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Spatiotemporal Dynamic Analysis in a Time-space
Discrete Brusselator Model

Hongxia Liu1, Ranchao Wu1,† and Biao Liu2

Abstract In this paper, we study the spatiotemporal patterns of a Brus-
selator model with discrete time-space by using the coupled mapping lattice
(CML) model. The existence and stability conditions of the equilibrium point
are obtained by using linear stability analysis. Then, applying the center
manifold reduction theorem and the bifurcation theory, the parametric condi-
tions of the flip and the Neimark-Sacker bifurcation are described respectively.
Under space diffusion, the model admits the Turing instability at stable homo-
geneous solutions under some certain conditions. Two nonlinear mechanisms,
including flip-Turing instability and Neimark-Sacker-Turing instability, are p-
resented. Through numerical simulation, periodic windows, invariant circles,
chaotic phenomenon and some interesting spatial patterns are found.

Keywords Discrete Brusselator model, Bifurcation, Turing instability, Cou-
ple map lattice.
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1. Introduction

In 1952, Turing [29] proposed the reaction-diffusion coupling equation for the first
time, and obtained that the system transforms from a stable process to an unstable
process under the action of diffusion. He believed that the diffusion may destroy
the spatial homogeneous states and lead to non-homogeneous spatial patterns. This
instability is known as the Turing instability, which has been also known as the
diffusion-driven instability. In recent decades, Turing instability has been applied
to many fields such as biology, physics, chemistry, etc. In chemical systems, Turing
patterns can be produced by a number of reactions such as the famous Brusselator
model.

Brusselator model, as an autocatalytic reaction, was proposed by Prigogine and
Lefever [23] in the 1960s. Since then, it has attracted the attention of many schol-
ars, and detailed theoretical analysis and experimental research have been carried
out on the dynamic behavior of Brusselator system in continuous time and space.
It has been found that Hopf bifurcation and Turing instability would occur in the
continuous Brusselator system. The combination of Hopf bifurcation and Turing
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instability can produce some patterns. For example, it refers to [7, 9, 11, 15, 16, 18]
and their relevant literature.

In many cases, however, it is not continuous in time. For example, in [25], the
nonlinear dynamical behaviors of two discrete-time versions of the continuous time
Brusselator model were considered. Moreover, in [6], the dynamics of Brussela-
tor model with discrete time were studied, and a new chaos control method was
proposed based on bifurcation theory and center manifold theorem to control the
chaos of Brusselator model with discrete time under the influence of flip and Hopf
bifurcation.

As we know, there are many methods that can establish the discrete model.
Since the coupled mapping lattice (CML) model can discretize the corresponding
continuous reaction diffusion model, it has been widely used (see [3,13,28,31,33–35]).
The continuous system is discretized by CML model, which leads to the unique non-
linear mechanism and characteristics of the time-space discrete Brusselator system.
The most important nonlinear mechanisms are the various bifurcation behaviors,
including flip bifurcation and Neimark-Sacker bifurcation. As a unique bifurcation
phenomenon of discrete Brusselator system, flip bifurcation can lead to the forma-
tion of the path to chaos accompanied by period-doubling process. The combina-
tion of flip bifurcation and Turing instability can lead to the formation of complex
pattern patterns. As described in [17], Neimark-Sacker bifurcation in the discrete
system is the discrete counterpart of the Hopf bifurcation that occurs in the contin-
uous system. The combination of Neimark-Sacker bifurcation and Turing instability
gives rise to Neimark-Sacker-Turing instability, resulting in periodic orbits, invari-
ant circles, chaotic attractors and other complex patterns, which are of exploratory
significance. Therefore, we will consider the dynamical behavior of the time-space
discrete Brusselator model in this paper.

The center manifold reduction and normal form theory are frequently used in
the study of the bifurcation. For example, in [12], the stability and local Hopf bi-
furcation of Leslie-Gower predator-prey system with discrete distributed delay were
studied. By using the center manifold reduction and normal form theory, formu-
las were obtained to determine the stability and direction of periodic solutions of
Hopf bifurcation. Similarly, the classical Lotka-Volterra predator-prey model was
studied in [8]. The results showed that the existence of time delay will change the
stability of the equilibrium point, while the fear effect will stabilize the equilibrium
point. Using the the center manifold reduction and normal form theory, formula
for determining the stability and direction of Hopf bifurcation periodic solution was
derived.

The paper is organized as follows. In Section 2, the time-space discrete Brus-
selator model is developed, and the existence and stability conditions of the equi-
librium points are obtained. In Section 3, we give the parametric conditions for
the Neimark-Sacker, flip and Turing bifurcation to occur. In Section 4, numerical
simulations are presented to illustrate the theoretical results. The Turing instability
region is also identified. In Section 5, we draw some conclusions.
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2. Model and stability analysis

Prigogine and Lefever [23] proposed the following continuous-time Brusselator mod-
el

u̇(t) = a− (b+ 1)u(t) + u2(t)v(t),

v̇(t) = bu(t)− u2(t)v(t), (2.1)

where u(t) and v(t) are concentrations of activator and inhibitor respectively at
time t; a > 0 and b > 0 represent the control parameters. Furthermore, note
that in autocatalytic chemical reactions, the reactants often move from a region
of high concentration to that of low concentration. From a mathematical point of
view, this phenomenon can be described by diffusion. Given such considerations,
it is necessary to introduce diffusion into the model. Therefore, the model with
diffusion can be described as

∂u(x, t)

∂t
= a− (b+ 1)u(x, t) + u2(x, t)v(x, t) + d1∆u(x, t),

∂v(x, t)

∂t
= bu(x, t)− u2(x, t)v(x, t) + d2∆v(x, t), (2.2)

where ∆ is the Laplacian operator, and the positive constants d1 and d2 are diffusion
rates of activator and inhibitor respectively. In recent years, the effect of diffusion
on dynamic behavior has been studied extensively. For example, in [19], Ma and Hu
discussed the dynamic behavior of the continuous Brusselator system (2.2). They
studied the global bifurcation of non-constant steady state solutions of the model by
taking the concentration of a reactant as the bifurcation parameter, and described
the local bifurcation with a specific example.

