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Asymptotic Behavior of a Stochastic
Predator-prey Model with Beddington-DeAngelis

Functional Response and Lévy Jumps∗

Yaru Guo1,† and Shulin Sun1

Abstract A stochastic two-prey-one-predator model with Beddington-DeAngelis
functional response and Lévy jumps is proposed and investigated in this pa-
per. First of all, we prove the existence and uniqueness of the global positive
solution, and stochastic ultimate boundedness of the solution. Next, under
a simple assumption, by using Itô formula and other important inequalities,
some sufficient conditions are established to ensure the extinction and persis-
tence in the mean of the system. The results show that neither strong white
noise nor Lévy noise is conducive to the persistence of the population. Finally,
the theoretical results are verified by numerical simulations.
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1. Introduction

In natural ecology, there are many complex relationships and interactions between
organisms, which constitute a biological population system together. However, the
interaction between predator-prey population is considered to be the most impor-
tant one. Therefore, predator-prey model has become an important topic for many
scholars. In addition, it is a common phenomenon in nature that predators often
feed on some competing prey. So far, many scholars have carried out extensive
research on deterministic two-prey-one-predator systems (see [1, 8, 9, 12, 14, 15] and
other references).

Functional response has always been an important component of predator-prey
dynamics. Functional responses are generally divided into two categories. One
is prey-dependent functional responses, the most common of which are Holling-I,
Holling-II and Holling-III, but these functional responses only consider the density
of prey. The other is predator-dependent functional responses, which generally in-
clude Beddington-DeAngelis type [4,7], Crowley-Martin type [5] and Hassell-Varley
type [10]. They consider both prey density and predator density. In ecology, species
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not only compete, but also interfere with each other. Therefore, we consider us-
ing Beddington-DeAngelis functional response in this paper. In 1975, Bedding-
ton [4] and DeAngelis [7] first introduced a predator-prey model with Beddington-
DeAngelis functional response

dx1

dt
= r1x1 − α1x

2
1 −

c1x1x2

a1 + a2x1 + a3x2
,

dx2

dt
= −r2x2 − α2x

2
2 +

c2x1x2

a1 + a2x1 + a3x2
,

(1.1)

where c1x1

a1+a2x1+a3x2
becomes the Beddington-DeAngelis functional response. xi(i =

1, 2) is the size of the ith population at time t, r1 denotes the intrinsic growth rate
of the prey, r2 denotes death rate of the predator, c1 represents the effect of capture
rate, a1 is a saturation constant, a2 is the effect of handing time, and a3 represents
the magnitude of interference among predators.

On one hand, in real life, the population is inevitably affected by environmental
noise. Therefore, it is very necessary to study the dynamic impact of white noise
on population system. So far, a large number of scholars have proposed a variety of
stochastic population models (see [6,13,16,18,19,22,26–30]). Liu et al., [22] derived
some conditions for species to be stochastically permanent. They also showed that
the species will become extinct with probability one, if the noise is sufficiently large.
Das and Samanta [6] came to a conclusion that the environmental noise plays an
important role in the extinction and persistence of prey and predator populations.

On the other hand, in ecology, sudden environmental disturbances, such as t-
sunamis, volcanic eruptions, avian influenza and infectious diseases, also have a
very important impact on the population system. However, due to the abruptness
and intensity of these events, the sampling path will be discontinuous. Therefore,
these phenomena cannot be accurately described by Brownian motion. In this case,
some scholars (see [2, 24,25,31,32]) pointed out that Lévy jump can be introduced
into the model for modeling. Zhu and Li [32] dealt with a predator-prey model
of Beddington-DeAngelis type functional response with Lévy jumps. They proved
that the variation of Lévy jumps can affect the asymptotic property of the system.

