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The Exact Solutions for the
Benjamin-Bona-Mahony Equation∗
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Abstract The Benjamin-Bona-Mahony (BBM) equation represents the uni-
directional propagation of nonlinear dispersive long waves, which has a clear
physical background, and is a more suitable mathematical and physical equa-
tion than the KdV equation. Therefore, the research on the BBM equation
is very important. In this article, we put forward an effective algorithm, the
modified hyperbolic function expanding method, to build the solutions of the
BBM equation. We, by utilizing the modified hyperbolic function expanding
method, obtain the traveling wave solutions of the BBM equation. When the
parameters are taken as special values, the solitary waves are also derived from
the traveling waves. The traveling wave solutions are expressed by the hyper-
bolic functions, the trigonometric functions and the rational functions. The
modified hyperbolic function expanding method is direct, concise, elementary
and effective, and can be used for many other nonlinear partial differential
equations.
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1. Introduction

Many phenomena in natural science can be described by nonlinear partial dif-
ferential equations (NLPDE), for instance, physics, ecology, medicine, zoology,
fiber communications, fluid dynamics, propagation of waves, marine engineering,
plasma physics, incompressible fluid, ocean and rogue waves, photonics, optics,
optical-fiber communications, superconductors, arterial mechanics and cosmic plas-
mas [1,2,4–7,13,17,19,22,23,26–29,44]. Due to the wide application of NLPDE in
real life, many scholars want to study their application mechanism by solving exact
solutions of NLPDE, paving way for the in-depth research [44] in the future.

So far, we have generally obtained the exact solutions of NLPDE by using math-
ematical software such as Maple and Mathematica [3,28,30,44,45]. Common meth-
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ods to solving NLPDE include the tanh method [18, 24, 38, 47], the Hirota’s bi-
linear method [40], the sine-cosine method [33], the Exp-function method [10, 16],

the inverse scattering method [20], the
G′

G
-expansion method [25, 36], the sn-ns

method [15], the Darboux transformation method [9], the F -expansion method [21],
the polynomial expansion method [22], the modified polynomial expansion method
[23], the Bäcklund transformation [35], etc. Specifically, using the Hirota’s bilinear
method and the tanh-coth method, in [39], Wazwaz yielded the N -soliton solution-
s, N = 1, 2, 3, 4, 5, for the Kadomtsev-Petviashvili equation. In [40], the author
obtained the single-soliton solution and the N -soliton solution about the Sawada-
Kotera-Kadomtsev-Petviashvili equation. In [37], the author obtained the traveling
wave solutions to the KdV equation, the generalized KdV equation, the K(n, n)
equations, the Boussinesq equation, the RLW equation, the BBM equation and the
Phi-four equation via the sine-cosine method. In [49], Zhang and Huang acquired
N -soliton solutions to the KdV equation with the variable coefficients Exp-function
method. In [1], Abdel-Gawad and Osman obtained a wide class of exact solutions
to the variable coefficient KdV equation by using the extended unified method, and
presented a new algorithm for treating the coupled NLPDE. In [34], Vakhnenko
and Parkes obtained the exact N -soliton solutions to the Vakhnenko equation uti-
lizing the inverse scattering method. In [41], the author yielded the traveling wave
solutions to the Zhiber-Shabat equation, the Liouville equation, the sinh-Gordon
equation, the Dodd-Bullough-Mikhailov equation and the Tzitzeica-Dodd-Bullough
equation via the tanh method and the extended tanh method, which had showed
their different physical structures. Employing the modified extended tanh method,
in [31], Raslan, Ali and Shallal acquired the traveling wave solutions for the space-
time fractional nonlinear partial differential equations, for instance, the fractional
equal width wave equation and the fractional modified equal width wave equation.
In [46], Zahran and Khater obtained the traveling wave solutions to the Bogoy-
avlenskii equation, which had showed broad applicability. In [12], by using the first
integral method, the tanh-coth method, the sech-csch method, the tan-cot method
and the sec-csc ansatz, Darvishi et al., acquired the traveling wave solutions to the
(2 + 1)-dimensional Zakharov-like soliton equation. In [4], Akbar, Kayum and Os-
man obtained special solutions, including the bright solitons, the periodic solutions,
the compaction solutions, the bell-shape solutions, the parabolic shape solutions,
the singular periodic solutions, the plane shape solutions and some new types of
solitons, for the (3 + 1)-dimensional Zakharov-Kuznetsov (ZK) and the new ex-
tended quantum ZK equations by using the enhanced modified simple equation
method. In [32], the exact traveling wave solutions to the M -fractional generalized
reaction Duffing model and the density dependent M -fractional diffusion reaction

