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Existence and Uniqueness Theorems for a
Three-step Newton-type Method under L-Average

Conditions

Jai Prakash Jaiswal1,2,3,†

Abstract In this paper, we study the local convergence of a three-step Newton-
type method for solving nonlinear equations in Banach spaces under weaker
hypothesis. More precisely, we derive the existence and uniqueness theorems,
when the first-order derivative of nonlinear operator satisfies the L-average
conditions instead of the usual Lipschitz condition, which have been discussed
in the earlier study.
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1. Introduction

Let T : D ⊆ M → N be a nonlinear operator from a Banach space M to another
Banach space N , where D is a non-empty open convex subset, and T is Fréchet
differentiable nonlinear operator. Nonlinear equations arise in many fields of science
and engineering, and are defined by

T (α) = 0. (1.1)

The well-known iterative method for finding the solution of above type equation is
Newton’s method, which is given by

αn+1 = αn − [T ′(αn)]−1T (αn), n ≥ 0. (1.2)

Newton’s method [8] is a well established iterative method, which converges quadrat-
ically. It was first discussed by Kantorovich [6], and then investigated by Rall [10].
Some higher-order methods that do not require the computation of second-order
derivatives have been developed in [4, 5, 7, 9] and other literature. Due to high op-
erational cost, the methods of higher R-order convergence are not normally used
despite fast speed of convergence. However, the methods of higher R-order are
useful in the problems of stiff system [6], where fast convergence is required.
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Here, we discuss the local convergence of a three-step Newton-type method
under the L-average conditions, which is expressed as

βn = αn − [T ′(αn)]−1T (αn),

γn = αn − [T ′(αn)]−1[T (αn) + T (βn)],

αn+1 = αn − [T ′(αn)]−1[T (αn) + T (βn) + T (γn)], n ≥ 0. (1.3)

Method (1.3) is characterized by the simplest fourth-order iterative method, which
is not involved in the second derivative. The local convergence of this method has
been studied by Argyros et al., [3] under Lipschitz and center Lipschitz conditions,
which are given by

||[T ′(α∗)]−1(T ′(α)− T ′(β))|| ≤ L||α− β||,∀ α, β ∈ B(α∗, r) (1.4)

and

||[T ′(α∗)]−1(T ′(α)− T ′(α∗))|| ≤ L0||α− α∗||,∀ α ∈ B(α∗, r). (1.5)

For some kinds of domain with center such as B(α∗, r), sometimes it is not necessary
for the inequality to hold for any α, β in the domain, and it is only required to hold
for any α and for points lying on the connecting line ατ = α∗ + τ(α− α∗) between
α and α∗, where 0 ≤ τ ≤ 1. Recently, in [11], Wang has introduced the Lipschitz
condition and center Lipschitz condition with L-average, which are given by for
[T ′(α∗)]−1T ′(α):

||[T ′(α∗)]−1(T ′(α)− T ′(ατ ))|| ≤
∫ κ(α)

τκ(α)

L(u)du,∀ α, ατ ∈ B(α∗, r), 0 ≤ τ ≤ 1

(1.6)

and

||[T ′(α∗)]−1(T ′(α)− T ′(α∗))|| ≤
∫ κ(α)

0

L0(u)du,∀ α ∈ B(α∗, r), (1.7)

where L and L0 are positive integrable function instead of constant. If L and L0

are constants, then R. H. S. of the above two equations becomes L||α − ατ || and
L0||α− α∗||.

Encouraged by the development discussed above, in this paper, we first mention
the definitions of Lipschitz condition and center Lipschitz condition with L-average
for algorithm (1.3), and some theorems are then derived. The first L-average condi-
tions have been used to study the local convergence without additional hypotheses,
along with an error estimate. In the second theorem, the domain of uniqueness of
solution has been derived under center Lipschitz condition. Also, few corollaries are
stated.

