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Poincaré Bifurcation from an Elliptic Hamiltonian
of Degree Four with Two-saddle Cycle∗

Yu’e Xiong1, Wenyu Li1 and Qinlong Wang1,2,†

Abstract In this paper, we consider Poincaré bifurcation from an elliptic
Hamiltonian of degree four with two-saddle cycle. Based on the Chebyshev
criterion, not only one case in the Liénard equations of type (3, 2) is discussed
again in a different way from the previous ones, but also its two extended cases
are investigated, where the perturbations are given respectively by adding
εy(d0 + d2v

2n) ∂
∂y

with n ∈ N+ and εy(d0 + d4v
4 + d2v

2n+4) ∂
∂y

with n = −1 or

n ∈ N+, for small ε > 0. For the above cases, we obtain all the sharp upper
bound of the number of zeros for Abelian integrals, from which the existence
of limit cycles at most via the first-order Melnikov functions is determined.
Finally, one example of double limit cycles for the latter case is given.

Keywords Perturbed Hamiltonian system, Poincaré bifurcation, Abelian in-
tegral, Chebyshev criterion.
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1. Introduction

This paper deals with Liénard equations in the following form dv
dt = y,

dy
dt = P (v) + yQ(v),

(1.1)

where P and Q are two polynomials in the variable v, and if deg P = m and deg
Q = n, equations (1.1) are called Liénard system of type (m,n). When it comes to
the famous 16th problem of Hilbert, equations (1.1) have been studied extensively
on asking for an upper bound on the number of limit cycles [18, 19], especially
in respect to the weak 16th problem of Hilbert [1]. For studying the limit cycles
in certain vector fields with specific degree for (1.1), we construct the perturbed
Hamiltonian system by setting Q(v) = εg(v) with ε > 0, but it is small as follows

dv

dt
= Hy,

dy

dt
= −Hv + εg(v)y, (1.2)
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where H(v, y) = y2

2 +
∫
P (v)dv is a Hamiltonian polynomial function of degree

m+ 1. Thus, we can investigate Poincaré bifurcation of limit cycles via calculating
the zeros of the elliptic integrals, i.e., Abelian integrals obtained by integrating the
related 1-form yq(v)dv over the compact level curves of the Hamiltonian H.

There are some effective research methods and many good results which are
obtained for the zeros of Abelian integrals and Poincaré bifurcation of system (1.2)
(see the review literature [16], the recent papers [2, 10, 25] and references therein).
As for the existence, uniqueness and number of limit cycles, it is worth noting
that Jiang and Han [15] extended the investigation from the continuous nonlinear
Liénard-type differential systems (1.1) to the discontinuous ones, and discussed the
qualitative properties of the crossing limit cycles.

When m + n ≤ 4, type (m,n) of the Liénard equations (1.1), except for type
(1, 3), has been given a complete study, and the corresponding Abel integrals were
also proved to have one at most zero [3,16]. As for its type (m,n) with m+ n = 5,
the comprehensive and detailed studies on type (3, 2) have been carried out by
Dumortier and Li in a series of papers [4–7], and the corresponding supremum of
the zero number of Abel integral was obtained respectively for all the five different
cases.

We know that type (3, 2) corresponds to small perturbations of Hamiltonian
vector fields with an elliptic Hamiltonian of degree four, and the perturbations are
given by adding εy(x2 +βx+α) ∂∂y for small ε > 0. It is worth mentioning that, for

Two-saddle Cycle Case (A) and Saddle Loop Case (B) presented in [4], after linear
rescaling their Hamiltonians are given by the following functions

H(v, y) =
y2

2
− 1

4
v4 − (λ− 1)

3
v3 +

λ

2
v2, (1.3)

where λ ≥ 1, and λ = 1 corresponds to Case (A), while λ > 1 corresponds to Case
(B). Case (A) is rather simple as the limiting situation of Case (B), and its Abel
integral was proved to have one at most zero in [14] and [4] respectively.