It is worth noting that the discrete time-space model described by the difference
equation is more suitable than the continuous one due to its efficient calculation
results and abundant dynamic behaviors. We note that the spatial pattern sim-
ulation algorithm is based on the discrete form corresponding to the continuous
system. Therefore, it is frequent to use discrete model or effective discrete method
to connect the real model and simulation. On the other hand, the dynamics of the
Brusselator system in discrete time and space has not been studied much. Now, we
will consider the simultaneous discretization of time and space to study the stability
and bifurcation analysis of the Brusselator model.

Next, the CML model for system (2.2) will be presented. Define the time interval
τ and the space interval δ. A two-dimensional matrix region is taken, which is
divided into n× n grids by space intervals, where the (i, j) grid is only adjacent to
the (i+ 1, j), (i− 1, j), (i, j+ 1) and (i, j− 1) grids. Continuous time t is divided by
τ into a series of time intervals. Then, state variables u(i,j,t) and v(i,j,t) are defined,
which represent the concentration of the activator and inhibitor in (i, j) position at
the tth iteration. Assume the initial time is t0, then tth iteration time is t0 + tτ .

From [14,20,24,26], we know that in each discrete step from time t to t+ 1, the
dynamic behaviors of the CML model consist of two parts, namely, the diffusion
stage and the reaction stage. For the diffusion stage, we directly discretize the space
term of system (2.2), and get

u′(i,j,t) = u(i,j,t) +
τ

δ2
d1∆du(i,j,t),
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v′(i,j,t) = v(i,j,t) +
τ

δ2
d2∆dv(i,j,t), (2.3)

where u′(i,j,t) and v′(i,j,t) mean the concentrations of activator and inhibitor after
diffusion respectively, and ∆d is the discretized Laplace operator of the following
form

∆du(i,j,t) = u(i+1,j,t) + u(i−1,j,t) + u(i,j−1,t) − 4u(i,j,t),

∆dv(i,j,t) = v(i+1,j,t) + v(i−1,j,t) + v(i,j−1,t) − 4v(i,j,t). (2.4)

Then, we discretize the reaction terms of equation (2.2) to obtain the reaction
stage of the state variables u(i,j,t) and v(i,j,t)

u(i,j,t+1) = f1(u′(i,j,t), v
′
(i,j,t)),

v(i,j,t+1) = g1(u′(i,j,t), v
′
(i,j,t)), (2.5)

in which

f1(u, v) = u+ τ [a− (b+ 1)u+ u2v],

g1(u, v) = v + τ(bu− u2v).

Consider the following periodic boundary conditions

u(i,0,t+1) = u(i,n,t), u(i,1,t) = u(i,n+1,t), u(0,j,t) = u(n,j,t), u(i,j,t) = u(n+1,j,t),

v(i,0,t+1) = v(i,n,t), v(i,1,t) = v(i,n+1,t), v(0,j,t) = v(n,j,t), v(i,j,t) = v(n+1,j,t). (2.6)

The Brusselator system with discrete time and space has spatially homogeneous
and heterogeneous dynamic properties. The homogeneous dynamics have the fol-
lowing property for all i, j and t

∆du(i,j,t) = 0, ∆dv(i,j,t) = 0. (2.7)

However, for the heterogeneous dynamics, there is at least a set of i, j, t, making
∆du(i,j,t) and ∆dv(i,j,t) nonzero.

From the above analysis, the homogeneous dynamics are governed by the fol-
lowing equations

ut+1 = ut + τ [a− (b+ 1)ut + u2
t vt],

vt+1 = vt + τ(but − u2
t vt). (2.8)

We express equation (2.8) into a mappingu

v

 7→
u+ τ [a− (b+ 1)u+ u2v]

v + τ(bu− u2v)

 (2.9)

Now, we will use mapping (2.9) to analyze the homogeneous dynamics of e-
quations (2.3)-(2.5). The equilibrium point of mapping (2.9) meets the following
formulas

u =u+ τ [a− (b+ 1)u+ u2v],

v =v + τ(bu− u2v). (2.10)

By direct calculation, the unique positive equilibrium point is (a, ba ), which is denot-
ed by (u∗, v∗). For the positive equilibrium point (u∗, v∗), the following proposition
holds.
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Proposition 2.1. (1) If (S1) holds, it is a stable focus, where

(S1)

 (a− 1)2 < b < (a+ 1)2,

0 < τ < τN .

(2) If one of (S2) and (S3) holds, it is a stable degenerate node, where

(S2)

 b = (a− 1)2,

0 < τ < τN .
(S3)

 b = (a+ 1)2,

0 < τ < τN .

(3) If one of (S4) and (S5) holds, it is a stable node, where

(S4)

0 < b < (a− 1)2,

0 < τ < τF .
(S5)

 b > (a+ 1)2,

0 < τ < τF ,

and τN = 1− b−1
a2 , τF = τN −

√
τ2
N −

4
a2 .

Proof. The Jacobian matrix corresponding to any point (u, v) is

J(τ) =

1 + τ(2uv − b− 1) τu2

τ(b− 2uv) 1− τu2

 .
Then, it is easy to obtain that the eigenvalues evaluated at (u∗, v∗) are

λ1,2(τ) =
1

2
[−p(τ)±

√
p2(τ)− 4q(τ)] (2.11)

with

p(τ) =− 2 + (a2 − b+ 1)τ,

q(τ) =1− (a2 − b+ 1)τ + a2τ2. (2.12)

Therefore, if |λ1| < 1 and |λ2| < 1 hold, then (u∗, v∗) is asymptotically stable. That
is,

q(τ) < 1, |p(τ)| < 1 + q(τ). (2.13)

By solving (2.13) and from [21], the above results can be obtained.

