
Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn

Volume 4, Number 3, September 2022, 529–538 DOI:10.12150/jnma.2022.529

Dynamical Behavior and Exact Traveling Wave
Solutions for Three Special Variants of the

Generalized Tzitzeica Equation∗

Rongzheng Shu1, Haohao Qian1 and Lina Zhang1,†

Abstract The dynamics and bifurcations of traveling wave solutions are s-
tudied for three nonlinear wave equations. A new phenomenon, such as a
composed orbit, which consists of two or three heteroclinic orbits, may cor-
respond to a solitary wave solution, a periodic wave solution or a peakon
solution, is found for the equations. Some previous results are extended.
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1. Introduction

The generalized Tzitzeica equation

uxt = aemu + benu, (1.1)

where a, b are arbitrary constants and m, n are integers. Specially, when m = 1 and
n = −2, equation (1.1) is called the Tzitzeicta equation, which was originally found
from the work of Tzitzeica [14]. Later on, Dodd, Bullough and Mikhailov [4, 12]
introduced some other forms of the evolution equation involving the exponential
term epu. For m = 1 and n = −1, equation (1.1) reduces to the sinh-Gordon
equation. For m = 1 and n = −2, equation (1.1) turns into the Dodd–Bullough–
Mikhailov equation. For m = −1 and n = −2, equation (1.1) gives rise to the
Tzitzeica–Dodd–Bullough equation. These well-known equations have extensive
applications in mathematical biology, nonlinear optics, fluid mechanics, chemical
kinetics and quantum field theory [7, 13, 18]. Particularly in recent years, many re-
searchers have focused on the search for exact solutions of nonlinear wave equations
by using different methods and techniques. Among others, Wazwaz [15] derived
some traveling wave solutions for the above three variants of the generalized Tz-
itzeica equation (1.1) by employing the tanh method and extended tanh method.
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Abazari [1] applied the (G′/G)-method for constructing solitons and periodic so-
lutions for the generalized Tzitzeica equation (1.1). In fact, it is important to
understand the dynamical behavior of traveling wave solutions for nonlinear wave
equations [3, 5, 6, 8–11, 16, 17, 19–22]. In [5], Chen et al., studied the qualitative
behavior of the traveling wave solutions of the generalized Tzitzeica equation (1.1)
in the case of degenerate equilibrium points.

In this paper, we carry out further study on the dynamical behavior and exact
traveling wave solutions of the three variants of equation (1.1). By presenting some
representative bifurcation diagrams under different parametric conditions, not only
some new exact explicit expressions of traveling wave solutions including solitary
wave solutions, periodic wave solutions and peakon solutions are obtained, but also
some interesting phenomena arise. For instance, a composed orbit, which consists
of two or three heteroclinic orbits, may correspond to a solitary wave solution, a
periodic wave solution or a peakon solution. This work complements the previous
results of [5].

2. Phase portraits of three variants of the general-
ized Tzitzeica equation

To study the equilibrium points and their properties of the corresponding travel-
ing wave system of the generalized Tzitzeica equation, we need to introduce some
preliminaries [2] first.

Lemma 1. Suppose p ∈ R be an equilibrium point of the planar polynomial inte-
grable system

ẋ = P (x, y), ẏ = Q(x, y). (2.1)

Denote ∆ = Px(p)Qy(p) − Py(p)Qx(p) and T = Px(p) + Qy(p). If ∆ < 0, then p
is a saddle point. If T 2 > 4∆ > 0, then p is a node (stable if T < 0, unstable if
T > 0). If T = 0 < ∆, then p is a center. Moreover, if ∆ = T = 0 and the Jacobian
matrix at the point p is not the zero matrix, then p is a nilpotent point.

2.1. Phase portraits of the sinh-Gordon equation

For m = 1 and n = −1, equation (1.1) reduces to the sinh-Gordon equation

uxt = aeu + be−u. (2.2)

We look for the traveling wave solutions of equation (2.2) in the form of u(x, t) =
u(ξ) with ξ = x− ct. Inserting it into equation (2.2) and subsequently making the
variable transformation v = eu, we have

cvv′′ − c(v′)2 + av3 + bv = 0. (2.3)

Letting y = v′ in equation (2.3) generates a planar system

dv

dξ
= y,

dy

dξ
=
cy2 − av3 − bv

cv
(2.4)

with the first integral

H(v, y) =
cy2 + 2av3 − 2bv

cv2
= h. (2.5)
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System (2.4) is a singular traveling wave system, because the second equation of
(2.4) is discontinuous on the straight line v = 0. Making the transformation dξ =
cv dτ carries (2.4) into the associated regular system

dv

dτ
= cvy,

dy

dτ
= cy2 − av3 − bv. (2.6)

System (2.6) has the same first integral as system (2.4). However, systems (2.4)
and (2.6) define different vector fields on the two sides of the straight line v = 0.