Here, we shall develop a utilized approach based on Chebyshev criterion [9, 21]
to prove the above conclusion once again, and we shall investigate the extended
Case (A) more, namely for λ = 1 with the following more generic form dv

dξ = y,

dy
dξ = (v + 1)v(v − 1) + εg(v)y,

(1.4)

where g(v) =
∑2m
i=0 div

i, m ∈ N+, di ∈ R. Obviously, the g(v) in the perturbed part
of system (1.4) is no longer restricted to quadratic polynomial, and the following
two classes of g(v) will be discussed here

ga(v) = d0 + d2nv
2n, n = 1, 2, · · · ,

gb(v) = d0 + d4v
4 + d2n+4v

2n+4, n = −1, 1, 2, · · · .
(1.5)

The Picard-Focus equations and Riccati equations in algebraic geometry were
applied as the important research approaches in [4], which are still often used (see,
for example, [13, 17]). Here, by using the method of Chebyshev criterion presented
in [9, 21], and via strict proof of symbolic calculation, we determine the zero-point
number of the Abelian integrals, i.e., the first-order Melnikov functions. Many
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applications have shown that these skills are uniquely effective in studying the exis-
tence of limit cycles at most via the Poincaré bifurcation for the first-order Melnikov
functions (see, for example, [20, 23, 24]). In addition, as one of the techniques used
here, the judgment criteria of sign invariant region for bivariate polynomial function,
proposed in [8], is the key to the study.

The paper is organized as follows. In Section 2, we introduce some preparatory
knowledge of determining the number of zeros for Abelian integral, and give our
main conclusion. In Section 3, we provide the strict proof of the main conclusion
through the symbolic computation in the three subsections. In the final section,
the existence of global limit cycles at most via the first-order Melnikov functions
is proved, and one specific example of two limit cycles is given to illustrate the
conclusion obtained.

2. Preliminary methods and main result

From (1.3)λ=1, system (1.4)ε=0 has the Hamiltonian function

H(v, y) =
y2

2
+

1

4
v2(2− v2). (2.1)

Then, we have the phase portraits of system (1.4)ε=0 in Figure 1.
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Figure 1. The phase portraits of system (1.4)ε=0

We can find the closed orbits sketched in Figure 1 defined by the following
function

Γh : H(v, y) = h, h ∈ (0,
1

4
). (2.2)

The period annulus Γh of this center (i.e., the origin) is just inside the two hete-
roclinic orbits connecting two-saddle points (1, 0) and (−1, 0), whose projection is
the open interval (−1, 1).

In addition, from the Hamiltonian function (2.1) of the unperturbed system
(1.4)ε=0, we have

H(v, y) = A(v) +B(v)y2, (2.3)

where A(v) = 1
4v

2(2 − v2) and B(v) = 1
2 . Additionally, the Melnikov function
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(Abelian integral) corresponding to system (1.4) is

I(h) =
∮

Γh

g(v)ydv =
∮

Γh

(d0 + d1v + · · ·+ d2mv
2m)ydv

= d0Ĩ0(h) + d1Ĩ1(h) + · · ·+ d2mĨ2m(h),

(2.4)

where Ĩi(h) =
∮

Γh
viydv, 0 ≤ i ≤ 2m, and the readers can note that the number of

simple zeros of I(h) corresponds to the number of limit cycles of system (1.4) by
Poincaré bifurcation.

Obviously, according to the symmetry of the integral region and the integrand
being an odd function, we can easily calculate and obtain the following result

Ĩi(h) =
∮

Γh
v2k−1ydv = 0, k = 1, 2, · · · . (2.5)

Thus, we will not consider the odd terms of g(v) in system (1.4).
In the following, let us recall the relevant definitions and conclusions on the

Chebyshev criteria to determine the zero number of Abelian integrals, and also
refer to the literature [9, 21] for details.

Definition 2.1. Assuming that {f0(x), f1(x), · · · , fn−1(x)} is an ordered set of
analytic functions on an open interval L of R, this set is called an extended complete
Chebyshev system (ECT-system), if, for all i = 1, 2, · · · , n, any nontrivial linear
combination

k0f0(x) + k1f1(x) + · · ·+ ki−1fi−1(x)

has at most i− 1 isolated zeros on L counted with multiplicities.

Lemma 2.1 (See [9]). {f0(x), f1(x), · · · , fn−1(x)} is an ECT-system on L, if and
only if, for each i = 1, 2, · · · , n, the Wronskian W [f0(x), f1(x), · · · , fi−1(x)] 6= 0
for all x ∈ L.

To prove our conclusions, we will apply the following lemmas.

Lemma 2.2 (See [9]). Let Γh be an oval inside the level curve {A(v) + 1
2y

2 = h}
(such as (2.3)), and a function F such that F/A′ is analytic at v = 0. Then, for
any k ∈ N, ∮

Γh

F (v)yk−2dv =

∮
Γh

G(v)ykdv

where G(v) = 1
k

(
F
A′

)′
(v).