3. Bifurcation analysis

Now, bifurcation phenomena will be discussed at the equilibrium point (u∗, v∗). τ
will be taken as the main bifurcation parameter, and occurrence conditions for three
bifurcation at (u∗, v∗) will be established, namely, Neimark-Sacker, flip and Turing
bifurcation.
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3.1. Neimark-Sacker bifurcation

From the literature such as [22,27,32], if the Neimark-Sacker bifurcation is experi-
enced at the equilibrium point (u∗, v∗), then the eigenvalues of the Jacobian matrix
J(τ) must have a pair of conjugate complex roots λ1,2, with module 1. It means
that p2(τ)− 4q(τ) < 0 and q(τ) = 1. That is, (a− 1)2 < b < (a+ 1)2,

τ = τN ,
(3.1)

where τN is the threshold value.
One rewrites (2.11) as follows

λ1,2(τ) =
−p(τ)

2
± i

2

√
4q(τ)− p2(τ) , α1 ± α2i. (3.2)

Now, we need to verify that the transversality condition for the occurrence of
Neimark-Sacker bifurcation is true. In fact,

d =
d|λ(τ)|
dτ

∣∣∣
τ=τN

= a2 − b+ 1 > 0. (3.3)

Besides, the condition λ(τN )n 6= 1, n = 1, 2, 3, 4 needs to be satisfied for the
Neimark-Sacker bifurcation, which implies p(τN ) 6= −2, 0, 1, 2. Since p2(τN )−4 < 0,
one yields p(τN ) 6= −2, 2. Hence, p(τN ) 6= 0, 1 holds, i.e.,

(a2 − b+ 1)τN 6= 2, 3. (3.4)

Under the above conditions, we translate the equilibrium point (u∗, v∗) of map-
ping (2.9) into the origin. Let w = u− u∗, z = v − v∗ and τ = τN , then we rewrite
mapping (2.9), and getw

z

 7→
a10 a01

b10 b01

w

z


+

a20w
2 + a11wz + a21w

2z + a30w
3 +O((|w|+ |z|)4)

b20w
2 + b11wz + b21w

2z + b30w
3 +O((|w|+ |z|)4)

 , (3.5)

where

a10 = 1 + (b− 1)τN , a01 = a2τN , a20 =
b

a
τN , a11 = 2aτN ,

a21 = τN , a30 = 0, b10 = −bτN , b01 = 1− a2τN ,

b20 = − b
a
τN , b11 = −2aτN , b21 = −τN , b30 = 0. (3.6)

The normal form of mapping (3.5) will be given below. To this end, nonsingular
coordinate transformation is introduced. We letw

z

 =

 a01 0

α1 − a10 −α2

 w̄

z̄

 . (3.7)
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From mapping (3.5), the following results can be obtained w̄

z̄

 7→
α1 −α2

α2 α1

 w̄

z̄

+
1

a01α2

G1(w̄, z̄)

G2(w̄, z̄)

 . (3.8)

Then, one can getG1(w̄, z̄)

G2(w̄, z̄)

 =

 α2 0

α1 − a10 −a01


×

a20w
2 + a11wz + a21w

2z + a30w
3 +O((|w|+ |z|)4)

b20w
2 + b11wz + b21w

2z + b30w
3 +O((|w|+ |z|)4)

 .

Rearranging the above equation, one yields the expressions of G1(w̄, z̄) and G2(w̄, z̄)
as follows

G1(w̄, z̄) =[a20a
2
01 + a11a01(α1 − a10)]α2w̄

2 − α2
2a11a01w̄z̄

+ [(α1 − a10)a21 + a30a01]a2
01α2w̄

3 − α2
2a21a

2
01w̄

2z̄ +O((|w|+ |z|)4),

G2(w̄, z̄) =[(α1 − a10)(a11((α1 − a10) + a01(a20 − b11))a01 − b20a
2
01]a01w̄

2

+ [(α1 − a10)(a21(α1 − a10) + a01(a30 − b21))− b30a
2
01]a2

01w̄
3

− (a11(α1 − a10)− a10b11)α2a01w̄z̄

− (a21(α1 − a10)− b21a01)α2a
2
01w̄

2z̄ +O((|w|+ |z|)4).

Thereby, the second and third partial derivatives of G1(w̄, z̄) and G2(w̄, z̄) with
respect to (w̄, z̄) could be evaluated at (0, 0).

G1w̄w̄ = 2[a20a
2
01 + a11a01(α1 − a10)]α2,

G1w̄z̄ = −α2
2a11a01,

G2w̄w̄ = 2[(α1 − a10)2a11 − a01((α1 − a10)(b11 − a20) + a01b20)]a01,

G2w̄z̄ = [a2
01b11 − (α1 − a10)a01a11]α2,

G1w̄w̄w̄ = 6[(α1 − a10)a2
01a21 + a3

01a30]α2,

G1w̄w̄z̄ = −2α2
2a21a

2
01,

G2w̄w̄w̄ = 6[(α1 − a10)2a21 − a01((α1 − a10)(b21 − a30) + a01b30)]a2
01,

G2w̄w̄z̄ = 2[a01b21 − (α1 − a10)a21]a2
01α2,

G1z̄z̄ = 0, G1w̄z̄z̄ = 0, G1z̄z̄z̄ = 0, G2z̄z̄ = 0, G2w̄z̄z̄ = 0, G2z̄z̄z̄ = 0.