Obviously, for ab > 0, system (2.6) has only one equilibrium point O(0, 0) on
the v-axis. Upon further analysis, it can be concluded that O(0, 0) is a nilpotent
elliptic-saddle point with one separatrix is tangent to the semi-axis y > 0, and the
other to the semi-axis y < 0.

For ab < 0, system (2.6) has three equilibrium points O(0, 0) and E1,2(v1,2, 0)

on the v-axis, where v1 =
√
− b
a and v2 = −

√
− b
a . After analysis, we know that

the equilibrium point O(0, 0) remains to be a nilpotent elliptic-saddle point. In the
meantime, corresponding to the equilibrium points E1,2(v1,2, 0), ∆ = −2bcv1,2 and
T = 0. Hence, we arrive that E1(v1, 0) is a saddle point, while E2(v2, 0) is a center,
if bc > 0 or E1(v1, 0) a center, while E2(v2, 0) a saddle point, if bc < 0.

Based on the above discussion and without loss of generality, we draw the phase
portraits of system (2.4) for b > 0 and c > 0 in the (v, y)-phase plane, which are
shown in Figure 1.
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Figure 1. The vector fields and phase portraits of system (2.4), when b > 0 and c > 0

2.2. Phase portraits of the Dodd–Bullough–Mikhailov equa-
tion

For m = 1 and n = −2, equation (1.1) becomes the Dodd–Bullough–Mikhailov
equation

uxt = aeu + be−2u. (2.7)
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Letting u(x, t) = u(ξ), ξ = x − ct and using the Painlevé property v = eu convert
equation (2.7) into the traveling wave system

dv

dξ
= y,

dy

dξ
=
cy2 − av3 − b

cv
, (2.8)

which has the first integral

H(v, y) =
cy2 + 2av3 − b

cv2
= h. (2.9)

Letting dξ = cv dτ , system (2.8) becomes the following regular system

dv

dτ
= cvy,

dy

dτ
= cy2 − av3 − bv. (2.10)

Systems (2.8) and (2.10) have the same topological phase portraits since both of
them have the same first integral (2.9). However, the fact that systems (2.8) and
(2.10) define different vector fields on the two sides of the straight line v = 0 indicates
that the dynamical behavior of the orbits of system (2.8) in the neighborhood of
the straight line v = 0 needs to be handled delicately.

It is easy to check that system (2.10) has a unique equilibrium point E1(v1, 0)

on the v-axis, where v1 = 3

√
− b
a . When bc > 0, in addition to the equilibrium point

E1(v1, 0), system (2.10) has a pair of equilibrium points S±(0,±Ys) on the straight

line v = 0, where Ys =
√

b
c . Corresponding to the equilibrium point E1(v1, 0),

∆ = −3bc and T = 0. Therefore, E1(v1, 0) is a saddle point if bc > 0, a center if
bc < 0. As to the equilibrium points S±(0,±Ys), we have ∆ = 2bc, T = ±3

√
bc and

T 2 > 4D > 0. Hence, S+(0, Ys) is an unstable node, while S−(0,−Ys) is a stable
node.

On the basis of above qualitative analysis and for the sake of brevity, under
two different parameter conditions, we have the bifurcations of phase portraits of
system (2.8) shown in Figure 2.
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Figure 2. The vector fields and phase portraits of system (2.8), when a > 0 and b > 0
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2.3. Phase portraits of the Tzitzeica–Dodd–Bullough equa-
tion

For m = −1, n = −2, equation (1.1) reduces to the Tzitzeica–Dodd–Bullough
equation

uxt = ae−u + be−2u. (2.11)