Lemma 2.3 (See [9]). Let us consider the Abelian integrals

Ii(h) =

∮
Γh

fi(v)y2s−1dv, i = 0, 1, · · · , n− 1

where, for each h ∈ L, Γh is the oval surrounding the origin inside the level curve
{A(v) + 1

2y
2 = h}(such as (2.3)). Let σ be the involution associated to A(v), and

we define

`i(v) :=
fi(v)

A′(v)
− fi(σ(v))

A′(σ(v))
.

Then, {I0, I1, I2, · · · , In−1} is an ECT -system on L, if s > n−2, and {`0, `1, · · · , `n−1}
is a CT-system on (0, v+

0 ).
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We also introduce the following lemma given by [8], namely, the judgment cri-
teria of sign invariant region for bivariate polynomial function, which will be used
to prove our main conclusion.

Lemma 2.4 (See [8]). Set Ω = R and let

Gθ(x) = gn(θ)xn + gn−1(θ)xn−1 + · · ·+ g1(θ)x+ g0(θ) (2.6)

be a family of real polynomials also polynomially depending on a real parameter θ.
Assume that there exists an open interval L ⊂ R such that: (i) there is some θ0 ∈ L
such that Gθ0(x) > 0 on Ω; (ii) for all θ ∈ L, the discriminant of Gθ with respect to
x is not equal to zero; (iii) for all θ ∈ L, gn(θ) 6= 0. Then, for all θ ∈ L, Gθ(x) > 0
on Ω.

Next, our main conclusion is given in the following theorem, whose proof will
be completed in the following two sections.

Theorem 2.1. For the perturbed system (1.4), when g(v) = ga(v) in (1.5), the
zero-point number of Abelian integral can reach one and one at most, taking in-
to account the multiplicity; when g(v) = gb(v) in (1.5), the zero-point number of
Abelian integral can reach two and two at most, taking into account the multiplicity.

3. Proof of the main conclusion

We will apply symbolic computation to prove the main conclusion of Theorem 2.1
step by step strictly.

First, we quickly figure out

Ĩi(h) =

∮
Γh

viydv =
1

h

∮
Γh

(A(v) +
1

2
y2)viydv =

1

h

∮
Γh

A(v)viydv +
1

2h

∮
Γh

viy3dv,

where i = 0, 2k, k ∈ N+. Then, applying Lemma 2.2, we obtain∮
Γh

A(v)viydv =
1

3

∮
Γh

(
Avi

A′

)′
y3dv.

If we write

Ĩ0(h) =
1

h
I0(h), Ĩ2k(h) =

1

h
I2k(h),

where

I0(h) =

∮
Γh

f0(v)y3dv, I2k(h) =

∮
Γh

f2k(v)y3dv,

then we have f0(v) and f2k(v) as follows

fi(v) = − v
i−1(2vAA′′−2iAA′−5vA′2)

6A′2 , i = 0, 2k, k ∈ N+. (3.1)

Furthermore, we apply Lemma 2.3, yielding

`i(v) =
fi(v)

A′(v)
− fi(σ(v))

A′(σ(v))
, (3.2)
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where i = 0, 2k, k ∈ N+, and σ(v) is the involution associated to A(v). Actually,
σ(v) and v together serve as the two abscissa of the intersections of the period
annulus Γh with v-axis. Due to the symmetry with respect to y-axis for the phase
diagram of H(v, y) = h, we have ϕ = σ(v) = −v.

Subsequently, we will finish the proof for the main conclusion of Theorem 2.1 in
three steps, i.e., the following three subsections divided.

3.1. Zeros of Φ0 and Φ2

According to (3.1) and (3.2), we easily obtain that

`0 = − 8−13v2+7v4

6v(v2−1)3 , `2n = − (2nv4−6nv2+4n+7v4−13v2+8)(v2n+(−v)2n)
12(v−1)3v(v+1)3 ,

and directly calculate the Wronskian W [`0(v)] and W [`0(v), `2n(v)], yielding

Φ0(v) := W [`0(v)] = `0(v),

Φ2n(v) := W [`0(v), `2n(v)]

=
n(14nv6−54nv4+68nv2−32n+49v6−117v4+140v2−64)(v2n+(−v)2n)

36(v−1)5v3(v+1)5 .