Inspired by the above discussion and references, we assume that the intrinsic
growth rate of preys and the mortality of predator are affected by Lévy noise. That
is,

r1dt→ r1dt+ σ1dB1(t) +

∫
Y
γ1(u)Ñ(dt, du),

r2dt→ r2dt+ σ2dB2(t) +

∫
Y
γ2(u)Ñ(dt, du),

−r3dt→ −r3dt+ σ3dB3(t) +

∫
Y
γ3(u)Ñ(dt,du),

where σi represents the intensity of the white noise and σi > 0, and Bi(t) (i = 1, 2, 3)
is independent standard Brownian motion.

According to (1.1), based on the fact that the most common system in the
ecosystem is two-prey-one-predator system, we propose the following stochastic two-
prey-one-predator system with the Beddington-DeAngelis functional response and
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Lévy jumps

dx1(t) =x1(t)[r1 − α1x1(t)− c1x3(t)

a1 + a2x1(t) + a3x3(t)
− β1x2(t)]dt

+ σ1x1(t)dB1(t) + x1(t−)

∫
Y
γ1(u)Ñ(dt,du),

dx2(t) =x2(t)[r2 − α2x2(t)− c2x3(t)

b1 + b2x2(t) + b3x3(t)
− β2x1(t)]dt

+ σ2x2(t)dB2(t) + x2(t−)

∫
Y
γ2(u)Ñ(dt,du),

dx3(t) =x3(t)[−r3 − α3x3(t) +
e1x1(t)

a1 + a2x1(t) + a3x3(t)

+
e2x2(t)

b1 + b2x2(t) + b3x3(t)
]dt+ σ3x3(t)dB3(t)

+ x3(t−)

∫
Y
γ3(u)Ñ(dt, du),

(1.2)

where xi(t) is the size of the ith population at time t, xi(t
−) is the left limit of xi(t),

ri(i = 1, 2) represents the intrinsic growth rate of prey, r3 denotes the mortality of
predator, αi is the intra-specific competition coefficient of the ith population, β1 and
β2 are the competitive coefficients of x1 and x2 respectively,

ej
cj

(j = 1, 2) represents

conversion factor denoting the newly born predator for each captured prey, and
all of the coefficients ri, αi, ai, bi, cj , βj and ej(i = 1, 2, 3, j = 1, 2) are positive
constants. N is a Poisson counting measure with the characteristic measure λ on a
measurable subset Y of (0,+∞) with λ(Y) < +∞, Ñ(dt,du) = N(dt, du)−λ(du)dt.
Throughout this paper, we further assume that Bi(t) and N are independent.

From a biological point of view, we suppose 1 + γi(u) > 0, where γi(u) > 0
means the increase of the species (e.g., planting), and −1 < γi(u) < 0 means the
decrease of the species (e.g., harvesting and epidemics), u ∈ Y, i = 1, 2, 3.

The rest parts of the paper are organized as follows. Some preliminaries are
given in Section 2. In Section 3, we prove that there is a unique global positive
solution for system (1.2) with the initial value x(0) = (x1(0), x2(0), x3(0))T, and
the solution is stochastically ultimately bounded. In Section 4, we present sufficient
conditions for the extinction and persistence in the mean of the system, which is the
most important part of this paper. In Section 5, we verify our theoretical results
by numerical simulation. Finally, the conclusions are given in Section 6.

2. Preliminaries

In this section, we will provide some information which helps establish our main
results. For the sake of convenience and simplicity in the following discussion, we
always use the notations

µi =
σ2
i

2
−
∫
Y

[ln(1 + γi(u))− γi(u)]λ(du), i = 1, 2, 3;

Ni(t) =

∫ t

0

∫
Y

ln(1 + γi(u))Ñ(ds,du), i = 1, 2, 3;
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g∗ = lim inf
t→+∞

g(t), g∗ = lim sup
t→+∞

g(t), 〈g(t)〉 =
1

t

∫ t

0

g(s)ds,

where g(t) is a continuous bounded function.
Let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions (i.e., it is increasing and right continuous, while
F0 contains all P-null sets). Let B(t) = (B1(t), B2(t), B3(t))T be 3-dimensional
independent standard Brownian motions defined on this probability space. Let
R3

+ = {x ∈ R3 : xi ≥ 0, 1 ≤ i ≤ 3}. We define the norm as |x| =
√
x2

1 + x2
2 + x2

3.

