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Abstract In this paper, we investigate the existence of triple positive solu-
tions of boundary value problems for high-order fractional differential equation
at resonance with singularities by using the fixed point index theory and the
Leggett-Williams theorem. The spectral theory and some new height functions
are also employed to establish the existence of triple positive solutions. The
nonlinearity involved is arbitrary fractional derivative, and permits singularity.
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1. Introduction

In this paper, we consider the following boundary value problem for high-order
fractional differential equation (FBVP for short) at resonance{
Dα

0+x(t) + f(t, x(t), Dβ
0+x(t)) = 0, 0 < t < 1,

x(0) = x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, Dβ
0+x(1) = λ

∫ η
0
m(t)Dβ

0+x(t)dt,

(1.1)
where Dα

0+ is the standard Riemann-Liouville derivative, m ∈ L[0, 1] is nonnegative
and may be singular at t = 0 and t = 1, n − 1 < α < n, n ≥ 3, α − (n − 1) >
β > 0, 0 < η ≤ 1, λ

∫ η
0
m(t)tα−β−1dt = 1, and the nonlinearity f(t, x, y) permits

singularities at t = 0, 1 and x = y = 0.
We note that (1.1) happens to be at resonance in the case that the corresponding

homogeneous boundary value problem{
Dα

0+x(t) = 0, 0 < t < 1,

x(0) = x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, Dβ
0+x(1) = λ

∫ η
0
m(t)Dβ

0+x(t)dt,

(1.2)
has a solution ctα−1, c ∈ R, c 6= 0, as a nontrivial solution. That is, the derivative
operator in the boundary value problem is not invertible.
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The research on the boundary value problem of fractional differential equation is
mainly carried out to extend some effective methods in integer differential equation
such as special function method, Laplace transform, Fourier transform, iterative
method, operator calculus, combination method and fixed point theorem (see [3,
13, 18, 22]). The main results focus on the linear non-resonant boundary value
problem (see [1, 21, 23–27]). The study on the resonant boundary value problem is
not perfect.

The resonant boundary value problem is that the homogeneous problem corre-
sponding to the equation has a nontrivial solution. That is to say, the derivative
operator in the boundary value problem is not invertible. Boundary value problem
at resonance, as a kind of special boundary value problem in differential equations,
has a very wide application prospect in the fields of celestial mechanics, aerody-
namics, material mechanics, fluid mechanics and so on (see [2, 6, 9, 12,16]).

For integer-order boundary value problems at resonance, the methods used by
researchers generally include topological degree theory, Mawhin’s overlap degree
theorem, fixed point theorem, critical point theorem, function analysis theory, phase
plane analysis method and so on (see [4,5,7,10,17,20]). Compared with the bound-
ary value problem of integer-order differential equations at resonance, the study of
fractional order started late. The first one was Kosmatov’s application of Mawhin’s
continuity theorem to study the following fractional-order three-point boundary
value problem at resonance (see [8]){

Dα
0+u(t) = f(t, u(t), u′(t)) = 0, 0 < t < 1,

Dα−2
0+ u(0) = 0, ηu(ξ) = u(1).

In most cases of the real life, it is necessary to solve the positive solution of the
differential equation under the boundary value conditions, which requires sufficient
theoretical proof. For the boundary value problems of integer or fractional-order
differential equations at resonance, it is not difficult to find that no matter using
Mawhin’s overlap degree theorem or generalized continuity theorem by Professor
Ge, we can only obtain the existence of solutions, but cannot guarantee the existence
of positive solutions. The study on the positive solution of boundary value problems
for fractional-order differential equations at resonance has only been paid attention
to by researchers in the recent years. There are only a few pieces of literature
(see [5, 8, 14, 15, 17, 20]). Yang and Wang applied Leggett-Williams fixed point
theorem to study the result that the fractional boundary value problem at resonance
has at least one positive solution (see [19]){

Dα
0+u(t) = f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, ηu′(0) = u′(1).

As far as we know, triple positive solutions of boundary value problems for
high-order fractional differential equation at resonance with singularities has not
been considered. Inspired by the work above, we aim to fill this gap. This paper
is organized as follows. First, we reduce non-perturbed boundary value problems
at resonance to the equivalent non-resonant perturbed problems with the same
boundary conditions. Then, we derive the Green’s function and corresponding
properties. Finally, the existence of triple positive solutions is obtained by using
the Leggett-Williams theorem and the fixed point index theory.
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2. Illustration of proof

Figure 1. Illustration of proof

3. Preliminaries

In this section, we present some preliminaries and lemmas that will be used in this
paper.