equation by using three fertile methods, including the (
G′

G
,

1

G
) method, the mod-

ified
G′

G2
method and the

1

G′
-expansion method. In [36], Wang, Li and Zhang

yielded solitary wave solutions and periodic wave solutions for the BBM equation

and the modified Benjamin-Bona-Mahony equation by employing a generalized
G′

G
-

expansion method. In [14], Ghanbari, Baleanu and Qurashi obtained some new
exact optical solitons for the generalized Benjamin-Bona-Mahony equation via the
generalized exponential rational function method, and detailed the physical inter-
pretation of these solutions. In [43], Yan et al., obtained non-local symmetry and
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Bäcklund transformation for the BBM equation via the truncated Painlevé expan-
sion method. By employing the Jacobian elliptic function, they yielded solitary
wave solutions and conoidal periodic wave solutions. In [11], Cheng, Luo and Hong
employed the theory of the planar dynamical system to investigate the dynamical
behavior and traveling solutions of the Drinfel’d-Sokolov D(m,n) system. In [50],
Zhou and Zhuang obtained bifurcations of phase portraits and different traveling
wave solutions for planar dynamic systems of the Raman soliton model by using
the bifurcation theory method of dynamic systems.

The BBM equation (1.1) was first proposed by Benjamin, Bona and Maho-
ny, representing the unidirectional propagation of a nonlinear dispersive long wave
u(x, t) [8]. The BBM equation is a more suitable mathematical and physical equa-
tion than the KdV equation, and has a clear physical background

ut + αux + βuux − δuxxt = 0, (1.1)

where u(x, t) depends on spatial variable x and temporal variable t. α, β, δ are
arbitrary constants with the nonlinear and dispersion coefficients and β 6= 0, δ > 0
[48].

In this article, we will study the BBM equation (1.1) by utilizing the modified
hyperbolic function expanding method [13]. The article is arranged as follows. First,
we give a brief introduction in Section 1. Secondly, the algorithm of the modified
hyperbolic function expanding method is given in Section 2. Thirdly, we give the
exact solutions of the BBM equation in Section 3. At the same time, when the
appropriate values of the free parameters are selected, the special solutions and the
corresponding figures are given in Section 4. Finally, we make a conclusion on the
article in the last section.

2. The modified hyperbolic function expanding
method

In this part, we will introduce the specific steps of the modified hyperbolic function
method.

First, we give a generalized NLPDE

P (u, ut, ux, uxx, · · · ) = 0, (2.1)

where u(x, t) is an unknown function about the spatial variable x and the temporal
variable t.

Next, we will discuss the specific steps of the modified hyperbolic function ex-
panding method.

(i) To find the exact solution of equation (2.1), we need to transform equation
(2.1) into an ordinary differential equation (ODE).

Suppose u(x, t) = u(x − ct) = u(ξ), where ξ = x − ct, and c 6= 0 is any real
number. We can obtain

P (u, u′, u′′, u′′′, · · · ) = 0, (2.2)

where the prime is the derivative with respect to ξ.
(ii) Assume that the expression of the exact solution of equation (1.1) is

u(ξ) = a0 +

M∑
i=1

(aiϕ
−i(ξ) + biϕ

i(ξ) + ciϕ
i(ξ)ϕ′(ξ) + diϕ

−i(ξ)ϕ′(ξ)), (2.3)
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where ϕ(ξ) meets the following equation

ϕ′(ξ) = γ + ϕ2(ξ), (2.4)

and γ is an arbitrary real number.
(iii) Confirm the value of M in equation (2.3). To confirm the parameter M ,

we use the balance coefficient method to balance the highest order of the derivative
term and the highest order of the nonlinear term in equation (2.2) [13,42].

(iv) Substituting the value of M and equation (2.4) into equation (2.3), with the
help of Maple, we can set the coefficient of all terms with the same power exponent
about ϕ(ξ) in equation (2.3) to zeros, to solve for the values of a0, ai, bi, ci, di, (i =
1, 2, · · · ,M), c, γ.

(v) Substituting the values of a0, ai, bi, ci, di, (i = 1, 2, · · · ,M), c, γ into equation
(2.3), we get the exact solutions of equation (1.1).

3. Solutions to the BBM equation

In order to obtain the solutions to the BBM equation, first, we need to give the
solutions ϕ(ξ) for equation (2.4) as follows.

ϕ1(ξ) =
√
γ tan(

√
γξ + p), γ > 0, (3.1)

ϕ2(ξ) = − 1

ξ + p
, γ = 0, (3.2)

ϕ3(ξ) = −
√
−γ tanh(

√
−γξ + p), γ < 0, (3.3)

where p is a constant of integration.
Next, we give the solutions to the BBM equation. First, we need to transform

equation (1.1) into an ODE.
Set u(x, t) = u(ξ), where ξ = x− ct, and c 6= 0 is any real number. Substituting

u(x, t) = u(ξ) into equation (1.1), we can obtain the following equation

− cu′ + αu′ + βuu′ + cδu′′′ = 0. (3.4)

Integrating both sides of equation (3.4) and letting the integral constant be 0, we
can get

− cu+ αu+
β

2
u2 − cδu′′ = 0. (3.5)

We apply the balance coefficient method to determine M by balancing the high-
est nonlinear term and the highest derivative terms [13, 42]. From the highest
nonlinear term u2 with the exponent 2M , the highest derivative term u′′ and the
exponent M + 2 in equation (3.5), we can obtain M = 2.