Assumption 2.1. Assume that there exists a positive constant c such that∫
Y

[ln(1 + γi(u)) ∨ (ln(1 + γi(u)))2]λ(du) < c, i = 1, 2, 3.

This assumption means that the intensities of Lévy jumps will not be too large.

Definition 2.1. ( [20]) For any given initial value x(0) = (x1(0), x2(0), x3(0))T ∈
R3

+, the solution x(t) = (x1(t), x2(t), x3(t))T of system (1.2) is
(i) extinctive, if limt→+∞ x(t) = 0 a.s;

(ii) persistent in the mean, if lim inft→+∞
1
t

∫ t
0
x(s)ds > 0 a.s.

Definition 2.2. ( [17]) For any given initial value x(0) = (x1(0), x2(0), x3(0))T ∈
R3

+, the solution x(t) = (x1(t), x2(t), x3(t))T of system (1.2) is said to be stochas-
tically and ultimately bounded for any ε ∈ (0, 1), if there is a positive constant
η = η(ε) such that the solution x(t) of system (1.2) has the property that

lim sup
t→+∞

P{|x(t)| > η} < ε.

Lemma 2.1 ( [3]). Letting Assumption 2.1 hold, for any initial value x(0) ∈ R3
+,

the solution x(t) = (x1(t), x2(t), x3(t))T of system (1.2) has the property that

lim sup
t→+∞

lnxi(t)

t
≤ 0 a.s., i = 1, 2, 3.

Lemma 2.2 ( [21]). Suppose Z(t) ∈ C(Ω × [0,+∞),R+) and let Assumption 2.1
hold.

(1) If there exist two positive constants T and δ0 such that

lnZ(t) ≤ δt− δ0
∫ t

0

Z(s)ds+ σB(t) +
3∑
i=1

δi

∫ t

0

∫
Y

ln(1 + γi(u))Ñ(ds,du) a.s.,

for all t ≥ T , where σ and δi are constants. Then, 〈Z〉∗ ≤ δ
δ0

a.s., ifδ ≥ 0;

limt→+∞ Z(t) = 0 a.s., ifδ < 0.

(2) If there exist three positive constants T , δ and δ0 such that

lnZ(t) ≥ δt− δ0
∫ t

0

Z(s)ds+ σB(t) +

3∑
i=1

δi

∫ t

0

∫
Y

ln(1 + γi(u))Ñ(ds,du) a.s.,

for all t ≥ T . Then, 〈Z〉∗ ≥ δ
δ0

a.s.
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Lemma 2.3 ( [23]). (Chebyshev’s inequality) For p ∈ (0,+∞), let Lp = Lp(Ω;Rd)
be the family of Rd-valued random variables X with E|X|p < +∞. If c > 0, p >
0, X ∈ Lp. Then, P{ω : |X(ω)| ≥ c} ≤ c−pE|X|p.

3. Existence and uniqueness of the global positive
solution

In this section, we will prove the existence and uniqueness of the global positive
solution of system (1.2), and the theorem is stated as follows.

Theorem 3.1. For any given initial value x(0) = (x1(0), x2(0), x3(0))T ∈ R3
+,

system (1.2) has a unique solution x(t) = (x1(t), x2(t), x3(t))T on t ≥ 0, and the
solution will remain in R3

+ a.s.

