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Positive Solutions of Second-order Difference
Equation with Variable Coefficient on the Infinite

Interval∗
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Abstract In this paper, based on the one-signed Green’s function and the
compact results on the infinite interval, we obtain the existence and multiplic-
ity of positive solutions for the boundary value problems

∆2x(n− 1)− p(n)∆x(n− 1)− q(n)x(n− 1) + f(n, x(n)) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, lim
n→∞

x(n) = 0

by the fixed point theorem in cones. The main results extend some results in
the previous literature.
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1. Introduction

The continuous boundary value problem on the half-line occur in the mathemati-
cal modeling of various applied problems, for example, discussion on electrostatic
probe measurements in solid-propellant rocket exhausts [11], analysis of the mass
transfer on a rotating disk in a non-Newtonian fluid, heat transfer in the radial
flow between parallel circular disks [13] and investigation of temperature distribu-
tion in the problem of phase change of solids with temperature-dependence thermal
conductivity [13]. Hence, the existence of positive solutions to the infinite interval
boundary value problem of second-order ordinary differential equations have been
studied by many authors (see [3, 5–7, 9, 12, 15, 16] and their references). However,
the existence and multiplicity of the positive solutions to second-order difference
equations on the half-line have only few results such as [1, 2, 8, 14].

Let N = {1, 2, 3, · · · }, N0 = {0, 1, 2, · · · }, N(a, b) = {a, a+ 1, · · · , b}, for a < b.

In 2001, Agarwal et al., [2] studied the positive solutions of the following bound-
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ary value problem on the infinite interval∆2x(n− 1) + f(n, x(n)) = 0, n ∈ N

x(0) = 0, lim
n→∞

x(n) = γ ∈ R
(1.1)

by employing upper and lower solution methods. In 2006, Tian and Ge [14] obtained
the existence of multiple positive solutions for the problem∆2x(n− 1)− p∆x(n− 1)− qx(n− 1) + f(n, x(n)) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, lim
n→∞

x(n) = 0,
(1.2)

where p, α, β ≥ 0, α2 + β2 > 0, q > 0, 1 + p > q, and f : N × [0,∞) → [0,∞)
are continuous. The main proofs are based on the fixed point theorem in Fréchet
space.

Definitely, the natural question is whether or not the positive solution of problem
(1.2) on the infinite interval exists in the Banach space. The key points are the
compact results on the infinite interval and the one-signed Green’s function of (1.2)
and its bounded properties. This is an interesting problem which is different from
the properties of Green’s function on finite interval.

Motivated by what has been mentioned above, we discuss the one-signed prop-
erty of Green’s function and its bounded properties, and obtain the existence and
multiplicity of positive solutions of the following problem∆2x(n− 1)− p(n)∆x(n− 1)− q(n)x(n− 1) + f(n, x(n)) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, lim
n→∞

x(n) = 0,
(1.3)

where p : N→ [0, ∞), q : N→ (0, ∞) are bounded functions, α, β ≥ 0, α2+β2 > 0
and f : N× [0,∞)→ [0,∞) are continuous.

Notice that (1.3) generalizes (1.2). It is worth pointing out that Green’s function
of the associated linear problem∆2x(n− 1)− p(n)∆x(n− 1)− q(n)x(n− 1) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, lim
n→∞

x(n) = 0
(1.4)

cannot be explicitly expressed by elementary functions. These make our approach
more difficult. Fortunately, we find Perron’s theorem [8] and the compact theorem
in the Banach space l� = {x(·) ∈ l∞(N0) | lim

n→∞
x(n) = x(∞)} [10] to overcome

these difficulties.
The rest of this paper is arranged as follows. In Section 2, we construct the

Green’s function of (1.4), and prove its one-signed and bounded properties. In
Section 3, we state the compact theorem on the infinite interval and the transfer
problem (1.3) to the compact summing operator in Banach space l�. In Section 4,
we give the existence and multiplicity results of positive solutions for problem (1.3).

Throughout this paper, we denote the summation of x(n) from n = a to n = b

by
b∑

n=a
x(n) with the understanding that

b∑
n=a

x(n) = 0 for all a > b, and the product

of x(n) from n = a to n = b by
b∏

n=a
x(n) with the understanding that

b∏
n=a

x(n) = 1

for all a > b.



660 Y. Lu & R. Wang

2. The Green’s function and its properties

To obtain the Green’s function of (1.4), we need some restrictions on the functions
p(·), q(·) as follows.

(H1) p : N→ [0, ∞), q : N→ (0, ∞) are bounded functions. Denote

p∗ = sup
n∈N

p(n), p∗ = inf
n∈N

p(n), q∗ = sup
n∈N

q(n), q∗ = inf
n∈N

q(n).

(H2) 1 + p(n)− q(n) > 0, n ∈ N, 1 + p∗ − q∗ > 0 and 1 + p∗ − q∗ > 0.

(H3) lim
n→∞

p(n) = p0 ≥ 0, lim
n→∞

q(n) = q0 > 0 and
∞∏
i=1

(1 + p(i)− q(i)) <∞.

Lemma 2.1. Assume that (H1)-(H2) hold. Then, the initial value problem∆2x(n− 1)− p(n)∆x(n− 1)− q(n)x(n− 1) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, x(1) = 1
(2.1)

has a unique solution u(n) defined on N0. Moreover, ∆u(n) > 0 on N, and u is
increasing on N.

Proof. By the existence and uniqueness of the solution to initial value problem [8],
it follows that (2.1) has the unique solution u(n) defined on N0.

Now, we prove the assertion by induction. First, from αu(0) − β∆u(0) = 0,
we have u(0) = β

α+βu(1) = β
α+β ≥ 0, ∆u(0) = u(1) − u(0) = α

α+β ≥ 0. Since

α2 + β2 > 0, it follows that

∆u(1) = [1 + p(1)]∆u(0) + q(1)u(0) > 0, ∆u(1) ≥ ∆u(0).