Equation (2.11) can be cast into the following planar system

dv

dξ
= y,

dy

dξ
=
cy2 − av − b

cv
(2.12)

with the first integral

H(v, y) =
cy2 − 2av − b

cv2
= h, (2.13)

where u(x, t) = u(x− ct), ξ = x = ct and v = eu. Letting dξ = cv dτ carries (2.12)
into the associated regular system

dv

dτ
= cvy,

dy

dτ
= cy2 − av − b, (2.14)

which has the same first integral as system (2.12).
In order to make clear the dynamical behavior of orbits in the vicinity of the

straight line v = 0 of system (2.12), first of all, we need to study the equilibrium
points and their properties of system (2.14). Apparently, system (2.14) has a unique
equilibrium point E1(v1, 0) on the v-axis, where v1 = − b

a . When bc > 0, system
(2.10) has a pair of equilibrium points S±(0,±Ys) on the straight line v = 0, where

Ys =
√

b
c . Moreover, with the help of Lemma 1, we know that E1(v1, 0) is a saddle

point if bc > 0, a center if bc < 0, and S±(0,±Ys) are two nodes. Under two different
parameter conditions, we have the bifurcations of phase portraits of system (2.12),
which are shown in Figure 3.
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Figure 3. The vector fields and phase portraits of system (2.12), when a > 0 and b > 0



534 R. Shu, H. Qian & L. Zhang

3. Main results and the theoretic derivations of main
results

In this section, we summarize the main results in the following theorems, which will
be followed by the proofs.

Theorem 1. For a < 0, b > 0 and c > 0, equation (2.2) has one solitary wave
solution

v(x, t) =

√
− b
a

tanh2

(√
− ab

4c2
(x− ct)

)
. (3.1)

Two families of periodic wave solutions

v(x, t) = r12 sn2

(√
−ar11

2c
(x− ct), k1

)
, (3.2)

v(x, t) = r22 + (r21 − r22) sn2

(√
ar22
2c

(x− ct), k2

)
, (3.3)

where k1 =
√

r12
r11

and k2 =
√

r22−r21
r22

with r22 < r21 < 0 < r12 < r11.

Proof. Let hi = H(vi, 0), i = 1, 2, where H(v, y) is given in (2.5). Then, cor-
responding to the level set defined by H(v, y) = h1 in Figure 1(a), there exist
two curves which are tangent to the straight line v = 0 at the elliptic-saddle point
O(0, 0) and intersect with the v-axis at the saddle point E1(v1, 0). These two curves
can be seen as a compounded homoclinic orbit of system (2.4) to the saddle point
E1(v1, 0), which can be expressed as

y =

√
2v

c
(
√
−av −

√
b) sgn(ξ), v ∈ [0, v1). (3.4)

Integrating the first equation of (2.4) along the combined homoclinic orbit (3.4)
leads to the explicit representation of the solitary wave solution (3.1).

In addition, corresponding to the level sets defined by H(v, y) = h, h ∈ (−∞, h1)
in Figure 1(a), there exist a family of closed orbits which are tangent to the straight
line v = 0 at the elliptic-saddle point O(0, 0) and are enveloped in the combined
homoclinic orbit. These closed orbits can be seen as combined periodic orbits of
system (2.4), which can be expressed as

y2 =
2a

c
v(r11 − v)(v − r12), v ∈ [0, r12], (3.5)

where r11 = ch+
√
c2h2+16ab
4a and r12 = ch−

√
c2h2+16ab
4a . With the aid of equation (3.5)

and dv
dξ = y, we infinitely obtain many elliptic functions of periodic wave solutions

(3.2).
Similarly, corresponding to the periodic orbits surrounding the center E2(v2, 0),

defined by H(v, y) = h, h ∈ (h2,+∞) in Figure 1(a), we get the parametric repre-
sentations of periodic wave solutions (3.3).

Remark 1. The solitary wave solution (3.1) corresponds to a composed homoclinic
orbit, which is composed of two heteroclinic orbits of system (2.6). Besides, the
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dynamical behaviors of the periodic wave solutions of (3.2) and (3.3) are completely
different in spite of similar analytical expressions. The periodic wave solutions (3.2)
correspond to a family of composed periodic orbits, which constitute a family of
homoclinic orbits of system (2.6), while the periodic wave solutions (3.3) correspond
to a family of periodic orbits of system (2.4).