(3.3)

Naturally, Φ2 has the following form

Φ2(v) = W [`0(v), `2(v)] = 63v6−171v4+208v2−96
18v(v2−1)5 , (3.4)

and more it is found to have only one zero-point v∗ in the interval (0, 1), namely,

v∗ ∈ (0.96225935214 · · · 8382, 0.96225935214 · · · 8383︸ ︷︷ ︸
10−50

).

In fact, applying Sturm’s Theory, we can verify this result strictly. Therefore,
{`0(v), `2(v)} is not a CT-system on (0, v+

0 ) with v+
0 = 1. Then, we cannot utilize

Lemma 2.3 to prove that {I0, I2} is an ECT-system on (0, 1/4).
Thus, we shall try to calculate Ĩ0 and Ĩ2 directly, yielding

Ĩ0(h) =
∮

Γh
ydv = 1

3(1−4h)1/4

√
c1
h {(1 +

√
(1− 4h)EllipticE[ 1−

√
1−4h

1+
√

1−4h
]

− (1− 4h+
√

(1− 4h)Elliptick[ 1−
√

1−4h
1+
√

1−4h
]}

(3.5)

and

Ĩ2(h) =
∮

Γh
v2ydv = − 4

15(1−4h)1/4

√
c1
h {(−1 + 3h)(1 +

√
(1− 4h))

· EllipticE[ 1−
√

1−4h
1+
√

1−4h
] + (1− 4h+ (1− 3h)

√
(1− 4h))Elliptick[ 1−

√
1−4h

1+
√

1−4h
]},

(3.6)

where c1 = 2(
√

1− 4h− 1 + 4h). Let τ =
√

1− 4h, then h = 1
4

√
1− τ2, 0 < τ < 1,

yielding

Ĩ ′0(h) = 2
√

2
1+τEllipticK

[
1−τ
1+τ

]
,

Ĩ ′2(h) = −2
√

2
√

1 + τ
(

EllipticE
[

1−τ
1+τ

]
− EllipticK

[
1−τ
1+τ

])
.

(3.7)
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In addition, by computing, we obtain[
Ĩ2(h)

Ĩ0(h)

]′
=

∆

Ĩ2
0

,

where

∆ = Ĩ0Ĩ
′
2 − Ĩ ′0Ĩ2 = 8

15{5(1 + τ)EllipticE
[

1−τ
1+τ

]2
− 2(2 + 5τ + τ2)EllipticE

[
1−τ
1+τ

]
EllipticK

[
1−τ
1+τ

]
+ 2τ(2 + τ)EllipticK

[
1−τ
1+τ

]2
}.

If we set S = S(τ) = EllipticE
[

1−τ
1+τ

]
, T = T (τ) = EllipticK

[
1−τ
1+τ

]
, then it is easily

verified that on the interval 0 < τ < 1, S(τ) and T (τ) are monotone increasing and
decreasing respectively, and S(1) = T (1) = π

2 , S(1) = 1, T (0) = +∞, as shown in

Figure 2(i). If we let the ratio T
S = K, then we easily get K ≥ 1 on the interval

0 < τ < 1.
For the above ∆, we can apply the method of numerical simulation to obtain

the preliminary judgment: ∆ > 0 on the interval 0 < τ < 1, as shown in Figure
2(ii). However, unfortunately, we cannot find a quick way to prove this conclusion.
Here, a tedious one has to be utilized.
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Figure 2. The function images of S, T and ∆ with respect to τ ∈ (0, 1) in (i) and (ii) respectively
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Figure 3. The function images of ∆′ and ∆′′ with respect to τ ∈ (0, 1) in (i) and (ii) respectively

Next, we calculate the first and second derivatives of ∆(τ) as follows

d∆
dτ = 16

15τ(τ−1) [(1− 2τ2)S2 + 2τ(τ2 + τ − 1)ST + τ2(1− 2τ)T 2] := ∆′ (3.8)
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and
d∆′

dτ = 16S2

15(τ+1)τ2(τ−1)2 f∆ := ∆′′, (3.9)

where f∆ = (τ4 + 1) + τ(2τ4−4τ3− τ2 + τ −2)K− τ2(2τ3−4τ2 + τ −1)K2. Then,
we try to strictly prove that under the condition of τ ∈ (0, 1), ∆′′ > 0 holds, which
further proves that ∆′ monotone increasing, as shown in Figure 3(i) and Figure
3(ii).