The rest parts of this paper are organized as follows. Section 2 includes the
definitions related to L-average conditions. The local convergence and its domain
of uniqueness are respectively mentioned in Section 3 and Section 4.
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2. L-average conditions

Here, we denote by B(α∗, r) = {α : ||α− α∗|| < r}, a ball with radius r and center
α∗. The condition imposed on the function T

||[T ′(α∗)]−1(T ′(α)− T ′(βτ ))|| ≤ L(1− τ)(||α−α∗||+ ||β−α∗||),∀ α, β ∈ B(α∗, r),
(2.1)

where βτ = α∗ + τ(β − α∗), 0 ≤ τ ≤ 1, is usually called radius Lipschitz condition
in the ball B(α∗, r) with constant L. Sometimes, if it is only required to satisfy

||[T ′(α∗)]−1(T ′(α)− T ′(α∗))|| ≤ 2L0||α− α∗||,∀ α ∈ B(α∗, r), (2.2)

and we call it the center Lipschitz condition in the ball B(α∗, r) with the constant
L0, where L0 ≤ L. Replacing L by L0 in the case L0 < L leads to wider choice of
initial guesses (larger radius of convergence than in traditional studies) and fewer
iterates to achieve an error tolerance [1,2]. Furthermore, L and L0 in the Lipschitz
conditions do not necessarily have to be constant, but can be a positive integrable
function. In this case, conditions (2.1)-(2.2) are respectively replaced by

||[T ′(α∗)]−1(T ′(α)− T ′(βτ ))|| ≤
∫ κ(α)+κ(β)

τ(κ(α)+κ(β))

L(u)du,∀ α, β ∈ B(α∗, r), 0 ≤ τ ≤ 1,

(2.3)

and

||[T ′(α∗)]−1(T ′(α)− T ′(α∗))|| ≤
∫ 2κ(α)

0

L0(u)du,∀ α ∈ B(α∗, r), (2.4)

where κ(α) = ||α − α∗||, and we have L0(u) ≤ L(u). At the same time, the corre-
sponding Lipschitz conditions are referred to having the L-average or generalized
Lipschitz conditions. Next, we start with the following lemmas, which will be used
in the main theorems later.

Lemma 2.1. Suppose that T has a continuous derivative in B(α∗, r), and [T ′(α∗)]−1

exists.
(i) If [T ′(α∗)]−1T ′ satisfies the radius Lipschitz condition with the L-average:

||[T ′(α∗)]−1(T ′(α)− T ′(βτ ))|| ≤
∫ κ(α)+κ(β)

τ(κ(α)+κ(β))

L(u)du,∀ α, β ∈ V (α∗, r), 0 ≤ τ ≤ 1,

(2.5)

where βτ = α∗ + τ(β − α∗), κ(α) = ||α − α∗|| and L is non-decreasing, then we
have∫ 1

0

||[T ′(α∗)]−1(T ′(α)− T ′(βτ ))||κ(β)dτ ≤
∫ κ(α)+κ(β)

0

L(u)
u

κ(α) + κ(β)
κ(β)du.

(2.6)
(ii) If [T ′(α∗)]−1T ′ satisfies the center Lipschitz condition with the L0-average:

||[T ′(α∗)]−1(T ′(ατ )− T ′(α∗))|| ≤
∫ 2τκ(α)

0

L0(u)du,∀ α ∈ V (α∗, r), 0 ≤ τ ≤ 1,

(2.7)
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where κ(α) = ||α− α∗|| and L0 is non-decreasing, then we have∫ 1

0

||[T ′(α∗)]−1(T ′(ατ )− T ′(α∗))||κ(α)dτ ≤
∫ 2κ(α)

0

L0(u)
(
κ(α)− u

2

)
du. (2.8)

Proof. The Lipschitz conditions (2.5) and (2.7) respectively imply∫ 1

0

||[T ′(α∗)]−1(T ′(α)− T ′(βτ ))||κ(β)dτ ≤
∫ 1

0

∫ κ(α)+κ(β)

τ(κ(α)+κ(β))

L(u)duκ(β)dτ

=

∫ κ(α)+κ(β)

0

L(u)
u

κ(α) + κ(β)
κ(β)du,∫ 1

0

||[T ′(α∗)]−1(T ′(ατ )− T ′(α∗))||κ(α)dτ ≤
∫ 1

0

∫ 2τκ(α)

0

L0(u)duκ(α)dτ

=

∫ 2κ(α)

0

L0(u)
(
κ(α)− u

2

)
du,

where ατ = α∗ + τ(α− α∗) and βτ = α∗ + τ(β − α∗).

Lemma 2.2 ( [11]). Suppose that L is positive integrable. Assume that the function

L is non-decreasing, and then 1
t2

∫ t
0
L(u)udu is also non-decreasing.

Lemma 2.3. Suppose that L is positive integrable. Assume that the function L is
non-decreasing, and then 1

t

∫ t
0
L(u)(t− u)du is also non-decreasing.

Proof. Similar to the previous lemma, the proof may be proceeded.