Secondly, we assume that if k ≤ n, then

∆u(k) = [1 + p(k)]∆u(k − 1) + q(k)u(k − 1) > 0 and ∆u(k) ≥ ∆u(k − 1).

Thus, we conclude

∆u(n+ 1) = [1 + p(n+ 1)]∆u(n) + q(n+ 1)u(n)

≥ [1 + p(n+ 1)]∆u(n− 1) + q(n+ 1)u(n− 1) > 0

and ∆u(n+ 1) ≥ ∆u(n).

Hence, ∆u(n) > 0, n ∈ N. Together with (2.1), this yields ∆2u(n− 1) > 0, n ∈
N. Therefore, u(n) and ∆u(n) are increasing on N.

Lemma 2.2. Suppose that (H1)-(H2) hold. Then, the problem∆2x(n− 1)− p(n)∆x(n− 1)− q(n)x(n− 1) = 0, n ∈ N,

αx(0)− β∆x(0) = 1, lim
n→∞

x(n) = 0
(2.2)

has the unique solution v(n) defined on N0. Moreover, v(n) > 0, ∆v(n) < 0 on N.

Proof. To this end, we divide the proof into four steps.
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Step 1. We show that (2.2) has a solution v with v(n) > 0 in N0. Let us
consider the following problem∆2x(n− 1)− p(n)∆x(n− 1)− q(n)x(n− 1) = 0, n ∈ N(1, m)

αx(0)− β∆x(0) = 1, x(m+ 1) = 0.
(2.3)

We claim that for each m ∈ N, (2.3) has a positive solution v := vm with

v(n) > 0, ∆v(n) < 0, ∀ n ∈ N(1, m). (2.4)

In fact, suppose on the contrary that there exists n1 ∈ N(1, m) such that

v(n1) = 0, v(n) > 0 for n ∈ N(1, n1 − 1).

Then, ∆v(n1 − 1) = v(n1) − v(n1 − 1) < 0. Since the other case ∆v(n1 − 1) = 0
would imply that v(n) = 0 for n ∈ N(1, m), which is a contradiction. Noticing
that ∆v(n1 − 1) < 0 and v(n1) = 0, and together with (H2), it implies

∆v(n1) = [1 + p(n1)]∆v(n1 − 1) + q(n1)v(n1 − 1)

= [1 + p(n1)]v(n1)− [1 + p(n1)− q(n1)]v(n1 − 1)

= −[1 + p(n1)− q(n1)]v(n1 − 1) < 0.

That is, v(n1 + 1) < v(n1) = 0. Moreover, we have ∆v(n1 + 1) = [1 + p(n1 +
1)]∆v(n1) + q(n1 + 1)v(n1) < 0 and imply v(n1 + 2) < v(n1 + 1) < 0. The rest may
be deduced by analogy, it follows that

∆v(m) < 0 and v(m+ 1) < v(m) < 0.

This contradicts with the boundary condition v(m+ 1) = 0. Thus, we get

v(n) > 0 on N(0, m) and ∆v(m) = v(m+ 1)− v(m) < 0.

On the other hand, since

∆v(m) = [1 + p(m)]∆v(m− 1) + q(m)v(m− 1) < 0,

we have ∆v(m− 1) = − q(m)
1+p(m)v(m− 1) < 0. The rest may be deduced by analogy.

Hence, we omit it. Therefore, ∆v(n) < 0, n ∈ N(1, m).
Step 2. For each m ≥ 1, we show that vm(n) < vm+1(n), n ∈ N(1, m). Let

w(n) := vm+1(n)− vm(n), n ∈ N(0, m+ 1). Then,∆2w(n− 1)− p(n)∆w(n− 1)− q(n)w(n− 1) = 0, n ∈ N(1, m)

αw(0)− β∆w(0) = 1, w(m+ 1) = d,
(2.5)

where d := vm+1(m+ 1) > 0. We claim

w(n) > 0, ∆w(n) > 0, ∀ n ∈ N(1, m). (2.6)

In fact, suppose on the contrary that there exists n2 ∈ N(1, m) such that

w(n2) = 0 and w(n) > 0 for n ∈ N(n2 + 1, m).
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Applying the same method used in Step 1, we may deduce (2.6).
Step 3. Define the function v̄m : [0, ∞)→ [0, ∞) by

v̄m(n) =

 vm(n), n ∈ N(0, m+ 1),

0, n ∈ N(m+ 1, ∞).

Then, v̄m ∈ l∞(0, ∞). Moreover, from Step 1 and Step 2, we have 0 ≤ v̄m(n) <
1, n ∈ N0, and

v̄1(n) ≤ v̄2(n) ≤ · · · ≤ v̄m(n) ≤ · · · , n ∈ N0.

Let v∗(n) := lim
m→∞

v̄m(n), n ∈ N0. Then, v∗ ∈ l∞(0, ∞). Hence, v∗ is a solution of

(2.2).
Step 4. We show that v∗ is a unique solution of (2.2). On the contrary, suppose

that (2.2) has two solutions v1, v2, set φ = v1 − v2. Without loss of generality,
suppose φ(n) ≥ 0 and φ(n0 − 1) 6= 0. Then,∆2φ(n− 1)− p(n)∆φ(n− 1)− q(n)φ(n− 1) = 0, n ∈ N

αφ(0)− β∆φ(0) = 0, φ(∞) = 0.

From αφ(0)− β∆φ(0) = 0, we know φ(0) = β
α+βφ(1) ≤ φ(1). Thus,

∆φ(0) ≥ 0 and ∆φ(1) = [1 + p(1)]∆φ(0) + q(1)φ(0) > 0.