Consequently, we yield the exact solution expression of equation (1.1) as

u(ξ) = a0 +

2∑
i=1

(aiϕ
−i(ξ) + biϕ

i(ξ) + ciϕ
i(ξ)ϕ′(ξ) + diϕ

−i(ξ)ϕ′(ξ)). (3.6)

Substituting equation (3.6) and equation (2.4) into equation (3.5), combining
terms with the same power of ϕ(ξ) and setting the coefficient of the same power
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of ϕ(ξ) to 0, we yield the system of algebraic equations about a0, ai, bi, ci, di(i =
1, 2), c, γ.

Using Maple, we get eight sets of solutions for the values of a0, ai, bi, ci, di(i =
1, 2), c, γ in the above algebraic equation system, as shown below.

1) a0 = a0, a1 = −d1γ, a2 = −d2γ, b1 = −d1, b2 = 0,

c =
1

2
a0β +

1

2
βd2 + α, c1 = 0, c2 = 0, d1 = d1, d2 = d2, γ = γ;

(3.7)

2) a0 = −d2, a1 = −d1γ, a2 = −d2γ, b1 = −d1, b2 = 0, c = c, c1 = 0,

c2 = 0, d1 = d1, d2 = d2, γ = γ;
(3.8)

3) a0 =
−4d2βδγ + 4αδγ + d2β

β(4δγ − 1)
, a1 = − d1β(a0 + d2)

4δ(a0β + d2β − α)
,

a2 =
(3a0 + 2d2)β(a0 + d2)

4δ(a0β + d2β − α)
, b1 = −d1, b2 = 0, c = −a0β − d2β + α,

c1 = 0, c2 = 0, d1 = d1, d2 = d2, γ = γ;

(3.9)

4) a0 =
−4d2βδγ + 12αδγ + d2β

β(4δγ + 1)
, a1 =

d1β(a0 + d2)

4δ(a0β + d2β + 3α)
,

a2 = − a0β(a0 + d2)

4δ(a0β + d2β + 3α)
, b1 = −d1, b2 = 0, c =

1

3
a0β +

1

3
d2β + α,

c1 = 0, c2 = 0, d1 = d1, d2 = d2, γ = γ;

(3.10)

5) a0 = −d2β + 3α− 3c

β
, a1 = −d1(α− c)

4cδ
, a2 = −d2(α− c)

4cδ
,

b1 = −d1, b2 = −12cδ

β
, c =

α

4δγ + 1
, c1 = 0, c2 = 0, d1 = d1, d2 = d2,

γ = γ;

(3.11)

6) a0 =
−d2β + α− c

β
, a1 =

d1(α− c)
4cδ

, a2 =
d2(α− c)

4cδ
, b1 = −d1,

b2 = −12cδ

β
, c = − α

4δγ − 1
, c1 = 0, c2 = 0, d1 = d1, d2 = d2, γ = γ;

(3.12)

7) a0 = −2d2β + α− c
2β

, a1 =
d1(α− c)

16cδ
,

a2 = −−4d2αβ + 4cd2β + 3α2 − 6cα+ 3c2

64cβδ
, b1 = −d1, b2 = −12cδ

β
,

c = − α

16δγ − 1
, c1 = 0, c2 = 0, d1 = d1, d2 = d2, γ = γ;

(3.13)

8) a0 = −2d2β + 3α− 3c

2β
, a1 = −d1(α− c)

16cδ
,

a2 = −4d2αβ − 4cd2β + 3α2 − 6cα+ 3c2

64cβδ
, b1 = −d1, b2 = −12cδ

β
,

c =
α

16δγ + 1
, c1 = 0, c2 = 0, d1 = d1, d2 = d2, γ = γ.

(3.14)
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Then, we substitute the above eight sets of solutions about a0, ai, bi, ci, di(i =
1, 2), c, γ and equation (2.4) into equation (3.6) respectively, and yield the exact
solutions of equation (1.1) as follows.

For 1), the solutions of equation (1.1) admit:

If γ > 0,

u11(ξ) =a0 − d1
√
γ cot(

√
γξ + p)− d2 cot2(

√
γξ + p)

− d1
√
γ tan(

√
γξ + p) + d1

√
γ cot(

√
γξ + p) sec2(

√
γξ + p)

+ d2 csc2(
√
γξ + p),

(3.15)

where ξ = x− ct, c = 1
2a0β + 1

2βd2 + α, and a0, d1, d2, p are arbitrary constants.