Let Dβ
0+x(t) = y(t). By the method of [15], it is easy to see that (1.1) is

equivalent to{
Dα−β

0+ y(t) + f(t, Iβ0+y(t), y(t)) = 0, 0 < t < 1,

Iβ0+y(0) = D1−β
0+ y(0) = D2−β

0+ y(0) = · · · = Dn−2−β
0+ y(0) = 0, y(1) = λ

∫ η
0
m(t)y(t)dt.

(3.1)

Let

g(τ) =

+∞∑
j=0

[(j + 1)(α− β)− n+ 1][(j + 1)(α− β)− n]τ j

Γ((j + 1)(α− β))
.

It is easy to get g′(τ) > 0 on (0,+∞) and

g(0) =
(α− β − n+ 1)(α− β − n)

Γ(α− β)
< 0, lim

τ→+∞
g(τ) = +∞.

Therefore, there exists a unique root τ∗ > 0 such that

g(τ∗) = 0.

Obviously, the resonant FBVP (3.1) is equivalent to the FBVP{
−Dα−β

0+ y(t) + τy(t) = f(t, Iβ0+y(t), y(t)) + τy(t), 0 < t < 1,

Iβ0+y(0) = D1−β
0+ y(0) = D2−β

0+ y(0) = · · · = Dn−2−β
0+ y(0) = 0, y(1) = λ

∫ η
0
m(t)y(t)dt.

(3.2)

In this paper, we list the following assumptions.

(H1) τ ∈ (0, τ∗] is a constant.

(H2) f is continuous on (0, 1)× (0,+∞)× (0,+∞).
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For the sake of convenience, we use the notations

G(t) =

+∞∑
j=0

τ jt(j+1)(α−β)−1

Γ((j + 1)(α− β))
,

K(t, s) =
1

G(1)

{
G(t)G(1− s), 0 ≤ t ≤ s ≤ 1,

G(t)G(1− s)−G(t− s)G(1), 0 ≤ s ≤ t ≤ 1,

H(t, s) = K(t, s) +
λG(t)

∫ η
0
m(t)K(t, s)dt

G(1)− λ
∫ η

0
m(t)G(t)dt

.

Lemma 3.1. Assume h ∈ L[0, 1]. Then, the unique solution of the problem{
−Dα−β

0+ y(t) + τy(t) = h(t), 0 < t < 1,

Iβ0+y(0) = D1−β
0+ y(0) = D2−β

0+ y(0) = · · · = Dn−2−β
0+ y(0) = 0, y(1) = λ

∫ η
0
m(t)y(t)dt,

(3.3)

can be expressed by

y(t) =

∫ 1

0

H(t, s)h(s)ds.

Proof. By [7,11], the solution of (3.3) can be expressed by

y(t) = −
∫ t

0

G(t− s)h(s)ds+ c1G(t) + c2G
′(t) + · · ·+ cnG

(n−1)(t).

By Iβ0+y(0) = D1−β
0+ y(0) = D2−β

0+ y(0) = · · · = Dn−2−β
0+ y(0) = 0, we have c2 = c3 =

· · · = cn = 0.

Then, we get

y(t) = −
∫ t

0

G(t− s)h(s)ds+ c1G(t),

y(1) = −
∫ 1

0

G(1− s)h(s)ds+ c1G(1).

By y(1) = λ
∫ η

0
m(t)y(t)dt, we obtain

c1 =

∫ 1

0
G(1− s)h(s)ds− λ

∫ η
0
m(t)

∫ t
0
G(t− s)h(s)dsdt

G(1)− λ
∫ η

0
m(t)G(t)dt

.