In fact, from K ∈ [1,+∞), let K = 1 + β2, where −∞ < β < +∞. Then, we
obtain

f∆ = −2
(
β4 + β2

)
τ5 +

(
2β2 + 1

)2
τ4

−
(
β4 + 3β2 + 2

)
τ3 +

(
β4 + 3β2 + 2

)
τ2 − 2

(
β2 + 1

)
τ + 1.

Furthermore, we compute the discriminant of f∆ with respect to β,

δ1(τ) :

= Discriminant[f∆, β]

= −16S12(τ − 1)6τ10
(
τ2 + 1

) (
2τ3 − 4τ2 + τ − 1

) (
4τ4 − 8τ2 − 11

)2
,

(3.10)

and discover that δ1(τ) has never one zero point on the interval (0, 1). Thus, we
take any value on the interval (0, 1), for example, τ = 1/2, to substitute it into f∆,
and yield

f∆ =
5β4

16
− 7β2

16
+

5

16
> 0, ∀β ∈ (−∞,+∞).

According to Lemma 2.4, we conclude as follows.

Lemma 3.1. When τ ∈ (0, 1), ∆′′ > 0 always holds, That is, ∆′ is a monotone
increasing function in τ .

Moreover, when τ = 1, ∆′(1) = 0, we have ∆′ < 0, ∀τ ∈ (0, 1). From this,
∆(τ) is a monotone decreasing function, and when τ = 1, ∆(1) = 0. Thus, we

obtain that ∆ > 0 always holds for all τ ∈ (0, 1), which indicates
[
I2(h)
I0(h)

]′
> 0 for

all h ∈ (0, 1/4). Therefore, we have the following.

Lemma 3.2. For the perturbed system (1.4), when g(v) = ga(v) with n = 1 in
(1.5), the maximum number of zeros of Abelian integral is one at most on (0, 1/4).

3.2. Zeros of Φ0 and Φ2n for the cases of n ≥ 2

Now, we investigate zeros of Φ0 and Φ2n in (3.3) with n ≥ 2 at the same time.
Namely, we check whether the conditions of Lemma 2.3 are satisfied. If its conditions
hold, then {I0, I2n} is an ECT-system on (0, 1/4).

First, from the expression of Φ0(v) in (3.3) as follows

Φ0(v) = `0(v) = −8− 13v2 + 7v4

6v(v2 − 1)3
,

we easily verify that for Φ0, and there is not a zero on the interval 0 < v < 1.
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Next, we try to find the zeros of Φ2n in (3.3). In order to study whether Φ2n

has zeros, we only need to consider whether the following factor q(v, n) of Φ2n has
zeros,

q(v, n) = 14nv6 − 54nv4 + 68nv2 − 32n+ 49v6 − 117v4 + 140v2 − 64.

If we make the variable substitution: v = β2

β2+1 where β ∈ (−∞,+∞), the reader

can note that the value range of v is unchanged and still (0, 1). Then, we have

q(v, n) =
d1n

(β2 + 1)6
,

where d1n = −4nβ12−28nβ10−126nβ8−368nβ6−412nβ4−192nβ2−32n+8β12−
58β10− 237β8− 720β6− 820β4− 384β2− 64. By computing the discriminant of d1n

with respect to β,

Discriminant[d1n, β] = 4413527634823086080000 δ(n), (3.11)

where δ(n) = (n − 2)(n + 2)3(2n + 7)2(1100n4 − 7700n3 + 20655n2 + 208670n +
255571)4, we try to find out certain intervals of n such that δ(n) 6= 0. In fact, there
exists only one positive real root for δ(n) = 0, i.e., n = 2.

Randomly choosing a value of n > 2, for example, n = 3, we have

d1n|n=3 = −(4β12 + 142β10 + 615β8 + 1824β6 + 2056β4 + 960β2 + 160) < 0,

where β ∈ (−∞,+∞). From this specific example and Lemma 2.4, we obtain that
when n > 2, d1n < 0 always holds. In fact, when n = 2, we have

d1n = −
(
2β2 + 1

) (
57β8 + 216β6 + 620β4 + 512β2 + 128

)
< 0,

which always holds for all β ∈ (−∞,+∞). From this, when n ≥ 2, q(v, n) < 0
always holds for all v ∈ (0, 1), yielding Φ2n always being negative. Therefore,
{I0, I2n} is an ECT-system on (0, 1/4), according to Lemma 2.3, we conclude as
follows.