Now, it is necessary to verify that the discriminatory quantity ξ is not equal to 0
from [10,32]. That is,

ξ = −Re{ (1− 2λ)λ̄2

1 + λ
ζ11ζ20} −

1

2
|ζ11|2 − |ζ02|2 +Re{λ̄ζ21} 6= 0 (3.9)

with

ζ20 =
1

8a01α2
[G1w̄w̄ −G1z̄z̄ + 2G2w̄z̄ + i(G2w̄w̄ −G2z̄z̄ − 2G1w̄z̄)],
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ζ11 =
1

4a01α2
[G1w̄z̄ +G1z̄z̄ + i(G2w̄w̄ +G2z̄z̄)],

ζ02 =
1

8a01α2
[G1w̄w̄ −G1z̄z̄ − 2G2w̄z̄ + i(G2w̄w̄ −G2z̄z̄ + 2G1w̄z̄)],

ζ21 =
1

16a01α2
[G1w̄w̄w̄ +G1w̄z̄z̄ +G2w̄w̄z̄ +G2z̄z̄z̄ + i(G2z̄z̄z̄ +G2w̄z̄z̄

−G1w̄w̄z̄ −G1z̄z̄z̄)].

Therefore, we have

ξ = −B
A
G1w̄w̄(G1w̄w̄ + 2(G2w̄w̄)− C

A
G1w̄w̄(G2w̄w̄ − 2G1w̄z̄)

− C

A
G2w̄w̄(G1w̄w̄ + 2G2w̄w̄) +

B

A
G2w̄w̄(G2w̄w̄ − 2G1w̄Z̄)

− 1

32a2
01α

2
2

(G2
1w̄w̄ +G2

2w̄w̄)− 1

64a2
01α

2
2

[(G1w̄w̄ − 2G2w̄z̄)
2

+ (G2w̄w̄ + 2G1w̄z̄)
2] +

1

16a01α2
[α1(G1w̄w̄w̄ +G2w̄w̄z̄) + α2(G2w̄w̄w̄ −G1w̄w̄z̄)]

and

A =32a2
01α

2
2[(1− α1)2 + α2

2],

B =α2
1 − 3α3

1 + 2α4
1 − α2

2 + α1α
2
2 − 2α4

2,

C =2α1α2 − 5α2
1α2 + 4α3

1α2 − α3
2 + 4α1α

3
2.

From the above analysis results, the following statements are valid.

Theorem 3.1. Suppose conditions (S11) (a − 1)2 < b < (a + 1)2 and (3.4) are
satisfied. When ξ 6= 0, then mapping (2.9) undergoes Neimark-Sacker bifurcation
at the equilibrium point (u∗, v∗) as τ = τN . Furthermore, when ξ < 0, then an
attracting invariant circle bifurcates from (u∗, v∗) for τ > τN ; when ξ > 0, then a
repelling invariant circle bifurcates from (u∗, v∗) for 0 < τ < τN .

3.2. Flip bifurcation

From [10], we know that if mapping (2.9) admits the flip bifurcation, it requires
q(τ) = p(τ) − 1, where p(τ) and q(τ) are given in (2.12). Therefore, the threshold
value τF of the flip bifurcation can be obtained

τF = τN −
√
τ2
N −

4

a2
.

It is not difficult to see that at τ = τF , and two eigenvalues are λ1 = −1, λ2 =
1− p(τF ). The flip bifurcation also requires |λ2| 6= 1. By calculation, we can get

(a2 − b+ 1)τF 6= 2, 4. (3.10)

Now, let us shift the equilibrium point of mapping (2.9) to the origin. Let
w = u− u∗, z = v − v∗, and τ̃ = τ − τF , then mapping (2.9) becomes

w

τ̃

z

 7→

a100 0 a001

0 1 0

b100 0 b001



w

τ̃

z

+


f1(w, τ̃ , z)

0

g1(w, τ̃ , z)

 , (3.11)
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where

f1(w, τ̃ , z) =a200w
2 + a101wz + a110wτ̃ + a011τ̃ z + a210w

2τ̃ + a111wτ̃z

+ a300w
3 + a201w

2z +O((|w|+ |τ̃ |+ |z|)4),

g1(w, τ̃ , z) =b200w
2 + b101wz + b110wτ̃ + b011τ̃ z + b210w

2τ̃ + b111wτ̃z

+ b300w
3 + b201w

2z +O((|w|+ |τ̃ |+ |z|)4)

and

a100 = 1 + (b− 1)τF , a001 = a2τF , a200 =
b

a
τF , a101 = 2aτF ,

a110 = b− 1, a011 = a2, a210 =
b

a
, a111 = 2a, a300 = 0,

a201 = τF , b100 = −bτF , b001 = 1− a2τF , b200 = − b
a
τF ,

b101 = −2aτF , b110 = −b, b011 = −a2, b210 = − b
a
,

b111 = −2a, b300 = 0, b201 = −τF .

One introduces an invertible matrix

T =


a001 0 a001

0 1 0

−1− a100 0 λ2 − a100

 . (3.12)

Let 
w

τ̃

z

 = T


w̄

τ̃

z̄

 . (3.13)

From equations (3.11)-(3.13) and λ2 = 1− p(τF ), one has
w̄

τ̃

z̄

 7→

−1

1

λ2



w̄

τ̃

z̄

+


F̃1(w̄, τ̃ , z̄)

0

G̃1(w̄, τ̃ , z̄)

 (3.14)

and 
F̃1(w̄, τ̃ , z̄)

0

G̃1(w̄, τ̃ , z̄)

 = T−1


f1(T (w̄, τ̃ , z̄))

0

g1((T (w̄, τ̃ , z̄))

 .