Therefore, the solution of (3.3) is

y(t)

= −
∫ t

0

G(t− s)h(s)ds+

∫ 1

0
G(1− s)h(s)ds− λ

∫ η
0
m(t)

∫ t
0
G(t− s)h(s)dsdt

G(1)− λ
∫ η

0
m(t)G(t)dt

G(t)

=

∫ 1

0
G(t)G(1− s)h(s)ds−

∫ t
0
G(t− s)G(1)h(s)ds

G(1)
−

∫ 1

0
G(t)G(1− s)h(s)ds

G(1)

+

∫ 1

0
G(1− s)h(s)ds

G(1)− λ
∫ η

0
m(t)G(t)dt

G(t)−
λ
∫ η

0
m(t)

∫ t
0
G(t− s)h(s)dsdt

G(1)− λ
∫ η

0
m(t)G(t)dt

G(t)
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=

∫ 1

0

K(t, s)h(s)ds+
λ
∫ η

0
m(t)

∫ 1

0
G(t)G(1− s)h(s)dsdt

G(1)[G(1)− λ
∫ η

0
m(t)G(t)dt]

G(t)

−
λ
∫ η

0
m(t)

∫ t
0
G(t− s)G(1)h(s)dsdt

G(1)[G(1)− λ
∫ η

0
m(t)G(t)dt]

G(t)

=

∫ 1

0

K(t, s)h(s)ds+
λ
∫ η

0
m(t)

∫ 1

0
K(t, s)h(s)dsdt

G(1)− λ
∫ η

0
m(t)G(t)dt

G(t)

=

∫ 1

0

H(t, s)h(s)ds.

(3.4)

This completes the proof.

Lemma 3.2. Let s∗ ∈ (0, 1) such that s∗ = (1− s∗)α−β−2. Then, K(t, s) satisfies

(1) K(t, s) ≥ ρ1s(1− s)α−β−1(1− t)tα−β−1, ∀t, s ∈ [0, 1];

(2) K(t, s) ≤ ρ2s(1− s)α−β−1, ∀t, s ∈ [0, 1], where

ρ1 =
1

G(1)[Γ(α− β)]2
, ρ2 =

[G′(1)]2

G(1)s∗
.

Proof. For t ∈ [0, 1], it is easy to check

G(t) =

+∞∑
j=0

τ jt(j+1)(α−β)−1

Γ((j + 1)(α− β))
=

tα−β−1

Γ(α− β)
+

+∞∑
j=1

τ jt(j+1)(α−β)−1

Γ((j + 1)(α− β))
≥ tα−β−1

Γ(α− β)

(3.5)
and

G(t) =

+∞∑
j=0

τ jt(j+1)(α−β)−1

Γ((j + 1)(α− β))
≤ tα−β−1

+∞∑
j=0

τ j

Γ((j + 1)(α− β))
= tα−β−1G(1).

(3.6)
By direct calculation, we have

G(1) < G′(1). (3.7)

Case (i): 0 ≤ t ≤ s ≤ 1.
By (3.5), we get

K(t, s) =
G(t)G(1− s)

G(1)
≥ tα−β−1(1− s)α−β−1

G(1)[Γ(α− β)]2
≥ s(1− s)α−β−1(1− t)tα−β−1

G(1)[Γ(α− β)]2
.

By (3.6) and (3.7), we obtain

K(t, s) =
G(t)G(1− s)

G(1)
≤ tα−β−1(1− s)α−β−1G(1) ≤ [G′(1)]2

G(1)s∗
s(1− s)α−β−1.

Case (ii): 0 ≤ s ≤ t ≤ 1.
Let

G(t) = tn−2G1(t), G1(t) =

+∞∑
j=0

τ jt(j+1)(α−β)−n+1

Γ((j + 1)(α− β))
.
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It is easy to get

G′1(t) =

+∞∑
j=0

[(j + 1)(α− β)− n+ 1]τ jt(j+1)(α−β)−n

Γ((j + 1)(α− β))
> 0,

G′′1(t) = t(j+1)(α−β)−n−1g(τ) ≤ t(j+1)(α−β)−n−1g(τ∗) = 0.

Therefore,

∂

∂s
[G1(t)G1(1− s)−G1(t− s)G1(1)]

= −G1(t)G′1(1− s) +G′1(t− s)G1(1)

≥ G′1(1− s)[G1(1)−G1(t)].