Lemma 3.3. For the perturbed system (1.4), when g(v) = ga(v) with n ≥ 2 in
(1.5), the maximum number of zeros of Abelian integral is one at most on (0, 1/4).

From the above Lemmas 3.2 and 3.3, we can prove the first part of Theorem 2.1.
As for the fact that the number can reach one, it will be proved in the following
section.

3.3. Zeros of Φ0,Φ4 and Φ2n+4

In this subsection, we will investigate the zeros of Φ0,Φ4 and Φ2n+4 at the same
time, where n = −1, 1, 2, · · · . Similarly, from (3.1) and (3.2), it is easy to obtain

`0 = − 8−13v2+7v4

6v(v2−1)3 ,

`4 = −v(12−19v2+9v4)
6(v2−1)3 ,

`2n+4 =
v2n+4(2nv4−6nv2+4n+5v4−13v2+10)

12(v−1)2(v+1)2 .
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Next, we directly calculate the following Wronskian

W [`0(v)] = `0(v) := Φ0(v),

W [`0(v), `4(v)] = v(128−148v2+77v4)
9(v2−1)4 := Φ4(v),

W [`0(v), `4(v), `2n+4(v)] =
(n−2)nq̃(v2n+(−v)2n)

27(v−1)7v2(v+1)7 := Φ2n+4(v),

(3.12)

where q̃(v, n) = 154nv8 − 758nv6 + 1452nv4 − 1360nv2 + 512n+ 539v8 − 1717v6 +
3036v4 − 2768v2 + 1024. According to the analysis in the last subsection, we know
Φ0(v) 6= 0 and Φ4(v) 6= 0. Thus, we just whether the third Wronskian determinant
Φ2n+4 has zeros needs consideration.

Similar to the proof of Lemma 3.3, by the means of the substitution: v = β2

β2+1

where β ∈ (−∞,+∞), then we have

q̃(v, n) =
d4n

(β2 + 1)8,

where d4n = 228nβ14 + 1890nβ12 + 7280nβ10 + 16892nβ8 + 20512nβ6 + 12976nβ4 +
4096nβ2 + 512n + 114β16 + 294β14 + 3651β12 + 14128β10 + 33196β8 + 40736β6 +
25904β4 + 8192β2 + 1024.

By computing the discriminant of d4n with respect to β, we have

Discriminant[d4n, β] = 102860358224 · · · 1122252800000000 δ̃(n), (3.13)

where δ̃(n) = (n + 2)3(2n + 7)2(99614340n6 − 1408831380n5 + 6985984401n4 −
6257138760n3 − 336335118210n2 − 915007828140n− 697962737115)4.

Then, by checking δ̃(n) = 0, we obtain that there exist only two real roots
n1 = −1.96 · · · and n2 = 11.35 · · · . Additionally, by choosing two specific examples
at random, namely when n = 3 and n = 12, we respectively have,

d4n|n=3 = 114β16 + 978β14 + 9321β12 + 35968β10 + 83872β8 + 102272β6

+ 64832β4 + 20480β2 + 2560 > 0,

d4n|n=12 = 114β16 + 3030β14 + 26331β12 + 101488β10 + 235900β8 + 286880β6

+ 181616β4 + 57344β2 + 7168 > 0

which always hold for all β ∈ (−∞,+∞). According to Lemma 2.4, whether n1 <
n < n2 or n > n2, d4n > 0 always holds. This indicates that when n = −1 or n ∈ N,
q̃(v, n) > 0 always holds for all v ∈ (0, 1), yielding that Φ2n+4 is always positive.
Therefore, {I0, I4, I2n+4} is an ECT-system on (0, 1/4), according to Lemma 2.3,
we conclude as follows.

Lemma 3.4. For the perturbed system (1.4), when g(v) = gg(v) in (1.5), the
maximum number of zeros of Abelian integral is two at most on (0, 1/4).

From the above Lemma 3.4, we prove the second part of Theorem 2.1. As for
the fact that the number can reach two, it will be proved in the following section.

4. Limit cycles bifurcations and simulations

We know that the number of simple zeros of the Abelian integral can be translated to
the number of limit cycles via Poincaré bifurcations. Further, according to Theorem
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2.1, we know the maximum number of possible global limit cycles surrounding the
origin of system (1.4) under the two perturbed cases in (1.5). Then, we give the
following conclusion.