If γ = 0,

u12(ξ) = a0 + d1γ(ξ + p)− d2γ(ξ + p)2 + d2 = C, (3.16)

where ξ = x− ct, c =
1

2
a0β +

1

2
βd2 + α, and C = a0 + d2 is an arbitrary constant,

which is a constant solution.

If γ < 0,

u13(ξ) =a0 − d1

√
−γ coth(

√
−γξ + p) + d2 coth2(

√
−γξ + p)

+ d1

√
−γ tanh(

√
−γξ + p)

+ d1

√
−γcoth(

√
−γξ + p)sech2(

√
−γξ + p)

+ d2csch2(
√
−γξ + p),

(3.17)

where ξ = x− ct, c =
1

2
a0β +

1

2
βd2 + α, and a0, d1, d2, p are arbitrary constants.

For 2), the solutions of equation (1.1) admit:

If γ > 0,

u21(ξ) =− d2 − d1
√
γ cot(

√
γξ + p)− d2 cot2(

√
γξ + p)

− d1
√
γ tan(

√
γξ + p) + d1

√
γ cot(

√
γξ + p) sec2(

√
γξ + p)

+ d2 csc2(
√
γξ + p),

(3.18)

where ξ = x− ct, and c(6= 0), d1, d2, p are arbitrary constants.

If γ = 0,

u22(ξ) = d1γ(ξ + p)− d2γ(ξ + p)2 = 0, (3.19)

which is a trivial solution.

If γ < 0,

u23(ξ) =− d2 − d1

√
−γ coth(

√
−γξ + p) + d2 coth2(

√
−γξ + p)

+ d1

√
−γ tanh(

√
−γξ + p)

+ d1

√
−γcoth(

√
−γξ + p)sech2(

√
−γξ + p)

+ d2csch2(
√
−γξ + p),

(3.20)

where ξ = x− ct, and c(6= 0), d1, d2, p are arbitrary constants.

For 3), the solutions of equation (1.1) admit:
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If γ > 0,

u31(ξ) =
−4d2βδγ + 4αδγ + d2β

β(4δγ − 1)
− d1β(a0 + d2)

4δ(a0β + d2β − α)
√
γ

cot(
√
γξ + p)

+
(3a0 + 2d2)β(a0 + d2)

4δ(a0β + d2β − α)γ
cot2(

√
γξ + p)− d1

√
γ tan(

√
γξ + p)

+ d1
√
γ cot(

√
γξ + p) sec2(

√
γξ + p) + d2 csc2(

√
γξ + p),

(3.21)

where ξ = x− ct, c = −a0β − d2β + α 6= 0, and a0, d1, d2, p are arbitrary constants.

If γ = 0,

u32(ξ) =
d1β(a0 + d2)

4δ(a0β + d2β − α)
(ξ + p)

+
(3a0 + 2d2)β(a0 + d2)

4δ(a0β + d2β − α)
(ξ + p)2 + 2d2,

(3.22)

where ξ = x− ct, c = −a0β − d2β + α 6= 0, and a0, d1, d2, p are arbitrary constants.

If γ < 0,

u33(ξ) =
−4d2βδγ + 4αδγ + d2β

β(4δγ − 1)
+

d1β(a0 + d2)

4δ(a0β + d2β − α)
√
−γ

coth(
√
−γξ + p)

− (3a0 + 2d2)β(a0 + d2)

4δ(a0β + d2β − α)γ
coth2(

√
−γξ + p) + d1

√
−γ tanh(

√
−γξ + p)

+ d1

√
−γcoth(

√
−γξ + p)sech2(

√
−γξ + p) + d2csch2(

√
−γξ + p),

(3.23)

where ξ = x− ct, c = −a0β − βd2 + α 6= 0, and a0, d1, d2, p are arbitrary constants.

For 4), the solutions of equation (1.1) admit:

If γ > 0,

u41(ξ) =
−4d2βδγ + 12αδγ + d2β

β(4δγ + 1)
+

d1β(a0 + d2)

4δ(a0β + d2β + 3α)
√
γ

cot(
√
γξ + p)

− a0β(a0 + d2)

4δ(a0β + d2β + 3α)γ
cot2(

√
γξ + p)− d1

√
γ tan(

√
γξ + p)

+ d1
√
γ cot(

√
γξ + p) sec2(

√
γξ + p) + d2 csc2(

√
γξ + p),

(3.24)

where ξ = x−ct, c =
1

3
a0β+

1

3
βd2 +α 6= 0, and a0, d1, d2, p are arbitrary constants.