Proof. Since the coefficients of system (1.2) are locally Lipschitz continuous, for
any given initial value x(0) = (x1(0), x2(0), x3(0))T ∈ R3

+, there is a unique local
solution x(t) = (x1(t), x2(t), x3(t))T ∈ R3

+, for t ∈ [0, τe), where τe is the explosion
time. To show this solution is global, we need to show that τe = +∞ a.s. Let
m0 > 0 be sufficiently large such that (x1(0), x2(0), x3(0))T lie within the interval
[ 1
m0
,m0]. For each integer m ≥ m0, define the stopping time

τm = inf{t ∈ [0, τe) : x1(t) /∈ (
1

m
,m) or x2(t) /∈ (

1

m
,m) or x3(t)) /∈ (

1

m
,m)}.

Throughout this paper, we set inf ∅ = +∞ (as usual ∅ is the empty set). Obviously,
τm is increasing as m → +∞. Let τ∞ = limm→+∞ τm. Thus, τ∞ ≤ τe a.s. If we
can show τ∞ = +∞, then τe = +∞ a.s. If this assertion is false, there exist a pair
of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

Hence, there is an integer m1 ≥ m0, such that P{τm ≤ T} ≥ ε, for all m ≥ m1.
We write x1(t) = x1, x2(t) = x2, x3(t) = x3 and define a function V:R3

+ → R by

V (x1, x2, x3) = x1 − 1− lnx1 + x2 − 1− lnx2 + x3 − 1− lnx3,

for all t ∈ [0, τm], from u − 1 − lnu ≥ 0, for any u > 0. Obviously, V (x1, x2, x3) is
nonnegative. Applying Itô formula to V , we have

LV (x1, x2, x3) = (x1 − 1)[r1 − α1x1 − c1x3

a1+a2x1+a3x3
− β1x2] +

σ2
1

2 +
σ2
2

2 +
σ2
3

2

+
∫
Y[γ1(u)− ln(1 + γ1(u))]λ(du) + (x2 − 1)[r2 − α2x2

− c2x3

b1+b2x2+b3x3
− β2x1] +

∫
Y[γ2(u)− ln(1 + γ2(u))]λ(du)

+(x3 − 1)[−r3 − α3x3 + e1x1

a1+a2x1+a3x3
+ e2x2

b1+b2x2+b3x3
]

+
∫
Y[γ3(u)− ln(1 + γ3(u))]λ(du)

= r1x1 − α1x
2
1 − c1x1x3

a1+a2x1+a3x3
− β1x1x2 − r1 + α1x1

+ c1x3

a1+a2x1+a3x3
+ β1x2 +

σ2
1+σ2

2+σ2
3

2 + r2x2 − α2x
2
2

− c2x2x3

b1+b2x2+b3x3
− β2x1x2 − r2 + α2x2 + c2x3

b1+b2x2+b3x3

+β2x1 − r3x3 − α3x
2
3 + e1x1x3

a1+a2x1+a3x3
+ e2x2x3

b1+b2x2+b3x3

+r3 + α3x3 − e1x1

a1+a2x1+a3x3
− e2x2

b1+b2x2+b3x3
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+
∫
Y[γ1(u)− ln(1 + γ1(u))]λ(du)

+
∫
Y[γ2(u)− ln(1 + γ2(u))]λ(du)

+
∫
Y[γ3(u)− ln(1 + γ3(u))]λ(du)

≤ r1x1 − α1x
2
1 + α1x1 + c1

a3
+ β1x2 + r2x2 − α2x

2
2 + α2x2

+ c2
b3

+ β2x1 − α3x
2
3 + r3 + α3x3 +

σ2
1+σ2

2+σ2
3

2

+
∫
Y[γ1(u)− ln(1 + γ1(u))]λ(du)

+
∫
Y[γ2(u)− ln(1 + γ2(u))]λ(du)

+
∫
Y[γ3(u)− ln(1 + γ3(u))]λ(du).

Let

n =
∫
Y[γ1(u)− ln(1 + γ1(u))]λ(du) ∨

∫
Y[γ2(u)− ln(1 + γ2(u))]λ(du)

∨
∫
Y[γ3(u)− ln(1 + γ3(u))]λ(du).