It is found that

F̃1(w̄, τ̃ , z̄) =
1

(1 + λ2)
[[a001a200(λ2 − a100)− a2

001b200](w̄ + z̄)2]
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+
1

(1 + λ2)
[[(λ2 − a100)a110 − a001b100](w̄ + z̄)τ̃ ]

+
a2

001

(1 + λ2)
[(λ2 − a100)a300 − a001b300](w̄ + z̄)3

+
a001

(1 + λ2)
[(λ2 − a100)a210 − a001b210](w̄ + z̄)2τ̃

+
a011(λ2 − a100)

a001(1 + λ2)
[(−1− a100)w̄ + (λ2 − a100)z̄]τ̃

+
1

(1 + λ2)
[(λ2 − a100)a101 − a001b101]

× [(−1− a100)w̄ + (λ2 − a100)z̄](w̄ + z̄)

+
1

(1 + λ2)
[a111(λ2 − a100)− a001b111]

× [(−1− a100)w̄ + (λ2 − a100)z̄](w̄ + z̄)τ̃

+
a001

(1 + λ2)
[(λ2 − a100)a201 − a001b201]

× [(−1− a100)w̄ + (λ2 − a100)z̄](w̄ + z̄)2 +O((|w|+ |τ̃ |+ |z|)4),

G̃1(w̄, τ̃ , z̄) =
1

(1 + λ2)
a001a200(1 + a100) + a2

001b200](w̄ + z̄)2

+
1

(1 + λ2)
[a110(1 + a100) + a001b110](w̄ + z̄)τ̃

+
a2

001

(1 + λ2)
[(1 + a100)a300 + a001b300](w̄ + z̄)3

+
a001

(1 + λ2)
[(1 + a100)a210 + a001b210](w̄ + z̄)2τ̃

+
a011(1 + a100)

a001(1 + λ2)
[(−1− a100)w̄ + (λ2 − a100)z̄]τ̃

+
1

(1 + λ2)
[(1 + a100)a101 + a001b101][(−1− a100)w̄ + (λ2 − a100)z̄](w̄ + z̄)

+
1

(1 + λ2)
[a111(1 + a100) + a001b111][(−1− a100)w̄ + (λ2 − a100)z̄](w̄ + z̄)τ̃

+
a001

(1 + λ2)
[(1 + a100)a201 + a001b201]

× [(−1− a100)w̄ + (λ2 − a100)z̄](w̄ + z̄)2 +O((|w|+ |τ̃ |+ |z|)4).

Present the center manifold Wc(0, 0, 0) at the fixed point (0, 0, 0) as follows

Wc(0, 0, 0) = {(w̄, τ̃ , z̄) ∈ R3|z̄ = s(w̄, τ̃), s(0, 0) = 0, Ds(0, 0) = 0}

with s(w̄, τ̃) = k0w̄
2 + k1w̄τ̃ + k2τ̃

2 +O((|w̄|+ |τ̃ |)3).
Substituting z̄ = s(w̄, τ̃) into mapping (3.14) and from the invariance of the

local center manifold, one obtains

λ2(k0w̄
2 + k1w̄τ̃ + k2τ̃

2) + G̃1(w̄, τ̃ , z̄)

= k0(−w̃ + F̃1(w̄, τ̃ , s(w̄, τ̃)))2 + k1(−w̃ + F̃1(w̄, τ̃ , s(w̄, τ̃)))τ̃
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+ k2τ̃
2 +O((|w̄|+ |τ̃ |)3). (3.15)

Comparing the coefficients of w̄2, w̄τ̃ and τ̃2 on both sides of the above equation,
we yield

k0 =
1

λ2
2 − 1

[(1 + a100)2a101 − a001(1 + a100)(a200 − b101)− a2
001b200],

k1 =
1

a001(λ2 + 1)2
[(1 + a100)2a011 − a001a110(1 + a100)− a2

001b110],

k2 = 0.

When mapping (3.14) is restricted into the center manifold Wc(0, 0, 0), it is not
difficult to obtain the following mapping

F : w̄ 7→ −w̄ + x20w̄
2 + x11w̄τ̃ + x21w̄

2τ̃ + x12w̄τ̃
2 + x30w̄

3

+O((|w̄|+ |τ̃ |)4), (3.16)

where

x20 = (1− 2

1 + λ2
)(a001b101 − 2a101)− 1

1 + λ2
(a2

001b200 − 2a001a200),

x11 =
1

1 + λ2
[(2a110 −

2a011(1+a100)

a001
− a001b110],

x21 =
1

(1 + λ2)a001
(4a011 + 2a001a110 − a2

001b110)k0

+
1

(1 + λ2)a001
[2a001(2a101 + 2a001a200 − a2

001b200 − a001b101)

+ (1 + a100a001(a001b101 − 2a101)]k1 +
1

(1 + λ2)a001
[a2

001(2a210 − a001b210)

+ (1 + a100)× (a2
001b111 − 2a001a111)],

x12 =
1

(1 + λ2)
(
4a011

a001
+ 2a110 − a001b110)k1,

x30 =
1

(1 + λ2)
[(4a101 + 4a001a200 − a2

001b200 − 2a001b101)

+ (a001b101 − 2a101)(1 + a100)]k0

+
a001

(1 + λ2)
[(2a001a300 − a2

001b300) + (1 + a100)(a001b201 − 2a201)].

Now, let us verify the last condition of the flip bifurcation in [10] η1 6= 0 and
η2 6= 0, i.e.,

η1 = (
∂2F
∂w̄∂τ̃

+
1

2

∂F
∂τ̃

∂2F
∂w̄2

)
∣∣∣
(w̄,τ̃)=(0,0)

6= 0,

η2 = (
1

6

∂3F
∂w̄3

+ (
1

2

∂2F
∂w̄2

)2)
∣∣∣
(w̄,τ̃)=(0,0)

6= 0.