If γ = 0,

u42(ξ) =− d1β(a0 + d2)

4δ(a0β + d2β + 3α)
(ξ + p)

− a0β(a0 + d2)

4δ(a0β + d2β + 3α)
(ξ + p)2 + 2d2,

(3.25)

where ξ = x−ct, c =
1

3
a0β+

1

3
d2β+α 6= 0, and a0, d1, d2, p are arbitrary constants.
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If γ < 0,

u43(ξ) =
−4d2βδγ + 12αδγ + d2β

β(4δγ + 1)
− d1β(a0 + d2)

4δ(a0β + d2β + 3α)
√
−γ

coth(
√
−γξ + p)

+
a0β(a0 + d2)

4δ(a0β + d2β + 3α)γ
coth2(

√
−γξ + p) + d1

√
−γ tanh(

√
−γξ + p)

+ d1

√
−γcoth(

√
−γξ + p)sech2(

√
−γξ + p) + d2csch2(

√
−γξ + p),

(3.26)

where ξ = x−ct, c =
1

3
a0β+

1

3
d2β+α 6= 0, and a0, d1, d2, p are arbitrary constants.

For 5), the solutions of equation (1.1) admit:

If γ > 0,

u51(ξ) =− d2β + 3α− 3c

β
− d1(α− c)

4cδ
√
γ

cot(
√
γξ + p)

− d2(α− c)
4cδγ

cot2(
√
γξ + p)− d1

√
γ tan(

√
γξ + p)

− 12cδγ

β
tan2(

√
γξ + p) + d1

√
γ cot(

√
γξ + p) sec2(

√
γξ + p)

+ d2 csc2(
√
γξ + p),

(3.27)

where ξ = x− ct, c =
α

4δγ + 1
, and d1, d2, p are arbitrary constants.

If γ = 0, then c =
α

4δγ + 1
= α,

u52(ξ) =− d2β + 3α− 3c

β
+
d1(α− c)

4cδ
(ξ + p)− d2(α− c)

4cδ
(ξ + p)2

+
12cδ

β(ξ + p)2
+ d2 =

12αδ

β(ξ + p)2
,

(3.28)

where ξ = x− αt, and p is an arbitrary constant.

If γ < 0,

u53(ξ) =− d2β + 3α− 3c

β
+
d1(α− c)
4cδ
√
−γ

coth(
√
−γξ + p)

+
d2(α− c)

4cδγ
coth2(

√
−γξ + p) + d1

√
−γ tanh(

√
−γξ + p)

+
12cδγ

β
tanh2(

√
−γξ + p)

+ d1

√
−γcoth(

√
−γξ + p)sech2(

√
−γξ + p)

+ d2csch2(
√
−γξ + p),

(3.29)

where ξ = x− ct, c =
α

4δγ + 1
, and d1, d2, p are arbitrary constants.

For 6), the solutions of equation (1.1) admit:
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If γ > 0,

u61(ξ) =
−d2β + α− c

β
+
d1(α− c)

4cδ
√
γ

cot(
√
γξ + p)

+
d2(α− c)

4cδγ
cot2(

√
γξ + p)− d1

√
γ tan(

√
γξ + p)

− 12cδ

β
tan2(

√
γξ + p) + d1

√
γ cot(

√
γξ + p) sec2(

√
γξ + p)

+ d2 csc2(
√
γξ + p),

(3.30)

where ξ = x− ct, c = − α

4δγ − 1
, and d1, d2, p are arbitrary constants.

If γ = 0, then c = − α

4δγ − 1
= α,

u62(ξ) =
−d2β + α− c

β
− d1(α− c)

4cδ
(ξ + p) +

d2(α− c)
4cδ

(ξ + p)2

− 12cδ

β(ξ + p)2
+ d2 = − 12αδ

β(ξ + p)2
,

(3.31)

where ξ = x− αt, and p is an arbitrary constant.

If γ < 0,

u63(ξ) =
−d2β + α− c

β
− d1(α− c)

4cδ
√
−γ

coth(
√
−γξ + p)

− d2(α− c)
4cδγ

coth2(
√
−γξ + p) + d1

√
−γ tanh(

√
−γξ + p)

+
12cδγ

β
tanh2(

√
−γξ + p)

+ d1

√
−γcoth(

√
−γξ + p)sech2(

√
−γξ + p)

+ d2csch2(
√
−γξ + p),

(3.32)

where ξ = x− ct, c = − α

4δγ − 1
, and d1, d2, p are arbitrary constants.

For 7), the solutions of equation (1.1) admit:

If γ > 0,

u71(ξ) =− 2d2β + α− c
2β

+
d1(α− c)
16cδ
√
γ

cot(
√
γξ + p)

− −4d2αβ + 4cd2β + 3α2 − 6cα+ 3c2

64cβδγ
cot2(

√
γξ + p)

− d1
√
γ tan(

√
γξ + p)− 12cδγ

β
tan2(

√
γξ + p)

+ d1
√
γ cot(

√
γξ + p) sec2(

√
γξ + p) + d2 csc2(

√
γξ + p),

(3.33)

where ξ = x− ct, c = − α

16δγ − 1
, and d1, d2, p are arbitrary constants.



