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Dynamic Analysis of Stochastic Spruce Budworm
Differential Model with Time Delay∗
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Abstract In this paper, we consider a stochastic spruce budworm differential
model with time delay. Based on the nonnegative initial conditions, the exis-
tence and uniqueness of the global positive solution are easily found. Then, we
obtain the ultimate boundedness of solution in mean under the same condi-
tions. Furthermore, we verify that the sample Lyapunov exponent of solution
is less than a positive constant. Finally, numerical examples are presented to
show the consistency of the theoretical results.
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1. Introduction

The spruce budworm, found in spruce-fir forests in the United States and eastern
Canada, is one of the most destructive insect species. On the basis of [3], its periodic
outbreaks may result in the loss of large amounts of food and natural resources.
According to records from the United States and Canada in [12], spruce budworm
outbreaks have occurred approximately every 40 years since the 18th century, each
lasting about 10 years and causing enormous damage to forest resources. In [2,
7], Canadian scholars Ludwing et al., and Dwyer et al., established the following
classical spruce budworm model

du(t) =

[
ru(t)(1− u(t)

K
)− Bu2(t)

A+ u2(t)

]
dt, (1.1)

where u(t) represents the density of spruce budworm population at time t, r > 0
represents the population growth rate, and K represents the environmental carrying
capacity. B > 0 is the predation rate of predators or parasites of u, and A > 0
means the saturate effect of the predators or parasites at the high density of u.
In [17], Wang and Yeh investigated the bifurcation of model (1.1) with reaction
diffusion.
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The spruce budworm generally completes its life-cycle within one year in [13],
and can be divided into four stages: egg, larva, cocoon and adult, among which the
larva can be divided into six juvenile stages. From an egg to the second juvenile
stage, it accounts for about three quarters of the entire reproductive cycle. During
this period, there is almost no activity of aphids, and birds mainly prey on the
budworm after this period of time. In 2008, Vaidya and Wu in [15] treated the egg
to the second instar larvae as immature stage and a time-delay differential equation
with age structure, for the adult spruce budworm was established. The spruce
budworm model with time delay can be described as follows

du(t) = [−ru(t) + βe−cτu(t− τ)e−αu(t−τ) − Bu2(t)

A2 + u2(t)
]dt (1.2)

with initial conditions

u(s) = ρ(s) for s ∈ [−τ, 0], ρ ∈ C([−τ, 0], R+). (1.3)

Here, R+ = [0,+∞), u(t) represents the density of adult spruce budworm, r > 0 is
the average mortality of adult budworm, B > 0 is the predation rate of birds, and
A > 0 indicates the population density of spruce budworm when the predation rate
reaches a half of the maximum. τ > 0 is the time taken from birth to maturity.
c > 0 is the average mortality of spruce budworm larvae. b(u) = βue−αu represents
the birth function of spruce budworm and β, α > 0.

Nevertheless, in the natural world, the spruce budworm model is inevitably
more or less influenced by environment noises. In [10], May proposed that param-
eters in the system like environmental capacity and population growth rate had
exhibited random fluctuations due to environmental noises. Many scholars have
studied population behavior with random disturbances. For example, Peng and
Zhang studied the stochastic predator-prey model with non-constant mortality rate
in [11]. In [6], Liu and Zhu studied the stability of a budworm growth model with
stochastic perturbation. Moreover, Song et al., [14] explored the dynamical behav-
ior of stochastic Beddington-DeAngelis predator-prey model with distributed delay.
Therefore, in [1,16], the delayed differential equations of stochastic spruce budworm
are more suitable to model the data of (1.2). We assume that the average mortality
r is disturbed with r → r − σdB(t), B(t) is one-dimensional Brownian motion
with B(0) = 0 defined on a complete probability space (Ω, {Ft}t≥0, P ), and σ2 is
the intensity of the noise. In addition, consider c = 0, so that the mortality of
spruce budworm larvae is 0. Then, we get the following stochastic function

du(t) =

[
−ru(t) + βu(t− τ)e−αu(t−τ) − Bu2(t)

A2 + u2(t)