The calculation gives us η1 = x11 6= 0, η2 = x30 + x2
20 6= 0. Therefore, the following

theorem can be yielded.
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Theorem 3.2. Under the condition that equation (3.10) is true, supposing one of
the conditions

(S41) : 0 < b < (a− 1)2, (S51) : b > (a+ 1)2

is satisfied, then we have

(1) when η1 6= 0, η2 6= 0 and τ = τF , then mapping (2.9) experiences the flip
bifurcation at the equilibrium point (u∗, v∗);

(2) when η2 < 0, then an unstable periodic-2 orbit bifurcates from (u∗, v∗);

(3) when η2 > 0, then a stable periodic-2 orbit bifurcates from (u∗, v∗).

3.3. Turing bifurcation

Two necessary conditions are needed for the Turing bifurcation to occur (see [1, 5,
14]). First, there is a nontrivial homogeneous state which is stable in time. It is
noted that if one of conditions (S1)− (S5) is guaranteed, (u∗, v∗) is stable. Then,
we need to confirm that the stable nontrivial homogeneous steady state becomes
unstable under spatial heterogeneous perturbations. Here, we will discuss the Tur-
ing bifurcation of homogeneous stationary states by assuming one of conditions
(S1) − (S5) holds. In order to obtain conditions that support Turing instability,
the eigenfunction of the Laplace operator ∆d is defined

∆dX
ij + λklX

ij = 0, i, j = 1, 2, 3, · · · , (3.17)

and the periodic boundary condition is

Xi,0 = Xi,n, Xi,1 = Xi,n+1, X0,j = Xn,j , X1,j = Xn+1,j .

From [2], the eigenvalue λkl of ∆d satisfies the following condition

λkl = 4(sin2 (k − 1)π

n
+ sin2 (l − 1)π

n
), k, l = 1, 2, 3, · · · .

Now, the small spatial heterogeneous disturbances ũ(i,j,t) and ṽ(i,j,t) are added
to the homogeneous steady state. Let ũ(i,j,t) = u(i,j,t) − u∗, ṽ(i,j,t) = v(i,j,t) − u∗,
it is natural to get ∆dũ(i,j,t) = ∆du(i,j,t) and ∆dṽ(i,j,t) = ∆dv(i,j,t). Plugging the
above equations into (2.3)-(2.5), then one yields

ũ(i,j,t+1) = a10(ũ(i,j,t) +
τ

δ2
d1∆dũ(i,j,t)) + a01(ṽ(i,j,t) +

τ

δ2
d2∆dṽ(i,j,t))

+O((|ũ(i,j,t)|+ |ṽ(i,j,t)|)2),

ṽ(i,j,t+1) = b10(ũ(i,j,t) +
τ

δ2
d1∆dũ(i,j,t)) + b01(ṽ(i,j,t) +

τ

δ2
d2∆dṽ(i,j,t))

+O((|ũ(i,j,t)|+ |ṽ(i,j,t)|)2). (3.18)

Assume that Xij
kl is an eigenfunction of the eigenvalue λkl. Equation (3.18) is

multiplied by Xij
kl . Summing over all i, j, we have

ΣXij
kl ũ(i,j,t+1) = a10ΣXij

kl ũ(i,j,t) + a01ΣXij
kl ṽ(i,j,t)

+
τ

δ2
a10d1ΣXij

kl∆dũ(i,j,t) +
τ

δ2
a01d2∆dṽ(i,j,t),
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ΣXij
kl ṽ(i,j,t+1) = b10ΣXij

kl ũ(i,j,t) + b01ΣXij
kl ṽ(i,j,t)

+
τ

δ2
b10d1ΣXij

kl∆dũ(i,j,t) +
τ

δ2
b01d2∆dṽ(i,j,t).

For the sake of convenience, we set

Ut = ΣXij
kl ũ(i,j,t),

Vt = ΣXij
kl ṽ(i,j,t).

Thereby, one yields

Ut+1 = a10(1− τ

δ2
d1λkl)Ut + a01(1− τ

δ2
d2λkl)Vt,

Vt+1 = b10(1− τ

δ2
d1λkl)Ut + b01(1− τ

δ2
d2λkl)Vt. (3.19)

In fact, discrete system (3.19) describes the dynamic sum of the spatial inhomoge-
neous perturbations over all discrete lattices in the whole two-dimensional space.
That implies when equation (3.19) diverges, the spatial symmetry of the discrete
Brusselator system is broken at the equilibrium point (u∗, v∗), which will lead to
the formation of the Turing pattern. From a simple calculation, the equilibrium
point of equation (3.19) is (0, 0) and the eigenvalues at (0, 0) are

λ±(k, l, τ) =
1

2
R1(k, l, τ)± 1

2

√
R1(k, l, τ)− 4R2(k, l, τ), (3.20)

where

R1(k, l, τ) = a10 + b01 −
τ

δ2
λkl(a10d1 + b01d2),

R2(k, l, τ) = (a10b01 − a01b10)(1− τ

δ2
d1λkl)(1−

τ

δ2
d2λkl).

Besides, the occurrence of Turing instability requires that the maximum value of
|λ±(k, l, τ)| be greater than one. Denote

Z(k, l, τ) = max {|λ±(k, l, τ)|},

Zm(τ) =
n

max
k=1,l=1

Z(k, l, τ), ((k, l) 6= (1, 1)). (3.21)

Therefore, we can figure out the critical value τT of the Turing bifurcation by
solving Zm = 1. From (3.21), we know that if τ is close to τT , when R2

1(k, l, τ) >
4R2(k, l, τ), τT meets

n
max

k=1,l=1
{|R1(k, l, τT |)−R2(k, l, τT )} = 1;

when R2
1(k, l, τ) ≤ 4R2(k, l, τ), τT meets

R2(k, l, τT ) = 1.

As a result, we have the following conclusions.