The Exact Solutions for BBM Equation 637

If γ = 0, then c = − α

16δγ − 1
= α,

u72(ξ) =− 2d2β + α− c
2β

− d1(α− c)
16cδ

(ξ + p)

− −4d2αβ + 4cd2β + 3α2 − 6cα+ 3c2

64cβδ
(ξ + p)2

− 12cδ

β(ξ + p)2
+ d2 = − 12αδ

β(ξ + p)2
,

(3.34)

where ξ = x− αt, and p is an arbitrary constant.

If γ < 0,

u73(ξ) =− 2d2β + α− c
2β

− d1(α− c)
16cδ
√
−γ

coth(
√
−γξ + p)

+
−4d2αβ + 4cd2β + 3α2 − 6cα+ 3c2

64cβδγ
coth2(

√
−γξ + p)

+ d1

√
−γ tanh(

√
−γξ + p) +

12cδγ

β
tanh2(

√
−γξ + p)

+ d1

√
−γcoth(

√
−γξ + p)sech2(

√
−γξ + p)

+ d2csch2(
√
−γξ + p),

(3.35)

where ξ = x− ct, c = − α

16δγ − 1
, and d1, d2, p are arbitrary constants.

For 8), the solutions of equation (1.1) admit:

If γ > 0,

u81(ξ) =− 2d2β + 3α− 3c

2β
− d1(α− c)

16cδ
√
γ

cot(
√
γξ + p)

− 4d2αβ − 4cd2β + 3α2 − 6cα+ 3c2

64cβδγ
cot2(

√
γξ + p)

− d1
√
γ tan(

√
γξ + p)− 12cδγ

β
tan2(

√
γξ + p)

+ d1
√
γ cot(

√
γξ + p) sec2(

√
γξ + p) + d2 csc2(

√
γξ + p),

(3.36)

where ξ = x− ct, c =
α

16δγ + 1
, and d1, d2, p are arbitrary constants.

If γ = 0, then c =
α

16δγ + 1
= α,

u82(ξ) =− 2d2β + 3α− 3c

2β
+
d1(α− c)

16cδ
(ξ + p)

− 4d2αβ − 4cd2β + 3α2 − 6cα+ 3c2

64cβδ
(ξ + p)2

− 12cδ

β(ξ + p)2
+ d2 = − 12αδ

β(ξ + p)2
,

(3.37)

where ξ = x− αt, and p is an arbitrary constant.
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If γ < 0,

u83(ξ) =− 2d2β + 3α− 3c

2β
+
d1(α− c)
16cδ
√
−γ

coth(
√
−γξ + p)

+
4d2αβ − 4cd2β + 3α2 − 6cα+ 3c2

64cβδγ
coth2(

√
−γξ + p)

+ d1

√
−γ tanh(

√
−γξ + p) +

12cδγ

β
tanh2(

√
−γξ + p)

+ d1

√
−γ coth(

√
−γξ + p)sech2(

√
−γξ + p)

+ d2csch2(
√
−γξ + p),

(3.38)

where ξ = x− ct, c =
α

16δγ + 1
, and d1, d2, p are arbitrary constants.

Note: For the solution u12 is a constant solution, the solution u22 is a trivial
solution, and they have no physical meanings. The solutions u62, u72 and u82 are
the same solutions.

4. Examples and corresponding graphics

In this part, we will investigate the exact solutions of the BBM equation and the
corresponding figures when taking specific parameter values.

For simplicity, we take α = β = δ = 1 to study all the solutions.
We will select some values for a0, ai, bi, ci(i = 1, 2), c, p, γ to yield the exact

solutions of the BBM equation.
We assume that the values of the above parameters are as follows

a0 = 1, d1 = −1, d2 = 2, p = 0.

When γ > 0, we adopt γ = 4. Then, solution (3.15) becomes

u11(ξ) =1 + 2 cot(2ξ)− 2 cot2(2ξ) + 2 tan(2ξ)− 2 cot(2ξ) sec2(2ξ)

+ 2 csc2(2ξ),
(4.1)

where ξ = x− 5

2
t. The figure of solution (4.1) is shown as Figure (a) in Figure 1.

When γ < 0, we adopt γ = −4. Then, solution (3.17) becomes

u13(ξ) =1 + 2 coth(2ξ) + 2 coth2(2ξ)− 2 tanh(2ξ)− 2 coth(2ξ)sech2(2ξ)

+ 2csch2(2ξ),
(4.2)

where ξ = x− 5

2
t. The figure of solution (4.2) is shown as Figure (b) in Figure 1.