The rest may be deduced by analogy, we omit it, and we have

∆φ(n0) = [1 + p(n0)]∆φ(n0 − 1) + q(n0)φ(n0 − 1) > 0.

Therefore, φ(∞) > 0, and this contradicts with φ(∞) = 0.

Definition 2.1 ( [8]). A homogeneous linear equation

u(t+m) + pm−1(t)u(t+m− 1) + · · ·+ p0(t)u(t) = 0, t ∈ N (2.7)

is said to be of “Poincaré type”, if lim
t→∞

pk(t) = pk for k = 0, 1, · · · , m− 1 (i.e., if

the coefficient functions convergent to constant, as t goes to infinity). Here, m is a
given integer.

Lemma 2.3 (Perron’s theorem, [8]). Assume that equation (2.7) is of “Poincaré
type”, and the roots of λ1, · · · , λm of λm + pm−1λ

m−1 + · · · p0 = 0 satisfy |λ1| >
|λ2| > · · · > |λm|. Moreover, suppose that p0(t) 6= 0 for each t. Then, there are m
independent solutions u1, u2, · · · , um of equation (2.7) that satisfy

lim
t→∞

ui(t+ 1)

ui(t)
= λi, (i = 1, 2, · · · , m).

Lemma 2.4. Assume that (H1)-(H3) hold. Then, the unique solution of (2.2)
satisfies

lim
n→∞

v(n+ 1)

v(n)
= λ1, (2.8)

where 0 < λ1 =
2+p0−

√
p20+4q0

2 < 1.
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Proof. The equation ∆2x(n−1)−p(n)∆x(n−1)− q(n)x(n−1) = 0 is equivalent
to

x(n+ 1)− (2 + p(n))x(n) + (1 + p(n)− q(n))x(n− 1) = 0.

Since lim
n→∞

p(n) = p0, lim
n→∞

q(n) = q0, we can get

λ2 − (2 + p0)λ+ (1 + p0 − q0) = 0. (2.9)

By simple calculation, it follows that (2.9) has two eigenvalues

λ1 =
2 + p0 −

√
p20 + 4q0

2
, λ2 =

2 + p0 +
√
p20 + 4q0

2
.

It is easy to verify

0 < λ1 < 1, λ2 > 1.

From Lemma 2.2, ∆v(n) < 0 on N, that is, v(n + 1) < v(n). This together with

Lemma 2.3, we obtain lim
n→∞

v(n+1)
v(n) = λ1.

Lemma 2.5. Assume that (H1)-(H3) hold. Then, there exists M > 0 such that

sup
n∈N0

u(n)v(n) < M.

Proof. By Liouville formula [8], we have

u(n) = c1v(n) + c2v(n)

n−1∑
i=0

∏i
k=1[1 + p(k)− q(k)]

v(i)v(i+ 1)

for some constants c1 and c2. Applying Stolz Theorem [8], it follows that

lim
n→∞

u(n)v(n) = lim
n→∞

c1v
2(n) + c2v

2(n)

n−1∑
i=0

∏i
k=1[1 + p(k)− q(k)]

v(i)v(i+ 1)

= c2 lim
n→∞

∏n
k=1[1 + p(k)− q(k)]v(n)v(n+ 1)

v2(n)− v2(n+ 1)

= lim
n→∞

∏n
k=1[1 + p(k)− q(k)]

v(n)
v(n+1) −

v(n+1)
v(n)

=

∏∞
k=1[1 + p(k)− q(k)]λ1

1− λ21
<∞.

Hence, there exists M > 0 such that sup
n∈N0

u(n)v(n) < M.

Let

G(n, i) = (α+ β)

ω(i)u(i)v(n), 1 ≤ i ≤ n− 1,

ω(i)u(n)v(i), i ≥ n,
(2.10)

where ω(i) =
∏i
k=1[1 + p(k)− q(k)]−1.
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Lemma 2.6. Assume that (H1)-(H3) hold. For any h ∈ l1(N), then the problem∆2x(n− 1)− p(n)∆x(n− 1)− q(n)x(n− 1) + h(n) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, lim
n→∞

x(n) = 0
(2.11)

is equivalent to the sum equation

x(n) =

∞∑
i=1

G(n, i)h(i), n ∈ N0. (2.12)

Proof. First, we show that the unique solution of (2.11) can be represented by
(2.12). In fact, we know that the equation

∆2x(n− 1)− p(n)∆x(n− 1)− q(n)x(n− 1) = 0, n ∈ N

has two linear independent solutions u and v, since

∣∣∣∣∣∣u(0) v(0)

u(1) v(1)

∣∣∣∣∣∣ = − 1
α+β 6= 0. Now,

by the method variation of constant [8], we can obtain that the unique solution of
(2.11) can be represented by (2.12).

Next, we check that the function defined by (2.12) is a solution of (2.11). From
(2.12), we have

x(n+ 1) = (α+ β)

[
v(n+ 1)

n∑
i=1

ω(i)u(i)h(i) + u(n+ 1)

∞∑
i=n+1

ω(i)v(i)h(i)

]
,

x(n) = (α+ β)

[
v(n)

n−1∑
i=1

ω(i)u(i)h(i) + u(n)

∞∑
i=n

ω(i)v(i)h(i)

]
,

x(n− 1) = (α+ β)

[
v(n− 1)

n−2∑
i=1

ω(i)u(i)h(i) + u(n− 1)

∞∑
i=n−1

ω(i)v(i)h(i)

]
.

Hence,

∆2x(n− 1)− p(n)∆x(n− 1)− q(n)x(n− 1)

=[1 + p(n)− q(n)](α+ β)ω(n)h(n)[u(n− 1)v(n)− u(n)v(n− 1)]

=[1 + p(n)− q(n)](α+ β)ω(n)h(n)

n−1∏
k=1

[1 + p(k)− q(k))][u(0)v(1)− u(1)v(0)]

=h(n)(α+ β)ω(n)

n∏
k=1

[1 + p(k)− q(k)]
−1

α+ β
= −h(n).