Theorem 2. For a > 0, b > 0 and c > 0, equation (2.7) has one solitary wave
solution

v(x, t) =
3v1tanh2

(√
−3av1

4c (x− ct)
)
− v1

2
. (3.6)

One family of periodic wave solutions

v(x, t) =
(r31 − r33)r32 − (r31 − r32) sn2

(√
a(r31−r33)

2c (x− ct), k3
)

(r31 − r33)− (r31 − r32) sn2
(√

a(r31−r33)
2c (x− ct), k3

) , (3.7)

where k3 =
√

r31−r32
r32−r33 with r33 < r32 < 0 < r31.

Proof. Let h1 = H(v1, 0) = − 3
c

3
√
a2b, where H(v, y) is given in (2.9). Then,

corresponding to the level set defined by H(v, y) = h1 in Figure 2(a), there exist
three curves which connect the saddle point E1(v1, 0) and the two nodes S±(0,±Ys)
respectively. These three curves can be seen as a composed homoclinic orbit of
system (2.12) to the saddle point E1(v1, 0), which can be written as

y = −
√
a

c
(v − v1)

√
−2v − v1 sgn(ξ), v ∈ (v1,−

v1
2

]. (3.8)

Integrating the first equation of (2.12) along the composed homoclinic orbit, (3.8)
follows the parametric representation of the solitary wave solution (3.6).

Additionally, for any h ∈ (−∞, h1), the level set defined by H(v, y) = h cor-
responds to two curves, which connect the two nodes S(0,±Ys) on the right and
left sides of the straight line v = 0, and are embraced in the composed homoclinic
orbits (see Figure 2(a)). These two curves can be regarded as a combined periodic
orbit of system (2.12), which can be written as

y2 =
2a

c
v(r31 − v)(v − r32)(v − r33), v ∈ [r32, r31], (3.9)

where r31, r32, r33 (r33 < r32 < 0 < r31) are three real roots of the algebraic equation
b + chv2 − 2av3 = 0. The combined periodic orbits (3.9) bring about the periodic
wave solutions (3.7).

Remark 2. The solitary wave solution (3.6) corresponds to a composed homoclinic
orbit, which consists of three heteroclinic orbits of system (2.10). The periodic wave
solutions (3.7) correspond to a family of composed periodic orbits, which constitute
two families of heteroclinic orbits of system (2.10).

Theorem 3. For a > 0, b > 0 and c > 0, equation (2.11) has one peakon solution

v(x, t) =
1

a
exp

(
− a√

bc
|x− ct|

)
+ c. (3.10)
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One family of periodic wave solutions

v(x, t) =
r41 + r42

2
− r41 − r42

2
cos
(√
−hx

)
, (3.11)

where r42 < 0 < r41 and h < 0.

Proof. The triangular curves, which connect the saddle point E1(v1, 0) and the

two nodes S±(0,±Ys) respectively, have the level set H(v, y) = H(v1, 0) = −a
2

bc in
Figure 3(a), and can be regarded as a singular homoclinic orbit of system (2.12) to
the saddle point E1(v1, 0), which can be written as y2 = − 1

bc (av + b)2. By using
the first equation of (2.12) to carry out integration along the singular homoclinic
orbit, we obtain the peakon solution (3.10).

Additionally, the computation of the periodic wave solution (3.11) is similar to
that of (3.7), we omit it for brevity.

Remark 3. The peakon solution (3.10) corresponds to a singular homoclinic or-
bit, which comprises three heteroclinic orbits of system (2.14). The periodic wave
solutions (3.11) correspond to a family of composed periodic orbits, which comprise
two families of heteroclinic orbits of system (2.14).

4. Conclusions

In this work, we provide some new types of solitary wave solutions and periodic wave
solutions, which are expressed in terms of hyperbolic and Jacobi elliptic functions
(see Theorems 1–3) for three variants of the generalized Tzitzeica equation. In
particular, dynamical analysis shows that a composed orbit, which is comprised of
two or three heteroclinic orbits, can correspond to a solitary wave solution or a
periodic wave solution, and a homoclinic orbit can also correspond to a periodic
wave solution. Similar results can also be found in [9, 16,17].

On the other hand, we have to admit that we discuss only three special cases of
the generalized Tzitzeica equation, and we have not consider the general m and n
in the current paper yet. Actually, we are applying the approach proposed in this
paper to the generalized Tzitzeica equation with general m and n, and have already
gotten some new solutions and the abundant dynamical behaviors in them, which
we will report in another paper.
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