(3.8)

Integrating (3.8) with respect to s, we get

G1(t)G1(1− s)−G1(t− s)G1(1)

≥
∫ s

0

G′1(1− s)[G1(1)−G1(t)]

= [G1(1)−G1(1− s)][G1(1)−G1(t)] > 0,

which implies
G1(t)G1(1− s) ≥ G1(t− s)G1(1). (3.9)

Then, by (3.5) and (3.9), we have

K(t, s) =
G(t)G(1− s)−G(t− s)G(1)

G(1)

=
tn−2(1− s)n−2G1(t)G1(1− s)− (t− s)n−2G1(t− s)G1(1)

G(1)

≥ [tn−2(1− s)n−2 − (t− s)n−2]G1(t)G1(1− s)
G(1)

≥ [t(1− s)− (t− s)]tn−3(1− s)n−3G1(t)G1(1− s)
G(1)

≥ s(1− t)tn−3(1− s)n−3tα−β−n+1(1− s)α−β−n+1

G(1)[Γ(α− β)]2

≥ s(1− s)α−β−1(1− t)tα−β−1

G(1)[Γ(α− β)]2
.

Noticing that G′(t) is nondecreasing on [0, 1], then we can get

∂

∂s
K(t, s) =

−G(t)G′(1− s) +G′(t− s)G(1)

G(1)
≤ G′(1− s)[G(1)−G(t)]

G(1)
. (3.10)

Integrating (3.10) with respect to s, we have

K(t, s) ≤
∫ s

0

G′(1− s)[G(1)−G(t)]

G(1)
ds

=
[G(1)−G(1− s)][G(1)−G(t)]

G(1)

≤ [G′(1)]2s(1− s)
G(1)

.

(3.11)
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By (3.6) and (3.7), we obtain

K(t, s) ≤ G(t)G(1− s)
G(1)

≤ G(1)tα−β−1(1− s)α−β−1 < G′1(1)(1− s)α−β−1. (3.12)

Let s∗ be the unique root of the equation s = (1− s)α−β−2 on [0, 1]. Then,

min{s, (1− s)α−β−2} ≤ s(1− s)α−β−2

s∗
. (3.13)

Therefore, by (3.7) and (3.11)-(3.13), we get

K(t, s) ≤ min{ [G′(1)]2s(1− s)
G(1)

, G′(1)(1− s)α−β−1}

≤ min{s, (1− s)α−β−2} ×max{G
′(1)

G(1)
, 1} ×G′(1)(1− s)

≤ s(1− s)α−β−2

s∗
× G′(1)

G(1)
×G′(1)(1− s)

=
[G′(1)]2

G(1)s∗
s(1− s)α−β−1.

This completes the proof.

Lemma 3.3. The function H(t, s) satisfies
(1) H(t, s) ≥ ω1s(1− s)α−β−1tα−β−1, ∀t, s ∈ [0, 1];
(2) H(t, s) ≤ ω2s(1− s)α−β−1, ∀t, s ∈ [0, 1], where

ω1 =
ρ1(1− λ

∫ η
0
m(t)tα−βdt)

Γ(α− β)[G(1)− λ
∫ η

0
m(t)G(t)dt]

, ω2 = ρ2[1 +
λG(1)

∫ η
0
m(t)dt

G(1)− λ
∫ η

0
m(t)G(t)dt

].

Proof. Combining Lemma 3.2 with

tα−β−1

Γ(α− β)
≤ G(t) ≤ tα−β−1G(1) ≤ G(1),

we have

H(t, s) = K(t, s) +
λG(t)

∫ η
0
m(t)K(t, s)dt

G(1)− λ
∫ η

0
m(t)G(t)dt

≥
λtα−β−1

∫ η
0
m(t)ρ1s(1− s)α−β−1(1− t)tα−β−1dt

Γ(α− β)[G(1)− λ
∫ η

0
m(t)G(t)dt]

=
ρ1(1− λ

∫ η
0
m(t)tα−βdt)

Γ(α− β)[G(1)− λ
∫ η

0
m(t)G(t)dt]

s(1− s)α−β−1tα−β−1

and

H(t, s) = K(t, s) +
λG(t)

∫ η
0
m(t)K(t, s)dt

G(1)− λ
∫ η

0
m(t)G(t)dt

≤ ρ2s(1− s)α−β−1 +
λG(t)

∫ η
0
m(t)ρ2s(1− s)α−β−1dt

G(1)− λ
∫ η

0
m(t)G(t)dt

≤ ρ2[1 +
λG(1)

∫ η
0
m(t)dt

G(1)− λ
∫ η

0
m(t)G(t)dt

]s(1− s)α−β−1.
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This completes the proof.