It is easy to see that αG(0, i)−β∆G(0, i) = 0 implies αx(0)−β∆x(0) = 0. Applying
the facts that sup

n∈N0

u(n)v(n) < M, h ∈ l1(0, ∞) and
∏∞
k=1[1 + p(k)− q(k)] <∞, it

follows that for any ε > 0, there exists N1 > 0 such that

∞∑
i=n

ω(i)u(i)v(i)|h(i)| ≤M
∞∑
i=n

ω(i)|h(i)| < ε

3(α+ β)
, ∀ n ≥ N1.
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From the fact lim
n→∞

v(n) = 0, there exists N2 > 0 such that

u(N1)v(n)

∞∑
i=1

ω(i)|h(i)| < ε

3(α+ β)
, ∀ n ≥ N2.

Let N = max{N1, N2}. Then, for n > N , we get

|x(n)| =
∣∣∣∣(α+ β)

[ n−1∑
i=1

ω(i)u(i)v(n)h(i) +

∞∑
i=n

ω(i)u(n)v(i)h(i)

]∣∣∣∣
≤(α+ β)

[N1−1∑
i=1

ω(i)u(i)v(n)|h(i)|+
n−1∑
i=N1

ω(i)u(i)v(n)|h(i)|+
∞∑
i=n

ω(i)u(n)v(i)|h(i)|
]

≤(α+ β)u(N1)v(n)

∞∑
i=1

ω(i)|h(i)|+ (α+ β)2M

∞∑
i=N1

ω(i)|h(i)|

<
ε

3
+

2ε

3
= ε.

Therefore, lim
n→∞

x(n) = 0.

Now, Lemma 2.6, we have from that for h ∈ l1(N), the boundary value problems∆2x(n− 1)− p∗∆x(n− 1)− q∗x(n− 1) + h(n) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, lim
n→∞

x(n) = 0,
(2.13)

and ∆2x(n− 1)− p∗∆x(n− 1)− q∗x(n− 1) + h(n) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, lim
n→∞

x(n) = 0
(2.14)

are equivalent to the sum equation

x1(n) =

∞∑
i=1

G1(n, i)h(i), n ∈ N0, (2.15)

x2(n) =

∞∑
i=1

G2(n, i)h(i), n ∈ N0, (2.16)

where

G1(n, i) =
1

a1 − b1


(1 + b1)n( 1

(1+b1)i
− α−a1β

α−b1β
1

(1+a1)i
), 1 ≤ i ≤ n− 1,

1
(1+a1)i

((1 + a1)n − α−a1β
α−b1β (1 + b1)n), i ≥ n, (2.17)

and

G2(n, i) =
1

a2 − b2


(1 + b2)n( 1

(1+b2)i
− α−a2β

α−b2β
1

(1+a2)i
), 1 ≤ i ≤ n− 1,

1
(1+a2)i

((1 + a2)n − α−a2β
α−b2β (1 + b2)n), i ≥ n, (2.18)
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respectively. Here,

a1 =
p∗ +

√
p2∗ + 4q∗
2

, b1 =
p∗ −

√
p2∗ + 4q∗
2

,

a2 =
p∗ +

√
p∗2 + 4q∗

2
, b2 =

p∗ −
√
p∗2 + 4q∗

2
.

Lemma 2.7. For all (n, i) ∈ N0 × N,

G2(n, i) ≤ G(n, i) ≤ G1(n, i) < B,

where B = max{1, β
α−b1β ,

1
a1−b1 −

(α−a1β)(1+a1)
(α−b1β)(a1−b1)}.

Proof. From (2.17), we can easily deduce G1(n, i) < B, (n, i) ∈ N0 × N, where

B = max{1, β
α−b1β ,

1
a1−b1 −

(α−a1β)(1+a1)
(α−b1β)(a1−b1)}. Next, we only show G(n, i) ≤

G1(n, i), and the other case can be treated by the same way.
On the contrary, suppose that there exists (n0, i0) ∈ N×N, such that G(n0, i0) >

G1(n0, i0). Let

ĥ(n) =



0, 1 ≤ n ≤ i0 − 1,

n− i0 + 1, i0 − 1 ≤ n ≤ i0,

i0 + 1− n, i0 ≤ n ≤ i0 + 1,

0, i0 + 1 ≤ n <∞.

Then, ĥ(n) ≥ 0, n ∈ N.
Let x1(n), x2(n) be the solutions of∆2x(n− 1)− p∗∆x(n− 1)− q∗x(n− 1) + ĥ(n) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, lim
n→∞

x(n) = 0,

and ∆2x(n− 1)− p∗∆x(n− 1)− q∗x(n− 1) + ĥ(n) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, lim
n→∞

x(n) = 0,

respectively. Let x̂(n) be the solution of∆2x(n− 1) + F (n, x(n− 1),∆x(n− 1)) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, lim
n→∞

x(n) = 0,
(2.19)

where F (n, x(n− 1),∆x(n− 1)) = −p(n)∆x(n− 1)− q(n)x(n− 1) + ĥ(n), n ∈ N.
We claim

∆2x1(n− 1) + F (n, x1(n− 1),∆x1(n− 1)) ≤ 0, n ∈ N
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and

∆2x2(n− 1) + F (n, x2(n− 1),∆x2(n− 1)) ≥ 0, n ∈ N.

In fact, if 1 ≤ i0 ≤ n− 2, then

∆x1(n− 1) = (1 + b1)n−1b1(
1

(1 + b1)i0
− α− a1β
α− b1β

1

(1 + a1)i0
) > 0.