3. Local convergence of method (1.3)

Here, we prove the existence theorem for scheme (1.3) under radius Lipschitz con-
dition first.

Theorem 3.1. Let us suppose that T (α∗) = 0, T has a continuous derivative
in B(α∗, r), [T ′(α∗)]−1 exists, [T ′(α∗)]−1T ′ fulfills hypothesis (2.3) and hypothesis
(2.4), and L is non-decreasing. Let r satisfy the expression∫ 2r

0

L0(u)du ≤ 1,

∫ 2r

0

{L(u)u+ 2rL0(u)}du ≤ 2r. (3.1)

Then, the three-step method (1.3) is convergent for all α0 ∈ B(α∗, r) and

||αn+1 − α∗|| ≤
q1q2q3

κ(α0)κ(β0)κ(γ0)
κ(αn)4, (3.2)

where

q1 =

∫ 2κ(α0)

0
L(u)udu

2κ(α0)(1−
∫ 2κ(α0)

0
L0(u)du)

, q2 =

∫ κ(α0)+κ(β0)

0
L(u)udu

(κ(α0) + κ(β0))(1−
∫ 2κ(α0)

0
L0(u)du)

,

q3 =

∫ κ(α0)+κ(γ0)

0
L(u)udu

(κ(α0) + κ(γ0))(1−
∫ 2κ(α0)

0
L0(u)du)

(3.3)

are less than unity. Furthermore,

||αn − α∗|| ≤ D4n−1||α0 − α∗||, n = 1, 2, · · · , D = q1q2
κ(α0)2

κ(β0)κ(γ0)
. (3.4)
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Proof. Let us choose α0 ∈ B(α∗, r) and let r fulfill inequality (3.1). Clearly, q1,
q2 and q3 mentioned above in expression (3.3) are less than unity, since

q1 =

∫ 2κ(α0)

0
L(u)udu

2κ(α0)2(1−
∫ 2κ(α0)

0
L0(u)du)

κ(α0) ≤
∫ 2r

0
L(u)udu

2r2(1−
∫ 2r

0
L0(u)du)

κ(α0)

≤ ||α0 − α∗||
r

< 1,

q2 =

∫ κ(α0)+κ(β0)

0
L(u)udu

(κ(α0) + κ(β0))2(1−
∫ 2κ(α0)

0
L0(u)du)

(κ(α0 + κ(β0))

≤
∫ 2r

0
L(u)udu

2r2(1−
∫ 2r

0
L0(u)du)

(κ(α0) + κ(β0)) ≤ ||α0 − α∗||+ ||β0 − α∗||
2r

< 1,

and the similar explanation for q3. Now, if αn ∈ B(α∗, r), then by virtue of hy-
pothesis (2.4), relation (3.1) and Banach Lemma, we can write

||[T ′(αn)]−1T ′(α∗)|| ≤ 1

1−
∫ 2κ(αn)

0
L0(u)du

. (3.5)

By the Taylor’s series expansion of T (αn), for the first sub-step of scheme (1.3), we
can write

||βn − α∗|| ≤ ||[T ′(αn)]−1T ′(α∗)||.||
∫ 1

0

[T ′(α∗)]−1[T ′(αn)− T ′(ατn)]dτ ||.||(αn − α∗)||

≤ 1

1−
∫ 2κ(αn)

0
L0(u)du

∫ 1

0

∫ 2κ(αn)

2τκ(αn)

L(u)duκ(αn)dτ. (3.6)

By similar analogy for the the second and last sub-steps of scheme (1.3), we can
write

||γn − α∗|| ≤ ||[T ′(αn)]−1T ′(α∗)||.||
∫ 1

0

[T ′(α∗)]−1[T ′(αn)− T ′(βτn)]dτ ||.||(βn − α∗)||

≤ 1

1−
∫ 2κ(αn)

0
L0(u)du

∫ 1

0

∫ κ(αn)+κ(βn)

τ(κ(αn)+κ(βn))

L(u)duκ(βn)dτ (3.7)

and

||αn+1 − α∗|| ≤ ||[T ′(αn)]−1T ′(α∗)||.||
∫ 1

0

[T ′(α∗)]−1[T ′(αn)− T ′(γτn)]dτ ||.||(γn − α∗)||

≤ 1

1−
∫ 2κ(αn)

0
L0(u)du

∫ 1

0

∫ κ(αn)+κ(γn)

τ(κ(αn)+κ(γn))

L(u)duκ(γn)dτ. (3.8)