Let E = C[0, 1] be the Banach space with the maximum norm ‖x‖ = max
0≤t≤1

|x(t)|.
Let

χ1(t) =
ω1Γ(α− β)

ω2Γ(α)
tα−1, χ2(t) =

ω1

ω2
tα−β−1.

Define a cone
P = {x ∈ E : x(t) ≥ χ2(t)‖x‖, t ∈ [0, 1]}.

Letting 0 < a < 1, we denote

χ∗ = min
t∈[a,1]

χ2(t), ϑ(x) = min
t∈[a,1]

x(t), x ∈ P.

Letting ∀R ≥ r > 0, we set

Pr = {x ∈ P : ‖x‖ < r},
P (ϑ, r,R) = {x ∈ P : r ≤ ϑ(x), ‖x‖ ≤ R},
P̊ (ϑ, r,R) = {x ∈ P : r < ϑ(x), ‖x‖ ≤ R}.

Define some height functions as follows

Φ(t, r, R) = max{f(t, x, y) + τy : rχ1(t) ≤ x ≤ Rtβ

Γ(β + 1)
, rχ2(t) ≤ y ≤ R},

φ1(t, r) = min{f(t, x, y) : rχ1(t) ≤ x ≤ rtβ

Γ(β + 1)
, rχ2(t) ≤ y ≤ r},

φ2(t, r, R) = min{f(t, x, y) + τy :
rtβ

Γ(β + 1)
≤ x ≤ Rtβ

Γ(β + 1)
, r ≤ y ≤ R}.

Lemma 3.4 ( [4]). Letting P be a cone in Banach space E, Ω be a bounded open
set in E and θ ∈ Ω, A : Ω ∩ P → P is a completely continuous operator.

(1) If ∃x0 ∈ P \ {θ} such that x − Ax 6= λx0, ∀λ ≥ 0, x ∈ ∂Ω ∩ P , then
i(A,Ω ∩ P, P ) = 0;

(2) If Ax 6= λx, ∀λ ≥ 1, x ∈ ∂Ω ∩ P , then i(A,Ω ∩ P, P ) = 1.

Lemma 3.5 ( [10]). Let A : Kr3 → P be a completely continuous operator. If there
exist a concave positive functional ϑ with ϑ(x) ≤ ‖x‖ (x ∈ P ) and the numbers
r3 ≥ r2 > r1 > 0 satisfying the following conditions

(1) P̊ (ϑ, r1, r2) 6= ∅ and ϑ(Ax) > r1, if x ∈ P (ϑ, r1, r2);
(2) Ax ∈ Kr3 , if x ∈ P (ϑ, r1, r3);
(3) ϑ(Ax) > r1 for all x ∈ P (ϑ, r1, r3) with ‖Ax‖ > r2. Then, i(A, P̊ (ϑ, r1, r3),

Kr3) = 1.

4. Main results

Theorem 4.1. Assume that there exist the positive numbers r1 < r2 < r3 < r4 ≤ r5

with r3 ≤ r4χ
∗ such that

(A1) f ∈ C[(0, 1)× (0, r5
Γ(β+1) )× (0, r5)] with f(t, x, y) ≥ −τy;

(A2) Φ(t, r1, r5) ∈ L[0, 1];
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(A3) φ1(t, r1) ≥ 0;

(A4)
∫ 1

0
Φ(s, r2, r2)s(1− s)α−β−1ds < r2ω

−1
2 ;

(A5)
∫ 1

a
φ2(s, r3, r4)s(1− s)α−β−1ds > r3[χ∗ω2]−1, a ∈ (0, 1);

(A6)
∫ 1

0
Φ(s, r3, r5)s(1− s)α−β−1ds ≤ r5ω

−1
2 .

Then, the resonant FBV P (1.1) has at least three positive solutions.

Proof. Denote two operators

Ay(t) =

∫ 1

0

H(t, s)[f(s, Iβ0+y(s), y(s)) + τy(s)]ds,

Ly(t) =

∫ 1

0

H(t, s)y(s)ds.