When γ > 0, we adopt γ = 4. Then, solution (3.18) becomes

u21(ξ) =− 2 + 2 cot(2ξ)− 2 cot2(2ξ) + 2 tan(2ξ)− cot(2ξ) sec2(2ξ)

+ 2 csc2(2ξ),
(4.3)

where ξ = x− 3t. The figure of solution (4.3) is shown as Figure (c) in Figure 1.
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(a) The figure of u11 (b) The figure of u13

(c) The figure of u21 (d) The figure of u23

Figure 1. The figure of (4.1) shown on (a); the figure of (4.2) shown on (b); the figure of (4.3)
shown on (c); the figure of (4.4) shown on (d)

When γ < 0, we adopt γ = −4. Then, solution (3.20) becomes

u23(ξ) =− 2 + 2 coth(2ξ) + 2 coth2(2ξ)− 2 tanh(2ξ)

− 2 coth(2ξ)sech2(2ξ) + 2csch2(2ξ),
(4.4)

where ξ = x− 3t. The figure of solution (4.4) is shown as Figure (d) in Figure 1.
When γ > 0, we adopt γ = 4. Then, solution (3.21) becomes

u31(ξ) =− 14

15
+

3

16
cot(2ξ) +

21

32
cot2(2ξ) + 2 tan(2ξ)− 2 cot(2ξ) sec2(2ξ)

+ 2 csc2(2ξ),
(4.5)

where ξ = x+ 2t. The figure of solution (4.5) is shown as Figure (a) in Figure 2.
When γ = 0, then solution (3.22) becomes

u32(ξ) = −3

8
ξ +

21

8
ξ2, (4.6)
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where ξ = x+ 2t. The figure of solution (4.6) is shown as Figure (b) in Figure 2.
When γ < 0, we adopt γ = −4. Then, solution (3.23) becomes

u33(ξ) =− 18

17
− 3

16
coth(2ξ) +

21

32
coth2(2ξ)− 2 tanh(2ξ)

− 2 coth(2ξ)sech2(2ξ) + 2csch2(2ξ),
(4.7)

where ξ = x+ 2t. The figure of solution (4.7) is shown as Figure (c) in Figure 2.

(a) The figure of u31 (b) The figure of u32

(c) The figure of u33

Figure 2. The figure of (4.5) shown on (a); the figure of (4.6) shown on (b); the figure of (4.7)
shown on (c)

When γ > 0, we adopt γ = 4. Then, solution (3.24) becomes

u41(ξ) =
18

17
− 1

16
cot(2ξ)− 1

32
cot2(2ξ) + 2 tan(2ξ)− 2 cot(2ξ) sec2(2ξ)

+ 2 csc2(2ξ),
(4.8)

where ξ = x− 2t. The figure of solution (4.8) is shown as Figure (a) in Figure 3.
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When γ = 0, then solution (3.25) becomes

u42(ξ) = 4 +
1

8
ξ − 1

8
ξ2, (4.9)

where ξ = x− 2t. The figure of solution (4.9) is shown as Figure (b) in Figure 3.

When γ < 0, we adopt γ = −4. Then, solution (3.26) becomes

u43(ξ) =
14

15
+

1

16
coth(2ξ)− 1

32
coth2(2ξ)− 2 tanh(2ξ)

− 2 coth(2ξ)sech2(2ξ) + 2csch2(2ξ),
(4.10)

where ξ = x− 2t. The figure of solution (4.10) is shown as Figure (c) in Figure 3.

(a) The figure of u41 (b) The figure of u42

(c) The figure of u43

Figure 3. The figure of (4.8) shown on (a); the figure of (4.9) shown on (b); the figure of (4.10)
shown on (c)
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When γ > 0, we adopt γ = 4. Then, solution (3.27) becomes

u51(ξ) =− 82

17
+ 2 cot(2ξ)− 2 cot2(2ξ) + 2 tan(2ξ)− 48

17
tan2(2ξ)

− 2 cot(2ξ) sec2(2ξ) + 2 csc2(2ξ),
(4.11)

where ξ = x− 1
17 t. The figure of solution (4.11) is shown as Figure (a) in Figure 4.

When γ = 0, then solution (3.28) becomes

u52(ξ) =
12

ξ2
, (4.12)

where ξ = x− t. The figure of solution (4.12) is shown as Figure (b) in Figure 4.
When γ < 0, we adopt γ = −4. Then, solution (3.29) becomes

u53(ξ) =− 26

5
+ 2 coth(2ξ) + 2 coth2(2ξ)− 2 tanh(2ξ) +

16

5
tanh2(2ξ)

− 2 coth(2ξ)sech2(2ξ) + 2csch2(2ξ)2,
(4.13)

where ξ = x+ 1
15 t. The figure of solution (4.13) is shown as Figure (c) in Figure 4.

When γ > 0, we adopt γ = 4. Then, solution (3.30) becomes

u61(ξ) =− 14

15
+ 2 cot(2ξ)− 2 cot2(2ξ) + 2 tan(2ξ) +

4

5
tan2(2ξ)

− 2 cot(2ξ) sec2(2ξ) + 2 csc2(2ξ),
(4.14)

where ξ = x+ 1
15 t. The figure of solution (4.14) is shown as Figure (a) in Figure 5.