Since κ(αn), κ(βn) and κ(γn) are monotonically decreasing, for all n = 0, 1, ..., we
have

||βn − α∗|| ≤
q1

κ(α0)
κ(αn)2,

||γn − α∗|| ≤
q1q2

κ(α0)κ(β0)
κ(αn)3

and

||αn+1 − α∗|| ≤
q1q2q3

κ(α0)κ(β0)κ(γ0)
κ(αn)4,

where q1, q2 and q3 are defined in equation (3.3). Also, it can be seen that inequality
(3.4) may be easily derived from expression (3.2).
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4. Uniqueness of the solution

In this section, we discuss about the uniqueness of the solution for method (1.3).

Theorem 4.1. Let us suppose that T (α∗) = 0, T has a continuous derivative in
B(α∗, r), [T ′(α∗)]−1 exists, and [T ′(α∗)]−1T ′ fulfills hypothesis (2.4). Let r satisfy
the expression ∫ 2r

0

L0(u)(2r − u)du ≤ 2r. (4.1)

Then, the equation T (α) = 0 has a unique solution α∗ in B(α∗, r).

Proof. Let us suppose if possible β∗ ∈ B(α∗, r) is another solution such that
β∗ 6= α∗. By using Taylor’s series expansion, we can write

||β∗ − α∗|| ≤ ||[T ′(α∗)]−1T ′(α∗)||.||
∫ 1

0

[T ′(α∗)]−1[T ′(β∗τ )− T ′(α∗)]dτ ||.||(β∗ − α∗)||

≤
∫ 1

0

∫ 2τκ(β∗)

0

L0(u)duκ(β∗)dτ. (4.2)

Using Lemma 2.1 in the above expression, it can be written as

||β∗ − α∗|| ≤ 1

2κ(β∗)

∫ 2κ(β∗)

0

L0(u)[2κ(β∗)− u]du(β∗ − α∗)

≤
∫ 2r

0
L0(u)(2r − u)du

2r
κ(β∗) ≤ ||β∗ − α∗||, (4.3)

which is contradictory. Thus, the result is obtained.
Now, if we assume that L and L0 are constants, then we obtain the following

corollaries from the above mentioned theorems.

Corollary 4.1. Let us suppose that α∗ fulfills T (α∗) = 0, T has a continuous
derivative in B(α∗, r), [T ′(α∗)]−1 exists, and [T ′(α∗)]−1T ′ fulfills hypotheses (2.1)
and (2.2). Let r satisfy the expression

r(2L0 + L) = 1. (4.4)

Then, the three-step method (1.3) is convergent for all α0 ∈ B(α∗, r), and inequal-
ities (3.2) and (3.4) hold, where

q1 =
Lκ(α0)

1− 2L0κ(α0)
, q2 =

L(κ(α0) + κ(β0))

2(1− 2L0κ(α0))
, q3 =

L(κ(α0) + κ(γ0))

2(1− 2L0κ(α0))

(4.5)

are less than unity.

Corollary 4.2. Let us suppose that α∗ fulfills T (α∗) = 0, T has a continuous
derivative in B(α∗, r), [T ′(α∗)]−1 exists and [T ′(α∗)]−1T ′ fulfills hypothesis (2.2).
Let r satisfy the equation

rL0 = 1. (4.6)

Then, the equation T (α) = 0 has a unique solution α∗ in B(α∗, r). Moreover, the
radius r of ball depends only on L0.
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5. Numerical example

Example 5.1. Choose X = Y = C[0, 1],Ω = V (0, 1) and x∗ = 0. Then, define t
on Ω as

t(h)(x) = h(x)−
∫ 1

0

xτh(τ)3dτ.

Therefore,

t′(h(p))(x) = p(x)− 3

∫ 1

0

xτh(τ)2p(τ)dτ for all p ∈ Ω.

Then, we get

L0(u) = 1.5u < L(u) = 3u.

Using (3.1) and t′(x∗) = I, we have the following cases.
The old case L0(u) = L(u) = 3u gives

r0 = 0.245253.

Cases L0(u) = 3
2u and L(u) = 3u give

r1 = 0.324947.

Notice that r0 < r1.

6. Conclusions

In this study, the local convergence of a three-step Newton-type method of order
four is applied under generalized Lipschitz conditions, in which instead of Lipschitz
constants, some non-decreasing integrable functions are being used. It turns out
that although the conditions are more general, they are also more flexible, leading
to some advantages without any additional computational efforts.
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