If i0 ≥ n, then

∆x1(n− 1) =
1

(1 + a1)i0
[a1(1 + a1)n−1 − α− a1β

α− b1β
b1(1 + b1)n−1] > 0.

If i0 = n− 1, then

∆x1(n− 1) =
b1

a1 − b1
[1− α− a1β

α− b1β
b1

(1 + b1)n−1

(1 + a1)n−1
] > 0.

Hence,

∆2x1(n) + F (n, x1(n− 1),∆x1(n− 1))

= (p∗ − p(n))x1(n) + (p(n)− p∗ + q∗ − q(n))x1(n− 1)

≤ (p∗ − p(n))x1(n) + (p(n)− p∗)x1(n) + (q∗ − q(n))x1(n)

= (q∗ − q(n))x1(n) ≤ 0.

On the other hand, αx̂(0) − β∆x̂(0) = 0 = αx1(0) − β∆x1(0), lim
n→∞

x̂(n) = 0 =

lim
n→∞

x1(n).

By using the similar method, we can prove

∆2x2(n) + F (n, x2(n− 1),∆x2(n− 1)) ≥ 0, n ∈ N.

Next, we will show

x2(n) ≤ x̂(n) ≤ x1(n), n ∈ N0. (2.20)

Define F ∗(n, x(n− 1),∆x(n− 1)) for n ∈ N, x ∈ R, by

F ∗(n, x(n− 1),∆x(n− 1)) =


F (n, x1(n− 1),∆x1(n− 1)) + x−x1(n)

1+|x1(n)| , x(n) ≥ x1(n),

F (n, x(n− 1),∆x(n− 1)), x2(n) ≤ x(n) ≤ x1(n),

F (n, x2(n− 1),∆x2(n− 1)) + x−x2(n)
1+|x2(n)| , x(n) ≤ x2(n).

Note that F ∗(n, x(n−1),∆x(n−1)) is continuous as a function of x and ∆x for each
n. Furthermore, F ∗ is bounded, and agrees with F when x2(n) ≤ x(n) ≤ x1(n). Let
Λ := {u : N0 → R | lim

n→∞
u(n) = 0,maxn∈N0 |un| ≤ max{maxn∈N0 |x1|,maxn∈N0 |x2|}.

Then, by Brouwer’s fixed point theorem [4], the boundary value problem
∆2x(n− 1) + F ∗(n, x(n− 1),∆x(n− 1)) = 0, n ∈ N,

αx(0)− β∆x(0) = 0, lim
n→∞

x(n) = 0
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has a solution x(n) on Λ.
We claim x(n) ≤ x1(n), n ∈ N0. On the contrary, suppose that x(n) − x1(n)

has a positive maximum at some n1 in N. Consequently, set w(n) = x(n)− x1(n),
then w(n1) > 0, and we must have

∆2w(n1 − 1) ≥ F ∗(n1,∆x(n1 − 1), x(n1 − 1))− F (n0,∆x1(n1 − 1), x1(n1 − 1))

=
x(n1)− x1(n1)

1 + |x1(n1)|
> 0.

By Anti-Maximum principle [8], we have w(n1) < 0, which contradicts with w(n1) >
0. It follows that x(n) ≤ x1(n), n ∈ N0.

Similarly, x2(n) ≤ x(n), n ∈ N0. Thus, x(n) is a solution of problem (2.19).
That is,

x2(n) ≤ x̂(n) ≤ x1(n), n ∈ N0,

and accordingly,

∞∑
i=1

G2(n, i)ĥ(i) ≤
∞∑
i=1

G(n, i)ĥ(i) ≤
∞∑
i=1

G1(n, i)ĥ(i).

Therefore,

x1(n0)− x̂(n0) =

∞∑
i=1

[G1(n0, i)−G(n0, i)]ĥ(i)

=

i0−1∑
i=1

[G1(n0, i)−G(n0, i)]ĥ(i) +

∞∑
i=i0+1

[G1(n0, i)−G(n0, i)]ĥ(i)

+ [G1(n0, i0)−G(n0, i0)]ĥ(i0)

< 0,

which contradicts with the second inequality in (2.20).

Lemma 2.8. For any given θ ∈ (1,+∞), we have

G(n, i)vθ(n) ≤ G(i, i)v(i).

Proof. If 1 ≤ i ≤ n− 1, then

G(n, i)vθ(n) = (α+ β)ω(i)u(i)v(n)vθ(n) ≤ (α+ β)ω(i)u(i)v(i)v(n) ≤ G(i, i)v(i).

If i ≥ n, then

G(n, i)vθ(n) = (α+ β)ω(i)u(n)v(i)vθ(n) ≤ (α+ β)ω(i)u(n)v(i)v(n)

≤ ω(i)u(i)v(i)v(i) = G(i, i)v(i).

Hence, G(n, i)vθ(n) ≤ G(i, i)v(i), (n, i) ∈ N0 × N.

Lemma 2.9. For any subinterval N(l1, l2) ⊆ N with 0 < l1 < l2, n ∈ N(l1, l2)
and i ∈ N,

G(n, i) ≥ δG(i, i)v(i),
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where δ := min{q(n) |n ∈ N(l1, l2)}, l1, l2 ∈ N is a constant and

q(n) = min{v(n),
u(n)

B
}, n ∈ N0.

Proof. If 1 ≤ i ≤ n− 1, then

G(n, i)

G(i, i)v(i)
=

ω(i)u(i)v(n)

ω(i)u(i)v(i)v(i)
=

v(n)

v(i)v(i)
≥ v(n).

If i ≥ n, then

G(n, i)

G(i, i)v(i)
=

ω(i)u(n)v(i)

ω(i)u(i)v(i)v(i)
=

u(n)

u(i)v(i)
≥ u(n)

B
.

