ), and the equilibrium E+ of model (1.2)
is locally asymptotically stable for τ ∈ [0, τ0k ).

(iii) If all conditions as stated in (ii) hold true and h′(zk) 6= 0, then model (1.2)
undergoes a Hopf bifurcation at E+, when τ = τ jk(j = 0, 1, 2, · · ·).

3. Global stability

In this section, we are concerned with the global stability of the positive equilib-
rium E+(x+, S+, I+), the disease-free equilibrium E2(x2, S2, 0) and the predator-
extinction equilibrium E1(r/a, 0, 0) of model (1.2) respectively. The strategy of
proofs is to use global Lyapunov functional and LaSalle’s invariance principle.
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Theorem 3.1. Assume that R1 > 1, then the positive equilibrium E+ of model
(1.2) is globally attractive, provided (H2) x > r/(2a).
Here, x is the persistency constant for x satisfying lim inft→+∞ x(t) ≥ x.

Proof. Let (x(t), S(t), I(t)) be any positive solution of model (1.2) with initial
conditions (1.3). Denote f(x) = x2/(1 +mx2). Define

V+(t) = c

(
x(t)− x+ −

∫ x(t)

x+

f(x+)

f(u)
du

)
+ S(t)− S+ − S+ ln

S(t)

S+

+k

(
I(t)− I+ − I+ ln

I(t)

I+

)
,

where c = a2/a1, k = 1 − σ/(αS+). Calculating the derivative of V+(t) along
positive solutions of model (1.2), it follows that

V̇+(t) = c

(
1− f(x+)

f(x(t))

)
(rx(t)− ax2(t))− a2f(x(t))S(t) + a2f(x(t− τ))S(t− τ)

−a2S+

S(t)
f(x(t− τ))S(t− τ)− σI(t)

(
S(t)

S+
+

S+

S(t)
− 2

)
+ a2f(x+)S+.

(3.1)
Define

V (t) = V+(t) + a2

∫ t

t−τ

[
f(x(u))S(u)− f(x+)S+ − f(x+)S+ ln

f(x(u))S(u)

f(x+)S+

]
.

(3.2)
A direct calculation shows that

V̇ (t) = c
f(x(t))− f(x+)

f(x(t))
(x(t)− x+)[r − ax(t)− ax+]

−a2f(x+)S+

[
f(x(t− τ))S(t− τ)

f(x+)S(t)
− 1− ln

f(x(t− τ))S(t− τ)

f(x+)S(t)

]
−a2f(x+)S+

[
f(x+)

f(x(t))
− 1− ln

f(x+)

f(x(t))

]
− σI(t)

[
S(t)

S+
+

S+

S(t)
− 2

]
=
−(x(t) + x+)(x(t)− x+)2

x2(t)(1 +mx2+)
[a(x(t) + x+)− r]

−a2f(x+)S+

[
f(x(t− τ))S(t− τ)

f(x+)S(t)
− 1− ln

f(x(t− τ))S(t− τ)

f(x+)S(t)

]

−a2f(x+)S+

[
f(x+)

f(x(t))
− 1− ln

f(x+)

f(x(t))

]
− σI(t)

[
S(t)

S+
+

S+

S(t)
− 2

]
.

(3.3)
For x > r/(2a) holds, there is a constant T > 0 such that if t ≥ T , x(t) > r/(2a).
In this case, we have that, for t ≥ T ,

−(x(t) + x+)(x(t)− x+)2

f(x(t))(1 +mx2+)(1 +mx2(t))
[a(x(t) + x+)− r] ≤ 0

with equality, if and only if x(t) = x+. Note that the function g(x) = x − 1 − lnx
is always non-negative for any x > 0 and g(x) = 0, if and only if x = 1. Therefore,



Stability Analysis of an Eco-epidemiological Model 523

we have that if t ≥ T , V̇ (t) ≤ 0 with equality, if and only if x(t) = x+, S(t) =
S(t− τ) = s+. Now, we look for the invariant subset M within the set.

M = {(x, S, I) : x(t) = x+, S(t) = S+}

We obtain from the first equation of model (1.2) that

0 = Ṡ(t) =
a2x

2
+S+

1 +mx2+
− r1S+ − αS+I(t) + σI(t),

which leads to I(t) = I+. Hence, the only invariant set in M isM = {(x+, s+, I+)}.
Therefore, the global asymptotic stability of E+ follows from LaSalle’s invariance
principle for delay differential systems (see, for example, [4]). This completes the
proof.