It is a fact that there is a positive constant K such that

LV (x1, x2, x3) ≤ r1x1 − α1x
2
1 + α1x1 + c1

a3
+ β1x2 + r2x2 − α2x

2
2 + α2x2 + c2

b3
+ β2x1

−α3x
2
3 + r3 + α3x3 +

σ2
1+σ2

2+σ2
3

2 + 3n

≤ K.

Therefore,

dV (x1, x2, x3) ≤Kdt+ (x1 − 1)σ1dB1(t) +

∫
Y

[γ1(u)x1 − ln(1 + γ1(u))]Ñ(dt, du)

+ (x2 − 1)σ2dB2(t) +

∫
Y

[γ2(u)x2 − ln(1 + γ2(u))]Ñ(dt,du)

+ (x3 − 1)σ3dB3(t) +

∫
Y

[γ3(u)x3 − ln(1 + γ3(u))]Ñ(dt,du).

(3.1)

Integrating both sides of inequality (3.1) from 0 to τm ∧ T , where τm ∧ T =
min{τm, T}, we have∫ τm∧T

0

dV (x1, x2, x3) ≤
∫ τm∧T

0

Kdt+

∫ τm∧T

0

(x1 − 1)σ1dB1(t)

+

∫ τm∧T

0

(x2 − 1)σ2dB2(t) +

∫ τm∧T

0

(x3 − 1)σ3dB3(t)

+

∫ τm∧T

0

∫
Y
[γ1(u)x1 − ln(1 + γ1(u))]Ñ(dt, du)

+

∫ τm∧T

0

∫
Y

[γ2(u)x2 − ln(1 + γ2(u))]Ñ(dt, du)

+

∫ τm∧T

0

∫
Y

[γ3(u)x3 − ln(1 + γ3(u))]Ñ(dt, du).

Taking expectation, we can obtain

EV (x1(τm ∧ T ), x2(τm ∧ T ), x3(τm ∧ T )) ≤V (x1(0), x2(0), x3(0)) +KE(τm ∧ T ).
(3.2)
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Set Ωm = {τm ≤ T}. From P(τm ≤ T ) ≥ ε, then we have P(Ωm) ≥ ε. For each
ω ∈ Ωm, x1(τm, ω), x2(τm, ω) or x3(τm, ω) equals either m or 1

m , and

V (x1(τm, ω), x2(τm, ω), x3(τm, ω)) ≥min{m− 1− lnm,
1

m
− 1 + lnm}.

Therefore, from (3.2), it is not difficult to see

V (x1(0), x2(0), x3(0)) +KE(τm ∧ T ) =V (x1(0), x2(0), x3(0)) +KT

≥E[IΩm(ω)V (x1(τm, ω), x2(τm, ω), x3(τm, ω))]

≥P (Ωm(ω)) min{m− 1− lnm,
1

m
− 1 + lnm}

≥εmin{m− 1− lnm,
1

m
− 1 + lnm},

where IΩm is the indicator function of Ωm. Letting m → +∞ leads to the contra-
diction

+∞ > V (x1(0), x2(0), x3(0)) +KT ≥ +∞.

Therefore, we show τ∞ = +∞ a.s. Then, x(t) = (x1(t), x2(t), x3(t))T is the unique
global positive solution of system (1.2). Here, the proof of this theorem is completed.

Lemma 3.1. For any given initial value x(0) = (x1(0), x2(0), x3(0))T ∈ R3
+ and

p > 0, there is a constant Q such that the solution x(t) of system (1.2) satisfies
lim supt→+∞ E|x(t)|p ≤ Q. That is, the solution is stochastically and ultimately
bounded.