Therefore, L : P → P is a completely continuous linear operator. Then, by means
of the Krein-Rutmann theorem and Lemma 3.2, we know that the spectral radius
of L is r(L) = τ−1, and ψ(t) = tα−β−1 is the corresponding eigenfunction. That
is, Lψ = τ−1ψ. For any y ∈ P r5 \ Pr1 , we have r1χ2(t) ≤ y(t) ≤ r5 and r1χ1(t) ≤
Iβ0+y(t) ≤ r5t

β

Γ(β+1) .

Next, we will prove A : P r5 \ Pr1 → P is completely continuous.

(i) ∀y ∈ P r5 \ Pr1 , by Lemma 3.3, we obtain

Ay(t) =

∫ 1

0

H(t, s)[f(s, Iβ0+y(s), y(s)) + τy(s)]ds

≥
∫ 1

0

ω1s(1− s)α−β−1tα−β−1[f(s, Iβ0+y(s), y(s)) + τy(s)]ds

= χ2(t)

∫ 1

0

ω2s(1− s)α−β−1[f(s, Iβ0+y(s), y(s)) + τy(s)]ds

≥ χ2(t) max
0≤t≤1

∫ 1

0

H(t, s)[f(s, Iβ0+y(s), y(s)) + τy(s)]ds

= χ2(t) ‖ Ay ‖ .

Then, A : P r5 \ Pr1 → P is well defined.

(ii) Assume {yn} ⊂ P r5 \Pr1 and ‖ yn−y0 ‖→ 0(n→ +∞). Then, r1 ≤‖ yn ‖≤
r5, n = 0, 1, 2, . . ..

For ∀ε > 0, by virtue of the absolute continuity of integral, ∃δ ∈ (0, 1
2 ) is such

that ∫ δ

0

ω2s(1− s)α−β−1Φ(t, r1, r5)ds <
ε

6
,

∫ 1

1−δ
ω2s(1− s)α−β−1Φ(t, r1, r5)ds <

ε

6
.

Since f is uniformly continuous on [δ, 1 − δ] × [r1χ1(t), r5t
β

Γ(β+1) ] × [r1χ2(t), r5] and

‖ yn − y0 ‖→ 0, there exists N > 0 such that, for ∀n > N , we get

|f(t, Iβ0+yn(t), yn(t))− f(t, Iβ0+y0(t), y0(t))| < ε

3
∫ 1

0
Φ(t, r1, r5)ds

, t ∈ [δ, 1− δ].
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Therefore,

‖Ayn −Ay0‖

≤ max
0≤t≤1

∫ 1

0

H(t, s)|f(t, Iβ0+yn(t), yn(t))− f(t, Iβ0+y0(t), y0(t))|ds

≤
∫ 1

0

ω2s(1− s)α−β−1|f(t, Iβ0+yn(t), yn(t))− f(t, Iβ0+y0(t), y0(t))|ds

≤ 2

∫ δ

0

ω2s(1− s)α−β−1Φ(t, r1, r5)ds+ 2

∫ 1

1−δ
ω2s(1− s)α−β−1Φ(t, r1, r5)ds

+

∫ 1−δ

δ

ω2s(1− s)α−β−1|f(t, Iβ0+yn(t), yn(t))− f(t, Iβ0+y0(t), y0(t))|ds

<
ε

3
+
ε

3
+
ε

3
= ε.

Then, A is continuous.
(iii) For ∀D ⊂ P r5 \ Pr1 is a bounded set. Then, r1χ2(t) ≤‖ y ‖≤ r5,∀y ∈ D.

We obtain

|Ay(t)| = |
∫ 1

0

H(t, s)[f(s, Iβ0+y(s), y(s)) + τy(s)]ds|

≤
∫ 1

0

H(t, s)|f(s, Iβ0+y(s), y(s)) + τy(s)|ds.

By s, Iβ0+y(s), y(s) is continuous and bounded on (0, 1)×[r1χ1(t), r5t
β

Γ(β+1) ]×[r1χ2(t), r5],

and we get that f(s, Iβ0+y(s), y(s)) is also bounded. It is clear that H(t, s) is bound-
ed. Then, A(D) is uniformly bounded.

It is obvious that H(t, s) is uniformly continuous on [0, 1] × [0, 1]. For ∀ε > 0,
there exists δ > 0 such that, for ∀t1, t2 ∈ [0, 1], |t1 − t2| < δ, we obtain

|H(t1, s)−H(t2, s)| <
ε∫ 1

0
Φ(t, r1, r5)ds

.