Theorem 3.2. Assume that R0 > 1, R1 < 1, γ0 > 0 and (H2) hold, then
the disease-free equilibrium E2(x2, S2, 0) of model (1.2) is globally asymptotically
stable.

Proof. By Theorem 2.1, we see that if R0 > 1, R1 < 1 and γ0 > 0 hold, the
equilibrium E2 is locally asymptotically stable for all τ ≥ 0. Hence, we only prove
that all positive solutions of model (1.2) with initial conditions (1.3) converge to E2.
Let (x(t), S(t), I(t)) be any positive solution of model (1.2) with initial conditions
(1.3). Define

V21(t) = c

(
x(t)− x2 −

∫ x(t)

x2

f(x2)

f(u)
du

)
+ S(t)− S2 − S2 ln

S(t)

S2
+ k1I(t),

where k1 = 1−σ/(αS2). Calculating the derivative of V21(t) along positive solutions
of model (1.2), we obtain that

V̇21(t) = c

(
1− f(x2)

f(u)

)
ẋ(t) +

(
1− S2

S(t)

)
Ṡ(t) + kİ(t)

= c

(
1− f(x2)

f(u)

)[
rx(t)− ax2(t)

]
− a1f(x(t))S(t) + a2f(x(t− τ))S(t− τ)

−a2S2

S(t)
f(x(t− τ))S(t− τ)− σI(t)

(
S(t)

S2
+

S2

S(t)
− 2

)
− k1(r2 + σ − αS2)I(t)

+r1S2.

(3.4)
Define

V2(t) = V21(t)+a2

∫ t

t−τ

[
f(x(u)S(u))− f(x2)S2 − f(x2)S2 ln

f(x(u))S(u)

f(x2)S2

]
. (3.5)

A direct calculation shows that

V̇2(t) =
−c(x(t) + x2)(x(t)− x2)2

x2(t)(1 +mx22)
(a(x(t) + x2)− r)

−a2f(x2)S2

[
f(x(t− τ))S(t− τ)

f(x2)S(t)
− 1− ln

f(x(t− τ))S(t− τ)

f(x2)S(t)

]
−a2f(x2)S2

[
f(x2)

f(x(t))
− 1− ln

f(x2)

f(x(t))

]
− δI(t)

[
S(t)

S2
+

S2

S(t)
− 2

]
−k(r2 + σ)(1−R1)I(t).

(3.6)
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Hence, it follows from (3.6) that if R1 < 1 and (H2) hold true, then V̇2(t) ≤ 0 for
all t > T with equality, if and only if S(t) = S(t− τ) = S2, I(t) = 0 and x(t) = x2.
Using a similar argument as that in the proof of Theorem 3.1, we show that the
only invariant set in M = {(x, S, I) : V̇2(t) = 0} is M = {(x2, S2, 0)}. Accordingly,
the global asymptotic stability of E2 follows from LaSalle’s invariant principle for
delay differential systems. This completes the proof.

Theorem 3.3. Let R0 < 1, then the semi-trivial equilibrium E1(0, 0, r/a) of
model (1.2) is globally asymptotically stable.

Proof. By Theorem 2.1, we see that if R0 < 1, E1 is locally asymptotically
stable. Hence, we only prove that all positive solutions of model (1.2) with initial
conditions (1.3) converge to E1. Let (x(t), S(t), I(t)) be any positive solution of
model (1.2) with initial conditions (1.3). Denote x1 = r/a. Define

V1(t) = c

(
x(t)− x1 −

∫ x(t)

x1

f(x1)

f(u)
du

)
+ S(t) + I(t) + a2

∫ t

t−τ
f(x(u))S(u)du.

Calculating the derivative of V1(t) along positive solutions of model (1.2), it follows
that

V̇1(t) = c

(
1− f(x1)

f(x(t))

)
ẋ(t) + Ṡ(t) + İ(t) + a2f(x(t))S(t)− a2f(x(t− τ))S(t− τ)

= c

(
1− f(x1)

f(x(t))

)[
rx(t)− ax2(t)

]
− (r1 − a2f(x1))S(t)− r2I(t)

= −acx(t)(x(t) + x1)

x2(t)(1 +mx21)
(x(t)− x1)2 − r1(1−R0)S(t)− r2I(t).