When γ = 0, then solution (3.31) becomes

u62(ξ) = −12

ξ2
, (4.15)

where ξ = x− t. The figure of solution (4.15) is shown as Figure (b) in Figure 5.
When γ < 0, we adopt γ = −4. Then, solution (3.32) becomes

u63(ξ) =− 18

17
+,+2 coth(2ξ) + 2 coth2(2ξ)− 2 tanh(2ξ)− 48

17
tanh2(2ξ)

− 2 coth(2ξ)sech2(2ξ) + 2csch2(2ξ),
(4.16)

where ξ = x− 1
17 t. The figure of solution (4.16) is shown as Figure (c) in Figure 5.

When γ > 0, we adopt γ = 4. Then, solution (3.33) becomes

u71(ξ) =− 158

63
+ 2 cot(2ξ)− 26

21
cot2(2ξ) + 2 tan(2ξ) +

16

21
tan2(2ξ)

− 2 cot(2ξ) sec2(2ξ) + 2 csc2(2ξ),
(4.17)

where ξ = x+ 1
63 t. The figure of solution (4.17) is shown as Figure (a) in Figure 6.

When γ < 0, we adopt γ = −4. Then, solution (3.35) becomes

u73(ξ) =− 162

65
+ 2 coth(2ξ) +

82

65
coth2(2ξ)− 2 tanh(2ξ)− 48

65
tanh2(2ξ)

− 2 coth(2ξ)sech2(2ξ) + 2csch2(2ξ),
(4.18)
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(a) The figure of u51 (b) The figure of u52

(c) The figure of u53

Figure 4. The figure of (4.11) shown on (a); the figure of (4.12) shown on (b); the figure of (4.13)
shown on (c)

where ξ = x− 1
65 t. The figure of solution (4.18) is shown as Figure (b) in Figure 6.

When γ > 0, we adopt γ = 4. Then, solution (3.36) becomes

u81(ξ) =− 226

65
+ 2 cot(2ξ)− 178

65
cot2(2ξ) + 2 tan(2ξ)− 48

65
tan2(2ξ)

− 2 cot(2ξ) sec2(2ξ) + 2 csc2(2ξ),
(4.19)

where ξ = x− 1
65 t. The figure of solution (4.19) is shown as Figure (c) in Figure 6.

When γ < 0, we adopt γ = −4. Then, solution (3.38) becomes

u83(ξ) =− 74

21
+ 2 coth(2ξ) +

58

21
coth2(2ξ)− 2 tanh(2ξ) +

16

21
tanh2(2ξ)

− 2 coth(2ξ)sech2(2ξ) + 2csch2(2ξ),
(4.20)

where ξ = x+ 1
63 t. The figure of solution (4.20) is shown as Figure (d) in Figure 6.
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(a) The figure of u61 (b) The figure of u62

(c) The figure of u63

Figure 5. The figure of (4.14) shown on (a); the figure of (4.15) shown on (b); the figure of (4.16)
shown on (c)

5. Conclusion

In summary, this paper introduces the BBM equation and acquires the traveling
wave solutions of the BBM equation by utilizing the modified hyperbolic function
expanding method. Due to the different selection of the sign of the parameter γ, the
traveling wave solutions have different structures. When γ > 0, and the solutions
are trigonometric function solutions as shown in equations (3.15), (3.18), (3.21),
(3.24), (3.27), (3.30), (3.33) and (3.36). When γ = 0, the solutions are rational
function solutions as shown in equations (3.22), (3.25), (3.28) and (3.31). When
γ < 0, the solutions are hyperbolic trigonometric function solutions as shown in
equations (3.17), (3.20), (3.23), (3.26), (3.29), (3.32), (3.35) and (3.38).

Compared with the previous literature, the traveling wave solutions we have
obtained are different from the previous ones. When γ > 0 and γ < 0, all of the
solutions are trigonometric function solutions and hyperbolic trigonometric func-
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tion solutions, which are important in physical sciences and mathematical sciences.
The solutions obtained in this way reveal that the concerned model governs pulse
dynamics in NLPDE effectively. We have supplemented and improved the exact
solutions of this kind of equation, and provided a new idea for obtaining the exact
solutions of this kind of equation in the future, laying a new foundation for our in-
depth research. At the same time, it manifests that this method is very convenient
and a more powerful tool to obtain the analytical solutions of NLPDE. In addition,
studying the dynamical properties and all solutions of the BBM equation is also
one of our main tasks in the future. The further study in this regard will procure
other novel and marvelous results for NLPDE.

(a) The figure of u71 (b) The figure of u73

(c) The figure of u81 (d) The figure of u83

Figure 6. The figure of (4.17) shown on (a); the figure of (4.18) shown on (b); the figure of (4.19)
shown on (c); the figure of (4.20) shown on (d)
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