Therefore,

|Ay(t1)−Ay(t2)|

≤
∫ 1

0

|H(t1, s)−H(t2, s)|[f(s, Iβ0+y(s), y(s)) + τy(s)]ds

≤
∫ 1

0

ε∫ 1

0
Φ(t, r1, r5)ds

Φ(t, r1, r5)ds = ε.

Then, A(D) is equicontinuous.
By virtue of the Arzela-Ascoli theorem, we know that A is compact.
Then, A : P r5 \Pr1 → P is completely continuous. By the extension theorem of

the completely continuous operator, A can be extended to a completely continuous
Ã : P → P . For the sake of convenience, we still denote it as A.

For any y ∈ ∂Pr2 , we have r2χ2(t) ≤ y(t) ≤ r2 and r2χ1(t) ≤ Iβ0+y(t) ≤ r2t
β

Γ(β+1) .

By Lemma 3.3 and (A4), we obtain

Ay(t) ≤ ω2

∫ 1

0

s(1− s)α−β−1Φ(s, r2, r2)ds < r2,
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which implies Ay 6= λy, ∀λ ≥ 1. By Lemma 3.4, we have

i(A,Pr2 , P ) = 1. (4.1)

For any y ∈ ∂Pr5 , we have r5χ2(t) ≤ y(t) ≤ r5 and r5χ1(t) ≤ Iβ0+y(t) ≤ r5t
β

Γ(β+1) .

By Lemma 3.3 and (A6), we obtain

Ay(t) ≤ ω2

∫ 1

0

s(1− s)α−β−1Φ(s, r3, r5)ds < r5.

Similarly, we get

i(A,Pr5 , P ) = 1. (4.2)

Next, we will prove A has a positive fixed point on Pr2 . Suppose that A has no
fixed point on ∂Pr1 . Then, we will prove if ∃ψ ∈ P \ {θ} such that

y −Ay 6= λψ, ∀λ ≥ 0, y ∈ ∂Pr1 . (4.3)

Otherwise, suppose that there exist λ0 > 0 and y1 ∈ ∂Pr1 such that

y1 −Ay1 = λ0ψ.

Thus, y1 ≥ λ0ψ. Set λ∗ = sup{λ : y1 ≥ λψ}. Then, y1 ≥ λ∗ψ. By (A3), we get

Ay1(t) =

∫ 1

0

H(t, s)[f(s, Iβ0+y1(s), y1(s))+τy1(s)]ds ≥ τ
∫ 1

0

H(t, s)y1(s)ds = τLy1.

Therefore,

y1 = Ay1 + λ0ψ ≥ τLy1 + λ0ψ ≥ τL(λ∗ψ) + λ0ψ = (λ∗ + λ0)ψ,

which contradicts with the definition of λ∗, and then (4.3) holds. By Lemma 3.4,
we have

i(A,Pr1 ∩ P, P ) = 0. (4.4)

Therefore, (4.1) and (4.4) yield that A has a fixed point y1 ∈ Pr2 \ Pr1 .

Then, we will prove i(A, P̊ (ϑ, r3, r5), P r5) = 1.

(i) It is obvious that P̊ (ϑ, r3, r4) 6= ∅. For any y ∈ P (ϑ, r3, r4), we have r3 ≤
y(t) ≤ r4 and r3t

β

Γ(β+1) ≤ Iβ0+y(t) ≤ r4t
β

Γ(β+1) , for t ∈ [a, 1]. By virtue of Lemma 3.3

and (A5), we obtain

ϑ(Ay) = min
t∈[a,1]

Ay(t) = min
t∈[a,1]

∫ 1

0

H(t, s)[f(s, Iβ0+y(s), y(s)) + τy(s)]ds

≥ min
t∈[a,1]

ω1t
α−β−1

∫ 1

0

s(1− s)α−β−1[f(s, Iβ0+y(s), y(s)) + τy(s)]ds

= min
t∈[a,1]

ω2χ2(t)

∫ 1

0

s(1− s)α−β−1[f(s, Iβ0+y(s), y(s)) + τy(s)]ds

≥ ω2χ
∗
∫ 1

a

s(1− s)α−β−1φ2(s, r3, r4)ds > r3.
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(ii) For any y ∈ P (ϑ, r3, r5), we have r3χ2(t) ≤ y(t) ≤ r5 and r3χ1(t) ≤
Iβ0+y(t) ≤ r5t

β

Γ(β+1) , for t ∈ [0, 1]. By virtue of Lemma 3.3 and (A6), we get

Ay(t) =

∫ 1

0

H(t, s)[f(s, Iβ0+y(s), y(s)) + τy(s)]ds

≤ ω2

∫ 1

0

s(1− s)α−β−1[f(s, Iβ0+y(s), y(s)) + τy(s)]ds

≤ ω2

∫ 1

0

s(1− s)α−β−1Φ(s, r3, r5)ds ≤ r5.