Proof. Define a Lyapunov function V (x) = xp1 + xp2 + xp3, p > 0. Making use of
the Itô’s formula to etV (x), we obtain

d(etV (x)) =etV (x) + etL(V (x)) + pet[σ1x
p
1dB1(t) + σ2x

p
2dB2(t) + σ3x

p
3dB3(t)]

+ et
∫
Y
xp1[(1 + γ1(u)p)− 1]Ñ(dt, du)

+ et
∫
Y
xp2[(1 + γ2(u)p)− 1]Ñ(dt, du)

+ et
∫
Y
xp3[(1 + γ3(u)p)− 1]Ñ(dt, du).

(3.3)

Integrating from 0 to t on both sides of (3.3) and taking the expectation, then

E(etV (x(t))) = V (x(0)) + E
∫ t

0

es[V (x(s)) + LV (x(s))]ds,

where

LV (x) =pxp1[r1 − α1x1 −
c1x3

a1 + a2x1 + a3x3
− β1x2] + pxp2[r2 − α2x2

− c2x3

b1 + b2x2 + b3x3
− β2x1] + pxp3[−r3 − α3x3 +

e1x1

a1 + a2x1 + a3x3

+
e2x2

b1 + b2x2 + b3x3
] +

p(p− 1)σ2
1

2
xp1 +

p(p− 1)σ2
2

2
xp2 +

p(p− 1)σ2
3

2
xp3

+

∫
Y

[(x1 + γ1(u)x1)p − xp1 − pγ1(u)xp1]λ(du)
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+

∫
Y

[(x2 + γ2(u)x2)p − xp2 − pγ2(u)xp2]λ(du)

+

∫
Y

[(x3 + γ3(u)x3)p − xp3 − pγ3(u)xp3]λ(du)

=xp1

[
pr1 +

p(p− 1)σ2
1

2
+

∫
Y
[(1 + γ1(u))p − 1− pγ1(u)]λ(du)

]
+ xp2

[
pr2 +

p(p− 1)σ2
2

2
+

∫
Y

[(1 + γ2(u))p − 1− pγ2(u)]λ(du)

]
+ xp3

[
−pr3 +

p(p− 1)σ2
3

2
+

∫
Y

[(1 + γ3(u))p − 1− pγ3(u)]λ(du)

]
− pα1x

p+1
1 − pα2x

p+1
2 − pα3x

p+1
3 − pβ1x

p
1x2 − pβ2x1x

p
2

− pc1x
p
1x3

a1 + a2x1 + a3x3
− pc2x

p
2x3

b1 + b2x2 + b3x3

+
pe1x1x

p
3

a1 + a2x1 + a3x3
+

pe2x2x
p
3

b1 + b2x2 + b3x3
.

Then,

V (x) + LV (x) ≤− pα1x
p+1
1 + xp1{1 + pr1 +

p(p− 1)σ2
1

2
} − pα2x

p+1
2

+ xp2{1 + pr2 +
p(p− 1)σ2

2

2
} − pα3x

p+1
3

+ xp3{1− pr3 +
p(p− 1)σ2

3

2
+
pe1

a2
+
pe2

b2
}

+ xp1

∫
Y
[(1 + γ1(u))p − 1− pγ1(u)]λ(du)

+ xp2

∫
Y
[(1 + γ2(u))p − 1− pγ2(u)]λ(du)

+ xp3

∫
Y
[(1 + γ3(u))p − 1− pγ3(u)]λ(du).

For any p ∈ [0, 1], according to the inequality xr ≤ 1 + r(x− 1), x ≥ 0, 0 ≤ r ≤ 1,∫
Y
[(1 + γi(u))p − 1− pγi(u)]λ(du) ≤ 0, i = 1, 2, 3.

For αi > 0, we can deduce that there exists a constant Q(p) > 0 such that

V (x) + LV (x) ≤ Q(p).

Therefore,

E(etV (x1(t), x2(t), x3(t))) ≤ V (x1(0), x2(0), x3(0)) +Q(p)(et − 1),

which implies
lim sup
t→+∞

E(xp1(t) + xp2(t) + xp3(t)) ≤ Q(p).