Let q(n) = min{v(n), u(n)
B }. Then,

G(n, i) ≥ q(n)G(i, i)v(i), (n, i) ∈ N0 × N.

Remark 2.1. Note that u is increasing on N0, so u may be unbounded on N0, and
there is no positive constant c, such that if 1 ≤ n ≤ i ≤ ∞,

G(n, i)

G(i, i)
=
u(n)

u(i)
> cu(n),∀ n ∈ N.

Hence, it is impossible to prove

G(n, i) ≥ q(n)G(i, i), (n, i) ∈ N0 × N.

3. Compactness results of the sum operator in Ba-
nach space

Let

l� = {x(·) ∈ l∞(N0) | lim
n→∞

x(n) = x(∞)}

with the norm ‖x‖l = sup
n∈N
|x(n)|. Then, l� is a Banach space.

Let

X = {x(·) ∈ l∞(N0) | lim
n→∞

|x(n)|vθ(n) = r for some r ∈ R}

be endowed with the norm ‖x‖ = sup
n∈N0

{|x(n)|vθ(n)}, where θ > 1 is a constant.

Then, X is a Banach space. Here, v(n) is the unique solution of (2.2).

Lemma 3.1 (Theorem 2.1, [10]). Let F ⊂ l� be a set satisfying the following
conditions:

(A1) F is bounded in l�;
(A2) the function from F are equiconvergent, i.e., given ε > 0, it corresponds to

N(ε) > 0 such that

‖f(n)− f(∞)‖ < ε for any n ≥ N(ε) and f ∈ F .

Then, F is compact in l�.
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Lemma 3.2 (Theorem 2.2, [10]). Let F ⊂ l� be compact in l�. Then,

(i) F is bounded in l�;

(ii) the function from F are equiconvergent.

Note: Follows from Lemmas 3.1 and 3.2, it concludes a compact theorem in the
Banach space X.

Lemma 3.3. Let M ⊂ X and M satisfy the following conditions:

(i) M is bounded in X;

(ii) the functions belonging to {y | y(n) = x(n)vθ(n), x ∈ M} are equiconvergent,
i.e., given ε > 0, there exists N(ε) > 0 such that

‖y(n)− y(∞)‖ < ε for any n ≥ N(ε).

Then, M is compact in X.

To prove our main results, we give the following assumptions.
(H4) f : N× R+ → R+ is continuous, and satisfies

∃ s > 0 : s 6= 1, 0 ≤ f(n, x) ≤ k1(n) + k2(n)xs, ∀ (n, x) ∈ N× R+,

where k1, k2 ∈ l∞(0, ∞).
(H5) Assume the summation

M1 =

∞∑
i=1

G(i, i)v(i)k1(i) <∞, M2 =

∞∑
i=1

G(i, i)[v(i)]1−θsk2(i) <∞,

where θ > 1 is a constant, and there exists r > 0, such that M1 +M2r
s < r.

For some constants l1, l2 ∈ N with l1 < l2, we denote

m :=

l2∑
i=l1

G(i, i)v(i).

Define a cone of X

P = {x ∈ X |x(n) ≥ 0, n ∈ N, and x(n) ≥ q(n)‖x‖},

and the operator A : X → X

Ax(n) =

∞∑
i=1

G(n, i)f(i, x(i)), n ∈ N0.

Lemma 3.4. Assume that (H1)-(H5) hold. Then, A(P ) ⊂ P and A : P → P are
completely continuous.

Proof. We divide the proof into the following steps.
Step 1. A(P ) ⊆ P .
For any x ∈ P , from Lemma 2.8, we have

vθ(n)Ax(n) =
∞∑
i=1

vθ(n)G(n, i)f(i, x(i)) (3.1)
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≤
∞∑
i=1

v(i)G(i, i)[k1(i) + k2(i)|x(i)|s] (3.2)

≤
∞∑
i=1

v(i)G(i, i)k1(i) +

∞∑
i=1

[v(i)]1−θsG(i, i)k2(i)‖x‖s (3.3)

≤M1 +M2‖x‖s. (3.4)

Therefore, sup
n∈N0

{|Ax(n)|vθ(n)} ≤ M1 + M2‖x‖s < ∞. That is, Ax ∈ X,∀ x ∈ P .

By Lemma 2.8 and Lemma 2.9, we have

Ax(n) =

∞∑
i=1

G(n, i)f(i, x(i))

≥
∞∑
i=1

q(n)G(i, i)v(i)f(i, x(i))

≥
∞∑
i=1

q(n)vθ(ξ)G(ξ, i)f(i, x(i))

= q(n)vθ(ξ)Ax(ξ), ∀ ξ ∈ N0.

Setting ξ with vθ(ξ)Ax(ξ) = ‖Ax‖, we deduce

Ax(n) ≥ q(n)‖Ax‖, ∀ x ∈ P.

Therefore, A(P ) ⊆ P .

Step 2. A : P → P is continuous.

Assume that {xk}∞k=1 ⊆ P, x0 ∈ P and lim
k→∞

xk = x0. Then, there exists a

constant M > 0, such that ‖xk‖ ≤M, k ∈ N0. Thus,

∞∑
i=1

G(i, i)v(i)|f(i, xk(i))− f(i, x0(i))|

≤2

∞∑
i=1

G(i, i)v(i)[k1(i) + k2(i)|x|s]

≤2M1 + 2MsM2 <∞.

Hence, according to the continuous of f and Lemma 2.8, we have

lim
k→∞

‖Axk −Ax0‖

= lim
k→∞

sup
n∈N0

|
∞∑
i=1

vθ(n)G(n, i)f(i, xk(i))−
∞∑
i=1

vθ(n)G(n, i)f(i, x0(i))|

≤ lim
k→∞

sup
n∈N0

∞∑
i=1

G(i, i)v(i)|f(i, xk(i))− f(i, x0(i))| = 0.