Theorem 3.3. Assume that one of conditions (S1)− (S5) is satisfied, and τ is in
a small neighborhood of τT ,

(1) when Zm > 1, the homogeneous steady state of the CML model (2.2)-(2.5)
with periodic boundary conditions experiences Turing instability, and the Turing
pattern is formed;

(2) when Zm < 1, the homogeneous steady state of the CML model remains
stable, and no Turing pattern will be formed.
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4. Numerical simulation

In this section, we will verify the dynamic evolution of the Neimark-Sacker bifur-
cation, flip bifurcation and Turing instability through numerical simulations. Also,
the associated spatiotemporal patterns are presented.

4.1. Neimark-Sacker bifurcation and related Turing patterns

Set a = 0.963 and b = 0.94. By direct calculation, we note that this set of param-
eters satisfies conditions (S11) and (3.4), and the equilibrium point is (u∗, v∗) =
(0.963, 0.9761) and τN = 1.0647. It is important to note that the values of τ we
take next are all near τN .

Let τ = 1.015 < τN , since λ1,2 = 0.5376 ± 0.6427i, |λ1,2| ≈ 0.4131 < 1, the
equilibrium point (u∗, v∗) is asymptotically stable. When τ = τN = 1.0647, we
have discriminatory quantity ξ = −1.5369. Hence, when τ = τN , the discrete system
experiences Neimark-Sacker bifurcation, when τ > τN , an attracting invariant circle
appears.

In what follows, to obtain a more detailed dynamic behavior of the equilibrium
point (u∗, v∗), we give the Neimark-Sacker bifurcation diagram in Figure 1, from
which it is not difficult to find that when τ ∈ (0, τN ), (u∗, v∗) is stable. When
τ > τN , stable invariant circles emerge. As τ continues to grow, there are some
periodic orbits and phenomena like chaos.

Figure 1. Diagram of Neimark-Sacker bifurcation

Next, from the Neimark-Sacker bifurcation diagram Figure 1, we use the phase
portraits to illustrate the dynamic changes from stable focus, as τ increases. In
particular, one has the stable focus at τ = 1.015 in Figure 2(a). Increasing the
value of τ to 1.065, as τ > τN , from Theorem 3.1 and Figure 1, we know that
(u∗, v∗) loses stability and an attractive invariant circle bifurcates, as shown in
Figure 2(b). When τ is equal to 1.21 and 1.3 respectively, the period window shown
in Figure 1(a) is reached, period-5 and period-14 orbits emerge, as shown in Figure
2(c) and Figure 2(e) respectively. When τ = 1.256, there exist quasi-periodic orbits
in Figure 2(d). When τ finally hits 1.32, we get a chaotic attractor (see Figure
2(f)). From the above analysis, it is not difficult to obtain that with the increase of
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τ , mapping (2.9) experiences dynamic changes from stable focus to invariant circle,
through periodic window, and finally to the chaotic attractor.

(a) τ = 1.015

0.94 0.95 0.96 0.97 0.98
u

0.96

0.97

0.98

0.99

1

v

(b) τ = 1.065

(c) τ = 1.21 (d) τ = 1.256

(e) τ = 1.3 (f) τ = 1.32

Figure 2. Phase portraits corresponding to different values τ in Figure 1

Moreover, we illustrate the spatial patterns on a 512× 512 lattice with a spatial
step δ = 5. That is, n = 512. In Figure 3(a), we plot Zm with respect to τ to obtain
the Turing instability threshold. From Figure 3(a), we can observe that the critical
value of Turing instability is τT = 1.066. Also, in Figure 3(b), we have drawn the
Neimark-Sacker and the Turing bifurcation curves respectively. It can be seen that
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the parameter space is divided into four regions I-IV by τ = τT and τ = τN . They
are the homogeneous steady-state region, the Neimark-Sacker instability region,
the Turing instability region and the Neimark-Sacker-Turing instability region. In
region IV, Neimark-Sacker bifurcation and Turing instability appear, resulting in
many complex patterns.

1 1.1 1.2 1.3 1.4 1.5
0.9

1

1.1

1.2

1.3

Z
m

T
=1.066

(a)

0 2 4 6 8
d

2

1.0646

1.0647

1.0648

1.0649

N

T

(b)

Figure 3. (a): τ − Zm graph showing the Turing bifurcation; (b): d2 − τ diagram showing pattern
formation area

Under the condition that d1 = 1.5, d2 = 4 and δ = 5, the spatial patterns are
generated by Neimark-Sacker-Turing instability (see Figures 4 and 5 ). Let τ =
1.015, neither Neimark-Sacker bifurcation nor Turing bifurcation will occur, then
no spatial patterns are formed, as shown in Figure 4(a). When τ > τT , Neimark-
Sacker-Turing instability occurs, leading to the formation of spatial heterogeneous
patterns. For example, let τ = 1.065, we get the spot pattern induced by the
invariant circle (see Figure 4(b)). As the value of τ continues to increase, we can
find curled and spiral patterns. For example, when τ is taken as 1.21, 1.256 and 1.3
respectively, the patterns are shown in Figure 5(a)-(c) respectively. Compared with
Figure 5(a), Figure 5(c) has a significantly greater curled. When τ finally increases
to 1.32, the pattern becomes more fragmented, as shown in Figure 5(d).

(a) τ = 1.015 (b) τ = 1.065

Figure 4. Spatial patterns induced by Neimark-Sacker-Turing instability
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(a) τ = 1.21 (b) τ = 1.256

(c) τ = 1.3 (d) τ = 1.32

Figure 5. Continued

4.2. Flip bifurcation and related Turing patterns

Setting a = 2.963 and b = 0.94, then the equilibrium point is (u∗, v∗) = (2.963, 0.3172).
By direct calculation, it can be concluded that equation (3.10) and condition (S41)
in Theorem 3.2 are satisfied. The critical value of flip bifurcation is τF = 0.2598.
We take values in the neighborhood of τF , and get the following results.