By fundamental inequality,

3(1− p2 )∧0|x|p ≤
3∑
i=1

xpi ≤ 3(1− p2 )∨0|x|p,



772 Y. Guo & S. Sun

for all p > 0, x ∈ R3
+, we can find a constant Q = Q(p)

3(1− p
2
)∧0 , and this yields

lim supt→+∞ E|x(t)|p ≤ Q. For any ε > 0, let η(ε) = (Qε )
1
p , and by the Cheby-

shev inequality,

lim sup
t→+∞

P(|x(t)| > η) ≤ η−pE|x(t)|p ≤ Q

ηp
< ε.

4. Extinction and persistence

In this section, we will further derive sufficient conditions for the extinction and
persistence in the mean of system (1.2).

Theorem 4.1. Let Assumption 2.1 hold, we have the following discussions about
system (1.2).

(i) If ri−µi < 0, i = 1, 2, and −r3−µ3 < 0, then all populations become extinct;

(ii) If r1 − µ1 < 0, then the population x1(t) becomes extinct. Furthermore, if
r2 − µ2 > max{0, c2b3 } and −r3 − µ3 + e1

a2
+ e2

b2
> 0, then the populations

x2(t), x3(t) are persistent in the mean. That is,

r2 − µ2 − c2
b3

α2
≤ 〈x2(t)〉∗ ≤ 〈x2(t)〉∗ ≤ r2 − µ2

α2
a.s.

−r3 − µ3

α3
≤ 〈x3(t)〉∗ ≤ 〈x3(t)〉∗ ≤

−r3 − µ3 + e1
a2

+ e2
b2

α3
a.s.;

(iii) If r2 − µ2 < 0, then the population x2(t) becomes extinct. In addition, if
r1 − µ1 > max{0, c1a3 } and −r3 − µ3 + e1

a2
+ e2

b2
> 0, then the populations

x1(t), x3(t) are persistent in the mean, namely,

r1 − µ1 − c1
a3

α1
≤ 〈x1(t)〉∗ ≤ 〈x1(t)〉∗ ≤ r1 − µ1

α1
a.s.

−r3 − µ3

α3
≤ 〈x3(t)〉∗ ≤ 〈x3(t)〉∗ ≤

−r3 − µ3 + e1
a2

+ e2
b2

α3
a.s.;

(iv) If −r3−µ3 + e1
a2

+ e2
b2
< 0, then the population x3(t) becomes extinct. Moreover,

if r1 − µ1 > max{0, c1a3 + β1
r2−µ2

α2
} and r2 − µ2 > max{0, c2b3 + β2

r1−µ1

α1
}, then

the populations x1(t), x2(t) are persistent in the mean. That is,

r1 − µ1 − c1
a3
− β1

r2−µ2

α2

α1
≤ 〈x1(t)〉∗ ≤ 〈x1(t)〉∗ ≤ r1 − µ1

α1
a.s.

r2 − µ2 − c2
b3
− β2

r1−µ1

α1

α2
≤ 〈x2(t)〉∗ ≤ 〈x2(t)〉∗ ≤ r2 − µ2

α2
a.s.;
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(v) If −r3 − µ3 + e1
a2

+ e2
b2

> 0, r1 − µ1 > max{0, c1a3 + β1
r2−µ2

α2
}, r2 − µ2 >

max{0, c2b3 + β2
r1−µ1

α1
}, then all populations are persistent in the mean. That

is,
r1 − µ1 − c1

a3
− β1

r2−µ2

α2

α1
≤ 〈x1(t)〉∗ ≤ 〈x1(t)〉∗ ≤ r1 − µ1

α1
a.s.

r2 − µ2 − c2
b3
− β2

r1−µ1

α1

α2
≤ 〈x2(t)〉∗ ≤ 〈x2(t)〉∗ ≤ r2 − µ2

α2
a.s.