Thus, A : P → P is continuous.

Step 3. We show that A : P → P is compact.
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Let D ⊆ P be bounded. Then, there exists M > 0 such that ‖x‖ < M, x ∈ D.
First, we show that A(D) is bounded set in X. For any x ∈ D, from (H4)-(H5) and
by applying the method to prove (3.4), it follows that

‖Ax‖ ≤M1 +M2M
s,

which implies that A(D) is bounded in X.
Second, we show that the functions belonging to {(Ax)(·)vθ(·) |x ∈ D} are

equiconvergent. Let σ := θ−1
2 , then σ > 0. Since lim

n→∞
v(n) = 0, we have that for

all ε > 0, there exists N > 0 such that

|v(n)− 0| <
(

ε

M1 +M2Ms

) 1
σ

, ∀ n ≥ N.

Thus, from Lemma 2.8, it follows that for above ε > 0, there exists N > 0 such that
x ∈ D and n ≥ N , implying that

0 ≤ vθ(n)Ax(n) =

∞∑
i=1

vθ(n)G(n, i)f(i, x(i))

≤ vσ(n)

∞∑
i=1

v1+σ(n)G(n, i)[k1(i) + k2(i)|x(i)|s]

≤ vσ(n)[

∞∑
i=1

v(i)G(i, i)k1(i) +

∞∑
i=1

[v(i)]1−θsG(i, i)k2(i)‖x‖s]

≤ vσ(n)[M1 +M2‖x‖s] < ε.

Hence, the functions belonging to {y | y(n) = x(n)vθ(n), x ∈ M} are equiconver-
gent.

Therefore, A : P → P is compact.
Finally, we give the fixed point theorem in cones.

Lemma 3.5 ( [4]). Let E be a Banach space and K ⊂ E be a cone. Assume
that Ω1, Ω2 are bounded open sunsets of E with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let A :
K ∩ (Ω̄2 \ Ω1)→ K be a completely continuous such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then, A has a fixed point.

4. Existence and multiplicity of positive solutions

We will discuss the existence of positive solutions for (1.3) between the cases s > 1
(super-linear case) and s < 1 (sub-linear case).

Theorem 4.1. Let s > 1 and assume that (H1)-(H5) and (H6) lim inf
x→+∞

min
n∈N(l1, l2)

f(n, x)
x ≥ 1

vθ(l2)δ2m
hold. Then, problem (1.3) has at least one nontrivial positive

solution.

Proof. Let r be defined by (H5). By the inequality of (H6), there exists a constant
T > δr > 0 such that

min
n∈N(l1, l2)

f(n, x) ≥ 1

vθ(l2)δ2m
x, ∀ x ≥ T.
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Hence, f(n, x) ≥ 1
vθ(l2)δ2m

x, for any x ≥ T and n ∈ N(l1, l2).

Let R = max{2r, T
δ }, and define the open sets

Ω1 = {x ∈ X : ‖x‖ < r}, Ω2 = {x ∈ X : ‖x‖ < R}.

For any x ∈ ∂Ω1 ∩ P , from (H4) and (H5), we obtain the following estimates

vθ(n)|Ax(n)| ≤M1 +M2‖x‖s = M1 +M2r
s < r.

Passing to the supremum over n, we infer

‖Ax‖ ≤ ‖x‖, ∀ x ∈ ∂Ω1 ∩ P. (4.1)

Since 0 < δ < 1, it follows that for any x ∈ ∂Ω2 ∩ P, min
n∈N(l1, l2)

x(n) ≥ δ‖x‖ = δR

≥ T . From (H6), for n ∈ N(l1, l2), we can get

vθ(n)Ax(n) =
∞∑
i=1

vθ(n)G(n, i)f(i, x(i))

≥ vθ(n)

l2∑
i=l1

G(i, i)v(i)δ2
1

mvθ(l2)δ2
‖x‖

≥ 1

mvθ(l2)
vθ(l2)

l2∑
i=l1

G(i, i)v(i)‖x‖

= ‖x‖.

Therefore, ‖Ax‖ ≥ ‖x‖, ∀ x ∈ ∂Ω2 ∩ P. Hence, the operator A has a fixed point
x ∈ (Ω2 \ Ω1) ∩ P . That is, problem (1.3) has a positive solution x satisfying

r ≤ ‖x‖ ≤ R.

The following result deals with the sublinear polynomial growth case, and can
be proved in a similar argument. We omit the proof.

Theorem 4.2. Let s < 1 and assume that (H1)-(H5) and (H7) lim inf
x→0

min
n∈N(l1, l2)

f(n, x)
x ≥ 1

vθ(l2)δ2m
hold. Then, problem (1.3) has at least one nontrivial positive

solution.

Remark 4.1. In the case p(·) ≡ p0, q(·) ≡ q0, problem (1.3) was discussed in [14]
by the fixed-point theorem in Fréchet space. Theorem 4.1 and Theorem 4.2 give a
new results of the existence of positive solutions for (1.3) by using the fixed-point
theorem in Banach space.

Finally, we prove the existence of two nontrivial positive solutions for problem
(1.3) in the superlinear case.

Theorem 4.3. Assume that s > 1, (H1)-(H5) and (H8) lim inf
x→0

min
n∈N(l1, l2)

f(n, x)
x =

lim inf
x→+∞

min
n∈N(l1, l2)

f(n, x)
x = +∞ hold. Then, problem (1.3) has at least two positive

solutions x1 and x2 in P such that 0 < ‖x1‖ < r < ‖x2‖.