When τ = 0.226, the eigenvalues are λ1 = −0.74 and λ2 = 0.7423. Therefore,
(u∗, v∗) is a stable node, which is consistent with Proposition 2.1. For τ = 0.2632 >
τF , the eigenvalues are λ1 = −1.0264, λ2 = 0.6999, then (u∗, v∗) is unstable, and
the stable period-2 points are (2.774, 0.5013) and (3.152, 0.1725), as shown in Figure
5(b). Letting τ = τF , then the eigenvalues are −1 and 0.7037, η1 = −7.7805 <
0, η2 = 0.4673 > 0.

According to Theorem 3.2, mapping (2.9) undergoes flip bifurcation at τ = τF .
The bifurcation diagram of τ in the interval [0.25, 0.31] is presented, as shown in
Figure 6, from which the period-doubling sequence of activator concentration u can
be clearly found. Clearly, when τ ∈ (0, τF ), there is a stable node. When τ is
slightly larger than τF , (u∗, v∗) loses its stability, and there is a stable period-2
points. When τ continues to increase, periodic window and chaos appear.
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Figure 6. Diagram of flip bifurcation

To better illustrate these properties of the flip bifurcation, we give the phase
portraits in Figures 7 and 8. Wherein Figure 7(a) corresponds to the stable equilib-
rium point at τ = 0.226. Figure 7(b) is the period-2 at τ = 0.2632. With increasing
τ , we observe the doubling period. For example, if τ = 0.285, the period-4 points
are (2.386, 0.9356), (2.567, 0.7859), (3.43, 0.05649), (3.469,−0.002621), as shown in
Figure 8(a). When the value of τ is properly increased, the period will be further
doubled. For example, if τ = 0.2966, there is a stable periodic-8 orbit, as shown in
Figure 8(b). Finally, the chaotic attractor at τ = 0.2992 is shown in Figure 8(c).

For more detailed information about chaotic attractor, we give a local magni-
fications of Figure 8(c) (see Figure 8(d)). It can be found from Figures 7 and 8
that with different τ values, the dynamic changes from stable equilibrium point to
chaotic paths as illustrated in flip bifurcation diagram.

(a) τ = 0.226 (b) τ = 0.2632

Figure 7. Phase portraits for different value τ corresponding to Figure 6
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(a) τ = 0.285 (b) τ = 0.2966

(c) τ = 0.2992 (d) τ = 0.2992

Figure 8. Continued

Supposing d1 = 1.5, d2 = 4.5, δ = 5 and n = 512, we plot the variation of Zm
with respect to τ to determine the Turing bifurcation threshold value τT in Figure
9(a). It can be seen that the critical value of Turing instability τT = 0.2578. In
Figure 9(b), the curves of the flip bifurcation and Turing bifurcation are respectively
drawn. Note that these two curves divide the parameter space into three regions
I-III. They are the homogeneous steady-state region, the Turing instability region
and the flip-Turing instability region respectively. In region III, the flip bifurcation
and Turing instability appear, resulting in many complex patterns.

Furthermore, in Figure 10, we simulate the spatial patterns of the activator con-
centration u caused by the flip-Turing instability and chaos mechanism correspond-
ing to Figures 7 and 8. The initial state is a random disturbance of uniform steady
state (u∗, v∗). We assume τ = 0.226, neither flip bifurcation nor Turing bifurcation
will occur, then no spatial pattern is formed, as shown in Figure 10(a). When τ
is greater than τT , flip-Turing instability will occur, leading to the generation of
spatial heterogeneous patterns. For example, letting τ = 0.2632, τ = 0.278 and
τ = 0.285, the patterns are shown in Figure 10(b)-(d) respectively. As τ increases
to 0.2966, the pattern caused by period-8 orbits is shown in Figure 10(e). When
τ reaches 0.2992, the pattern induced by chaos attractor becomes more disordered
and irregular, as shown in Figure 10(f).
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Figure 9. (a): τ − Zm graph showing the Turing bifurcation; (b): d2 − τ diagram showing pattern
formation area

(a) τ = 0.226 (b) τ = 0.2632

(c) τ = 0.278 (d) τ = 0.285

(e) τ = 0.2966 (f) τ = 0.2992

Figure 10. Spatial patterns induced by flip-Turing instability
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Remark 4.1. Through the theoretical analysis and numerical simulations, we can
see that discrete Brusselator model could undergo Neimark-Sacker bifurcation, flip
bifurcation and producing patterns that are either circles, curly or spirals, and
eventually chaos. However, for the continuous Brusselator system, in [16], Hopf
bifurcation analysis and the stability of periodic solutions were discussed. Global
bifurcation was discussed in [4]. In [30], the Turing stability of the positive con-
stant steady state was studied and the amplitude equations near the Turing-Hopf
codimension-2 point were derived. The more interesting and complex dynamical
behaviors will be found for the discrete and continuous Brussselator models.

5. Conclusions

The spatiotemporal dynamics of the Brusselator model with discrete time and dis-
crete space are considered. Compared with the existing results about system (2.2),
the CML model established in this paper has some more interesting dynamical
behaviors. The coupled mapping lattice method is applied to the continuous Brus-
selator system to obtain the discrete system, which is different from the previous
discrete versions. Then, through theoretical analysis, the parametric conditions for
the stable homogeneous stationary state, flip bifurcation, Neimark-Sacker bifurca-
tion and Turing instability are given respectively. Finally, numerical simulations are
performed to verify the theoretical analysis, and abundant spatial patterns, such as
periodic windows, invariant circles and chaos, are obtained. These behaviors are in-
duced through the combination of Neimark-Sacker bifurcation and flip bifurcation
with Turing instability. Various patterns are found in the numerical simulation.
Moreover, the effects of parameter τ on the patterns are also manifested. It can
be found that when the parameter τ increases, the spatiotemporal pattern changes
from regular to irregular, and finally to disorder. Patterns, for example, begin to
curl and gradually break into pieces. These changes may reflect the interaction
between the activator and the inhibitor.
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