(3.7)
If R0 < 1, it then follows from (3.7) that V̇1(t) ≤ 0. By Theorem 5.3.1 in [5],
solutions limit to Λ, the largest invariant subset of {V̇1(t) = 0}. Clearly, we see from
(3.7) that V̇1(t) = 0, if and only if x(t) = x1, S(t) = 0 and I(t) = 0. Accordingly,
the global asymptotic stability of E1 follows from LaSalle’s invariant principle for
delay differential systems. This completes the proof.

4. Numerical simulation

In this section, we give two examples to illustrate the main results in Section 2.
Example 1 In model (1.2), let a = 0.15, a1 = 1.5, a2 = 1.2,m = 0.15, α =

0.25, r = 2, r1 = 1.5, r2 = 0.5, σ = 0.7. It is easy to show that R0 = 6.4257 >
1, and therefore model (1.2) has a disease-free equilibrium E2(1.2403, 1.2, 0). By
calculation, we obtain that R1 = 0.25 < 1, γ0 = −0.1541 < 0 and τ0 = 5.8102.
By Theorem 2.1, we see that the equilibrium E2 is locally asymptotically stable,
if 0 < τ < τ0 and is unstable, if τ > τ0. Further, model (1.2) undergoes a Hopf
bifurcation at E2, when τ = τ0. An investigation of model (1.2) with the previous
coefficients can be conducted via a numerical integration using the standard Matlab
algorithm (Figures 1 and 2).

Example 2 In model (1.2), let a = 0.25, a1 = 1.5, a2 = 3.2,m = 0.55, α =
0.25, r = 2, r1 = 0.5, r2 = 0.5, σ = 0.2. By calculation, we obtain R1 = 1.1949 > 1.
Therefore, model (1.2) has a unique endemic-coexistence E+(0.5095, 2.8, 1.2710).
Direct calculations show that ∆ ≈ 6.9893 > 0, z∗ ≈ 0.1580, f(z∗) ≈ −0.0028 < 0,
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ω0
1 ≈ 0.4365 and τ01 ≈ 5.7968. By Theorem 2.2, we see that the equilibrium E+

is locally asymptotically stable, if 0 < τ < τ01 and model (1.2) undergoes a Hopf
bifurcation at E+, when τ = τ01 . Numerical simulation illustrates the previous
result (Figures 3 and 4).

Figure 1. The temporal solution found by numerical integration of system (1.2) with τ = 1 and
(ϕ(0), φ1(0), φ2(0)) = (1.5, 1.5, 1.5)

Figure 2. The temporal solution found by numerical integration of system (1.2) with τ = 6 and
(ϕ(0), φ1(0), φ2(0)) = (1.5, 1.5, 1.5)



526 L. Wang, M. Zhang, X. Chen & G. Yang

Figure 3. The temporal solution found by numerical integration of system (1.2) with τ = 1.6 and
(φ1(0), φ2(0), ϕ(0)) = (1.5, 1.5, 1.5)

Figure 4. The temporal solution found by numerical integration of system (1.2) with τ = 6 and
(φ1(0), φ2(0), ϕ(0)) = (1.5, 1.5, 1.5)
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5. Discussion

In this paper, we have investigated the global dynamics of an eco-epidemiological
model with time delay and Holling type-III functional response. By analyzing the
corresponding characteristic equations, the local stability of each of feasible equi-
libria has been established. From the analysis in Section 2, we see that the ecolog-
ical basic reproduction number R0 determines the local stability of the predator-
extinction equilibrium E1(r/a, 0, 0). If the ecological basic reproduction number
R0 < 1, the equilibrium E1 is locally asymptotically stable. If R0 > 1 and the
disease basic reproduction number R1 < 1, the model has a disease-free equilib-
rium and the endemic-coexistence equilibrium is not feasible. At the disease-free
equilibrium, a threshold τ0 for the time delay was identified such that below it,
the equilibrium is locally asymptotically stable, but if the delay is greater than
the threshold, sustained oscillation arise. If the disease basic reproduction number
R1 > 1, the model has an endemic-coexistence equilibrium. A second threshold
τ0k for the time delay due to the gestation of the predators was also identified to
characterize the existence of Hopf bifurcation at the endemic-coexistence equilibri-
um, when the delay crosses it. This implies that the disease spreading among the
predators becomes periodically endemic.
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