674 Y. Lu & R. Wang

Proof. Consider the open set Ω1 = {x ∈ X : ‖x‖ < r}, where r is as introduced
in (H5). As in the proof of Theorem 4.1, we can check

‖Ax‖ ≤ ‖x‖, ∀ x ∈ ∂Ω1 ∩ P. (4.2)

Let the constant

M3 :=
1

δ2vθ(n0)m
for some n0 ∈ N(l1, l2). (4.3)

(a) The condition lim inf
x→+∞

min
n∈N(l1, l2)

f(n, x)
x = +∞ implies that there exists some

r0 > 0 such that

f(n, x) ≥M3x, for n ∈ N(l1, l2) and x ≥ r0.

Consider the open set Ω2 = {x ∈ X : ‖x‖ < R}, where R = max{2r, r0
δ }. Then,

for any x ∈ ∂Ω2 ∩ P, x(n) ≥ δ‖x‖ = δR ≥ r0, n ∈ N(l1, l2). Let n0 ∈ N(l1, l2), it
follows that

vθ(n0)Ax(n0) =

∞∑
i=1

vθ(n0)G(n0, i)f(i, x(i))

≥ vθ(n0)

l2∑
i=l1

G(i, i)v(i)δ2M3‖x‖

≥M3δ
2vθ(n0)

l2∑
i=l1

G(i, i)v(i)‖x‖

≥ ‖x‖.

Hence,

‖Ax‖ ≥ ‖x‖, ∀ x ∈ ∂Ω2 ∩ P. (4.4)

(b) From lim inf
x→0

min
n∈N(l1, l2)

f(n, x)
x = ∞ in (H8), we infer that, for the constant

M3 in (4.3), there exists r1 > 0 such that

f(n, x) ≥M3x, for n ∈ N(l1, l2) and 0 ≤ x ≤ r1.

Let L = min{r1vθ(l2), r2} and Ω3 = {x ∈ X : ‖x‖ < L}. For any x2 ∈ ∂Ω3 ∩ P , we
have x(n)vθ(n) ≤ L, ∀ n ∈ N0. Hence, x(n)vθ(n) ≤ L, ∀ n ∈ N(l1, l2). Therefore,
x(n) ≤ v−θ(l2)L ≤ r1, ∀ n ∈ N(l1, l2). Proceeding as in part (a), we can prove

‖Ax‖ ≥ ‖x‖, ∀ x ∈ ∂Ω3 ∩ P. (4.5)

By (4.2),(4.4) and (4.5), together with the fact L < r < R, Lemma 3.5 implies
that the operator A has two fixed points in the cone P , x1 ∈ Ω̄1\Ω3 and x2 ∈ Ω̄2\Ω1

such that 0 < L ≤ ‖x1‖ < r < ‖x2‖ ≤ R. Clearly, x1 and x2 are nontrivial positive
solutions of problem (1.3).

Finally, we give some examples to illustrate the main results.
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Example 4.1. Let us consider the nonlinear boundary value problem∆2x(n− 1)− sin π
(n+1)2 ∆x(n− 1)− (1− 1

(n+1)2 )x(n− 1) + f(n, x) = 0,

x(0)− 1
2∆x(0) = 0, lim

n→∞
x(n) = 0,

(4.6)

where p(n) = sin π
(n+1)2 ∈ (0,

√
2
2 ], q(n) = 1 − 1

(n+1)2 ∈ [ 34 , 1) satisfy (H1)-(H3),

f(n, x(n)) = 1
n2 + 2

n3+3x
5 is continuous about x. It is easy to verify that f satisfies

(H4)-(H5), and lim inf
x→+∞

min
n∈N(l1, l2)

f(n, x)
x = lim inf

x→+∞
min

n∈N(l1, l2)
[ 1
xn2 + 2

n3+3x
4] = ∞

implies that (H6) holds. Thus, from Theorem 4.1, problem (4.6) has at least one
positive solution.

Example 4.2. Let us consider the nonlinear boundary value problem∆2x(n− 1)− (1− cos π
n+1 )∆x(n− 1)− n3+3n2+3

(n+1)3 x(n− 1) + 1
n2+4n+4 + 1

n3x
1
2 = 0,

1
4x(0)− 3∆x(0) = 0, lim

n→∞
x(n) = 0,

where p(n) = 1−cos π
n+1 ∈ (0, 1], q(n) = n3+3n2+3

(n+1)3 = 1− 1
(n+1)3 ∈ [ 78 , 1) satisfy (H1)-

(H3). Notice that f(n, x) = 1
n2+4n+4 + 1

n3x
1
2 is continuous on N×R+, and (H4)-(H5)

are true. Since lim inf
x→0

min
n∈N(l1, l2)

f(n, x)
x = lim inf

x→0
min

n∈N(l1, l2)
[ 1
(n2+4n+4)x + 1

n3x
− 1

2 ] =

∞, it follows that (H7) is true. Thus, from Theorem 4.2, this problem has at least
one positive solution.

Example 4.3. The nonlinear boundary value problem∆2x(n− 1)− sin π
(n+1)2 ∆x(n− 1)− (1− 1

(n+1)2 )x(n− 1) + 1
n2 + 2

n3+3x
4 = 0,

x(0)− 1
2∆x(0) = 0, lim

n→∞
x(n) = 0,

where p(n) = sin π
(n+1)2 ∈ (0,

√
2
2 ], q(n) = 1− 1

(n+1)2 ∈ [ 34 , 1) satisfy (H1)-(H3), and

f(n, x(n)) = 1
n2 + 2

n3+3x
4 is continuous about x and (H4)-(H5) hold. It is easy to

see lim inf
x→0

min
n∈N(l1, l2)

1
xn2 + 2

n3+3x
3 = lim inf

x→+∞
min

n∈N(l1, l2)

1
xn2 + 2

n3+3x
3 = +∞, which

means that (H8) holds. Hence, from Theorem 4.3, this problem has at least two
positive solutions.
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