]
dt+ σu(t)dB(t). (1.4)

This article focuses on the following aspects. In Section 2, we provide pre-
liminaries results. In Section 3, some properties of (1.4), such as the existence
and uniqueness global positive solution of (1.4) with initial values (1.3), ultimate
boundedness and the sample Lyapunov exponent of (1.4), are given. Examples and
numerical simulations are carried out to support the results in Section 4. Finally,
we briefly summarize the work of this paper.
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2. Preliminaries

Definition 2.1. System (1.4) is said to be ultimate bounded in mean, if there is a
positive constant M independent of the initial conditions (1.3) such that

lim sup
t→+∞

E|x(t)| ≤M.

Lemma 2.1. For any initial value u(0), system (1.4) has a unique local positive
solution solution x(t), t ∈ [−τ, τe), where τe is explosion time.

Proof. Defining a function f(t) such that f(t) = lnu(t), by Itô’s formula, we
consider the group of equationsdf(t) = d lnu(t) =

[
−ref(t) − σ2

2
+ βef(t−τ)e−αe

f(t−τ)
− Be2f(t)

A2 + e2f(t)

]
dt+ σdB(t)

f(s) = ln ρ(s) for s ∈ [−τ, 0], ρ ∈ C([−τ, 0], R+).
(2.1)

Since the coefficients of (1.4) satisfy the locally Lipschitz condition, there is a unique max
local solution u(t) on [−τ, τe) for any given initial value, and τe is called explosion time.
We get u(t) = ef(t), which is the unique local positive solution to system (1.4) with initial
value (1.3).

3. Main results

3.1. Existence and uniqueness of the global positive solution

Theorem 3.1. If r > σ2

2 , then for any initial value u0 ∈ R+, system (1.4) has a
unique global positive solution u(t) for t ∈ [−τ,+∞).

Proof. By Lemma 2.1, to show the solution is global, we only need to prove that

τe =∞ a.s. Let k0 > 0 be sufficient large such that u0 ∈
[

1
k0
, k0

]
, for each integer

k ≥ k0, define the stoping time

τk = inf

{
t ∈ [−τ, τe) : minu(t) ≤ 1

k
or maxu(t) ≥ k

}
,

and we set inf ∅ = ∞ (∅ denotes the empty set). Obviously, τk is increasing as
k → ∞. Let τ∞ = lim

k→∞
τk and τ∞ ≤ τe, a.s. If we can prove τ∞ = ∞ a.s., then

τe =∞ a.s., for all t ≥ 0.

If the statement is false, then there are constants T ≥ 0 and ε ∈ (0, 1), and
∃k1 ≥ k0, k1 is an integer. Therefore,

P (τk ≤ T ) ≥ ε for all k ≥ k1.

Define a C2-function V (u) = u − 1 − lnu + u2. The positiveness of V (u) is
confirmed by u− 1− lnu+ u2 > 0, for all u > 0.

By Itô’s formula, we have

dV (u) = LV (u)dt+ (σu(t)− σ + 2σu2(t))dB(t),
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where

LV (u) =

(
1− 1

u(t)
+ 2u(t)

)(
−ru(t)− Bu2(t)

A2 + u2(t)
+ βu(t− τ)e−αu(t−τ)

)
+

1

2

(
1

u2(t)
+ 2

)
σ2u2(t)

≤σ
2

2
+ r +

Bu(t)

A2 + u2(t)
− 2ru2(t) +

β

eα
+

2βu(t)

eα
+ σ2u2(t)

≤σ
2

2
+ r +

B

2A
+

β

eα
+

2u(t)β

eα
− 2ru2(t) + σ2u2(t).

(3.1)

Taking −(2r − σ2)u2(t) + 2β
αeu(t) ≤ β2

α2e2(2r−σ2) leads to

LV (u) ≤ σ2

2
+ r +

B

2
√
A

+
β

αe
+

β2

α2e2(2r − σ2)
≤M. (3.2)

Combining (3.1) and (3.2), we can obtain

dV (u) ≤Mdt+ (σu(t)− σ + 2σu2(t))dB(t). (3.3)

Integrating both sides of (3.1) from 0 to τk ∧ T and then taking the expectations
yield

EV (t) ≤ E
∫ τk∧T

0

Mdt+ EV (u(0)) ≤MT + EV (u(0)).