Proposition 4.1. For Poincaré bifurcation around the origin of the perturbed sys-
tem (1.4) via the first-order Melnikov functions, there exists one and at most one
limit cycle for g(v) = ga(v), and there exist two and at most two limit cycles for
g(v) = gb(v) in (1.5).

Proof. By applying the methods of asymptotic expansions of Abelian integrals
Ĩ(h) (also called the first Melnikov function), presented in [11, 12, 22], we can find
its zeros via the asymptotic expansion at h = 0 to correspond to the Hopf bifurca-
tion values, and via the asymptotic expansion at h = h0 = 1

4 for the heteroclinic
bifurcation.

In fact, we can take the other approach to find its zeros. Considering the case
of gb(v) first, from expressions (2.4) and (3.1), we have

I(h) = d0Ĩ0(h) + d4Ĩ4(h) + d2n+4Ĩ2n+4(h) = 1
h (d0I0 + d4I4 + d2n+4I2n+4), (4.1)

where Ii = Ii(h) =
∮

Γh
fi(v)ydv, i = 0, 4, 2n+4 with n = −1, 1, 2, · · · . Additionally,

setting d2n+4 = 1 with no harm and choosing arbitrarily two different h∗1, h
∗
2 ∈ (0, 1

4 ),
then we have a group of equations as followsd0I0(h∗1) + d4I4(h∗1) = −I2n+4(h∗1),

d0I0(h∗2) + d4I4(h∗2) = −I2n+4(h∗2).
(4.2)

According to Lemma 3.3, {I0, I4} is an extended complete Chebyshev (ECT) system
on (0, 1

4 ). Then, applying Theorem B and Lemma 2.3 in [9], we know that its all
discrete Wronskian determinants of {I0, I4} are not equal to zero. This implies
that for the left coefficient matrix of equations (4.2), its determinant is not zero
at (h∗1, h

∗
2). Thus, equations (4.2) have only one solution {d∗0, d∗4}. Letting d =

(d∗0, d
∗
4, 1), then h∗1 and h∗2 are naturally two different zeros of Abelian integral

I(h,d) in (2.4), and more it follows from the proved conclusion in Theorem 2.1
that its maximum number of zeros is two at most, then there are no more zeros.
Therefore, there necessarily exist some parameter values such that system (1.4)
with g(v) = gb(v) has two big-amplitude limit cycles which bifurcate from the
period annulus surrounding the origin.

With the same principle, the conclusion to the case of g(v) = ga(v) can also be
proved. Thus, we complete the proofs of this proposition and the remaining part of
Theorem 2.1, and namely, the maximum number of zeros of Abelian integral (2.4)
can be reached.

Here, we give one numerical example of two big-amplitude limit cycles bifurcat-
ing around the origin, which straightforwardly verify the result of Proposition 4.1.
Choosing gb(v) = d0 + d4v

4 + d2v
2 in system (1.4), i.e., case n = −1, and setting

h1 = 1/5 and h2 = 1/20, then we have

I0(h1) ≈ 0.1602648, I2(h1) ≈ 0.0041999, I4(h1) ≈ 0.0002209;

I0(h2) ≈ 0.7014380, I2(h2) ≈ 0.0916512, I4(h2) ≈ 0.0245802.
(4.3)
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From equations (4.2), by letting d2 = 1, we obtain

d0 ≈ −0.0219291, d4 ≈ −3.1028822. (4.4)

At this time, freely setting ε = 0.05 yields two limit cycles, as shown in Figure 4.
From the three time histories in Figure 4(a), (b) and (c) respectively, we know that
one limit cycle is stable, and the other is unstable.
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Figure 4. Time histories of (1.4) for v(t) and y(t) with the initial points: (a) (v, y) = (0.3, 0); (b)
(v, y) = (0.45, 0); and (c) (v, y) = (0.98, 0); (d)the phase portrait showing two limit cycles with the
inner one unstable and the outer one stable

Conclusion

This paper focuses on Poincaré bifurcation from an elliptic Hamiltonian of degree
four with two-saddle cycle. Based on the Chebyshev criterion and via symbolic
calculation, once again, we prove the previous conclusion for the Liénard equations
of type (3, 2) in a different way. Moreover, for its two extended cases, the maximum
number of Abelian integral zeros is determined respectively. We believe that the
means used in this paper may be applied to other problems.
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