Therefore, Ay ∈ P r5 .
(iii) For any y ∈ P (ϑ, r3, r5) with ‖Ay‖ > r4, noticing r3 ≤ r4χ

∗, we have

ϑ(Ay) = min
t∈[a,1]

(Ay)(t) ≥ χ∗‖Ay‖ > χ∗r4 ≥ r3.

By Lemma 3.5, we obtain

i(A, P̊ (ϑ, r3, r5), P r5) = 1. (4.5)

By (4.1), (4.2) and (4.5), we get

i(A,Pr5 \ (P̊ (ϑ, r3, r5) ∪ Pr2), P r5) = −1. (4.6)

(4.5) and (4.6) yield that A has two fixed points y2 ∈ P̊ (ϑ, r3, r5) and y3 ∈ Pr5 \
(P̊ (ϑ, r3, r5) ∪ Pr2).

It is clear that these fixed points are three positive solutions for FBVP (1.1).
For a better comprehension, see Figure 1.

5. Example

Example 5.1. Consider the following the resonant FBVP{
D2.2

0+x(t) + f(t, x(t), D0.1
0+x(t)) = 0, 0 < t < 1,

x(0) = x′(0) = 0, D0.1
0+x(1) = 0.5

∫ 0.8

0
t−0.2D0.1

0+x(t)dt,
(5.1)

with

f(t, x, y) =

t9x−
1
4

60
√

1− t
+
y−

1
4

150
+

(1− t)9y−
1
4

60
√
t

− y

5
, (t, x, y) ∈ (0, 1)× (0,+∞)× (0, 1],

(1− t)9

60
√
t

+
t9x−

1
4

60
√

1− t
+

y5

150
− y

5
, (t, x, y) ∈ (0, 1)× (0,+∞)× (1, 6],

(1− t)9

60
√
t

+
t9x−

1
4

60
√

1− t
+
y

1
2 + 65 −

√
6

150
− y

5
, (t, x, y) ∈ (0, 1)× (0,+∞)× (6,+∞).

Equation (5.1) is obtained by taking the following values from equation (1.1),

where α = 2.2, β = 0.1, n = 3, λ = 0.5, η = 0.8, m(t) = t−0.2. By 34.56τ3

Γ(8.4) ≤
g(τ)− [− 0.09

Γ(2.1) + 2.64τ
Γ(4.2) + 14.19τ2

Γ(6.3) ] ≤
∑+∞
j=3

34.56τj

Γ(8.4) , we obtain that a unique solution
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to g(τ) is τ∗ ∈ (0.24, 0.25). Let τ = 0.2 and a = 0.8. Simple computation shows
G(1) = 0.9814, G′(1) = 1.1412, s∗ = 0.8351, ρ1 = 0.9303, ρ2 = 1.5891, ω1 = 0.9915,
ω2 = 2.5888, χ1(t) = 0.3638t1.2, χ2(t) = 0.383t1.1, χ∗ = 0.2996, χ∗ω2 = 0.7756.

Let r1 = 0.0625, r2 = 1, r3 = 6, r4 = 90, r5 = 1764. Obviously, (A1), (A2) and
(A3) hold. By direct calculation, we can get

ω2

∫ 1

0

Φ(s, r2, r2)s(1− s)1.1ds ≈ 0.0115 < r2,

χ∗ω2

∫ 1

0.8

φ2(s, r3, r4)s(1− s)1.1ds ≈ 8.0818 > r3,

ω2

∫ 1

0

Φ(s, r3, r5)s(1− s)1.1ds ≈ 1647.4027 ≤ r5,

implying that (A4), (A5) and (A6) hold. It follows from Theorem 4.1 that high-order
FBVP at resonance has at least three positive solutions.
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