Let Ωk = τk ≤ T , we have P (Ωk) ≥ ε. Therefore, for every ω ∈ Ωk, there is at
least one of the x(τk, ω) equaling either k or 1

k . Note that V (x(τk)) is no less than

(k − 1− ln k) ∧ ( 1
k − 1− ln 1

k ). Consequently,

∞ > MT + E(V (0)) ≥ E(V (u)) ≥ E(1Ωk(ω), V (uk)) ≥ ε(k − 1− ln k) ∧
(

1

k
− 1− ln

1

k

)
,

where 1Ωk(ω) is the indicator function of ωk. Taking k →∞, we can induce ε(k−1−
ln k)∧

(
1
k − 1− ln 1

k

)
→ +∞, which is a contradiction. Hence, we can get τ∞ =∞.

Now, the conclusion has been confirmed.

3.2. Ultimately bounded in mean

Theorem 3.2. Let r > σ2

2 hold, and the global solution of x(t) has the properties

lim
t→+∞

Eu(t) ≤ β

reα
and lim sup

t→+∞

1

t

∫ t

0

Eu2(s)ds ≤ 4β2

α2e2(2r − σ2)2
.

From Definition 2.1, system (1.4) is ultimately bounded in mean.

Proof. From the inequality supu∈R ue
−u = 1

e , we can derive

du(t) ≤
[
−ru(t)− Bu2(t)

A2 + u2(t)
+

β

eα

]
dt+ u(t)σdB(t).
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Making use of the Itô’s formula, we have

d(ertu(t)) ≤ rertu(t)dt− rertu(t)dt− ert Bu2(t)

A2 + u2(t)
dt+ ert

β

eα
dt+ ertσu(t)dB(t)

≤ β

eα
ertdt+ ertσu(t)dB(t).

(3.4)

Integrating it from 0 to t on both sides of (3.4) and then taking the expectations,
it follows from that

ertEu(t) ≤ u(0) +

∫ t

0

β

eα
ersds = u(0) +

β

reα
(ert − 1).

This implies lim supt→∞Eu(t) ≤ β
reα .

Taking Itô’s formula again results in

du2(t) =

[
2u(t)(−ru(t)− Bu2(t)

A2 + u2(t)
+ βu(t− τ)e−u(t−τ)α)

]
dt+ 2u2(t)σdB(t)

≤
[
−(2r − σ2)u2(t) +

2u(t)β

eα

]
dt+ 2u2(t)σdB(t).

(3.5)

Integrating from 0 to t on both sides of (3.5) and then taking the expectations, it
follows from that

0 ≤ Eu2(t) ≤ u2(0) +

∫ t

0

E

[
−2r − σ2u2(t) +

2βu(t)

eα

]
dt. (3.6)

Combining (3.5) and (3.6), we get

(r − σ2

2
)u2(t) +

2u(t)β

eα
≤ 2β2

(2r − σ2)
. (3.7)

Obviously, we have

(r − σ2

2
)

∫ t

0

Eu2(s)ds ≤ u2(0) +
2β2

(2r − σ2)
.

That is,

lim sup
t→+∞

1

t

∫ t

0

Eu2(s)ds ≤ 4β2

α2e2(2r − σ2)2
.

Now, the result has been confirmed.

3.3. The sample Lyapunov exponent

Theorem 3.3. Let u(t) be the positive solution of system (1.4) with the initial value
u(0) ∈ R+, then the sample Lyapunov exponent of the solution of (1.4) should not

be greater than N
2 with the condition r > σ2

2 . That is,

lim sup
t→∞

lnu(t)

t
≤ N

2
, a.s.
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Proof. Using Itô’s formula, we can obtain the following inequality

ln(1 + u2(t)) ≤ ln(1 + u2(0)) +

∫ t

0

1

1 + u2(s)

[
−2ru2(s) + 2

β

αe
u(s)

]
ds

+

∫ t

0

σ2u2(s)
1− u2(s)

(1 + u2(s))2
d + 2

∫ t

0

σ2u2(s)

1 + u2(s)
dB(s)

= ln(1 + u2(0)) +

∫ t

0

1

1 + u2(s)

[
−(2r − σ2)u2(s) + 2

β

αe
u(s)

]
ds

−
∫ t

0

σ2u2(s)
u2(s)

(1 + u2(s))2
ds+ 2

∫ t

0

σu2(s)

1 + u2(s)
dB(s).

On the one hand, using the exponential martingale inequality in [9], we have

P

{
sup

0≤t≤n

[
2

∫ t

0

σu2(s)

1 + u2(s)
dB(s)−

∫ t

0

σ2u4(s)

(1 + u2(s))2
ds

]
> 2 lnn

}
≤ 1

n2
, n ≥ 0.

According to the Borel-Cantelli lemma, it yields that for almost all ω ∈ Ω, and
there is a random integer n0 = n0(ω) ≥ 1 such that

sup
0≤t≤n

[
2

∫ t

0

σ2u2(s)

1 + u2(s)
dB(s)−

∫ t

0

σ2u4(s)

(1 + u2(s))2
ds

]
≤ 2 lnn, n ≥ n0.

That is, 2
∫ t

0
σ2u2(s)
1+u2(s)dB(s) ≤

∫ t
0

σ2u4(s)
(1+u2(s))2 ds + 2 lnn, for all 0 ≤ t ≤ n, n ≥ n0 is

almost for sure.

On the other hand, −(2r − σ2)u2(s) + 2 β
αeu(s) ≤ N(1 + u2(s)) and −(2r −

σ2)u2(s) + 2 β
αeu(s) ≤ β2

α2e2(2r−σ2) , where N = min{ β2

α2e2(2r−σ2) ,
β
αe}.

Combining the above conditions, we can obtain the following conclusion

ln(1 + u2(s)) ≤ ln(1 + u2(0)) +Nt+ 2 lnn, 0 ≤ t ≤ n, n ≥ n0 a.s.

This implies

1

t
ln(1 + u2(t)) ≤ 1

n− 1

[
ln(1 + u2(0)) +Nn+ 2 lnn

]
.

Therefore, we get the sample Lyapunov exponent of system (1.4),

lim sup
t→∞

1

t
lnu(t) ≤ lim sup

t→∞

1

2t
≤ lim sup

t→∞

1

2(n− 1)

[
ln(1 + u2(0)) +Nn+ 2 lnn

]
=
N

2
.

(3.8)

Now, the conclusion has been confirmed.

4. Numerical simulation

In this section, we will carry out some numerical simulations for system to illustrate
our main result.
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Figure 1. The trajectories of (1.4) for initial value 1.5, 2, 4 without white noise
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Figure 2. The trajectories of (1.4) for initial value 1.5, 2, 4 with white noise

Example 4.1. Combining the data in [15], letting r = 0.19, A = 139496, B =

105700, β = 194594, τ = 1, α = 11.857, σ = 0.5 and r > σ2

2 hold, we can obtain
the following stochastic spruce budworm delayed equation: du(t) = [−0.19u(t) −
105700u2(t)

139496+u2(t) +u(t−1)e−11.857u(t−1)]dt+0.5u(t)dB(t), with initial values u1(0) = 1.5,

u2(0) = 2, u3(0) = 4. According to Milstein’s numerical method [4], the overcome
is illustrated by the numerical simulation in Figure 2. We can clearly see that the
images of the solutions with three different initial values gradually approach a fixed
range and are always positive. Figure 1 shows the change in population size without
white noise. In contrast to Figure 1, the change in spruce budworm population is
no longer smooth after the addition of random perturbation factors.
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5. Conclusion

In this paper, we have studied and explored the stochastic spruce budworm growth

model with time delay. We show that when r > σ2

2 , the equation has a unique and
global positive solution with ultimate boundedness in mean. In addition, we have
estimated the sample Lyapunov exponent of (1.4). Throughout the paper, it can
be seen that white noise affects many properties of the spruce budworm model.
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