−r3 − µ3

α3
≤ 〈x3(t)〉∗ ≤ 〈x3(t)〉∗ ≤

−r3 − µ3 + e1
a2

+ e2
b2

α3
a.s.

Proof. By the Itô formula, we derive from (1.2) that

d lnx1(t) =[r1 − α1x1(t)− c1x3(t)

a1 + a2x1(t) + a3x3(t)
− β1x2(t)− σ2

1

2

+

∫
Y

[ln(1 + γ1(u))− γ1(u)]λ(du)]dt+ σ1dB1(t)

+

∫
Y

[ln(1 + γ1(u))]Ñ(dt,du),

(4.1)

d lnx2(t) =[r2 − α2x2(t)− c2x3(t)

b1 + b2x2(t) + b3x3(t)
− β2x1(t)− σ2

2

2

+

∫
Y

[ln(1 + γ2(u))− γ2(u)]λ(du)]dt+ σ2dB2(t)

+

∫
Y

[ln(1 + γ2(u))]Ñ(dt,du),

(4.2)

d lnx3(t) =[−r3 − α3x3(t) +
e1x1(t)

a1 + a2x1(t) + a3x3(t)
+

e2x2(t)

b1 + b2x2(t) + b3x3(t)

− σ2
3

2
+

∫
Y

[ln(1 + γ3(u))− γ3(u)]λ(du)]dt+ σ3dB3(t)

+

∫
Y

[ln(1 + γ3(u))]Ñ(dt, du).

(4.3)

Integrating both sides of inequalities (4.1), (4.2) and (4.3) on the interval [0, t] and
dividing them by t, we can obtain

lnx1(t)− lnx1(0)

t
=r1 − µ1 − α1〈x1(t)〉 − 〈 c1x3(t)

a1 + a2x1(t) + a3x3(t)
〉 − β1〈x2(t)〉

+
σ1B1(t)

t
+
N1(t)

t
,

(4.4)
lnx2(t)− lnx2(0)

t
=r2 − µ2 − α2〈x2(t)〉 − 〈 c2x3(t)

b1 + b2x2(t) + b3x3(t)
〉 − β2〈x1(t)〉

+
σ2B2(t)

t
+
N2(t)

t
,

(4.5)
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lnx3(t)− lnx3(0)

t
=− r3 − µ3 − α3〈x3(t)〉+ 〈 e1x1(t)

a1 + a2x1(t) + a3x3(t)
〉

+ 〈 e2x2(t)

b1 + b2x2(t) + b3x3(t)
〉+

σ3B3(t)

t
+
N3(t)

t
.

(4.6)

Case 1. We will prove the conclusion of Case (i). By (4.4),

lnx1(t)− lnx1(0)

t
≤ r1 − µ1 − α1〈x1(t)〉+

σ1B1(t)

t
+
N1(t)

t
.

From the condition r1 − µ1 < 0, and by Case (1) in Lemma 2.2, we obtain
limt→+∞ x1(t) = 0. For (4.5), we know

lnx2(t)− lnx2(0)

t
≤ r2 − µ2 − α2〈x2(t)〉+

σ2B2(t)

t
+
N2(t)

t
.

Noticing that r2−µ2 < 0, and by Case (1) in Lemma 2.2, we get limt→+∞ x2(t) = 0.
Thus, we have

〈| x1(t)

a1 + a2x1(t) + a3x3(t)
|〉 ≤ 〈|x1(t)|〉 < ε1,

〈| x2(t)

b1 + b2x2(t) + b3x3(t)
|〉 ≤ 〈|x2(t)|〉 < ε2.

Let us take ε = max{ε1, ε2}, for sufficiently large t, where 0 < ε < r3+µ3

e1+e2
. Then,

for (4.6), we have

lnx3(t)− lnx3(0)

t
≤ −r3 − µ3 − α3〈x3(t)〉+ (e1 + e2)ε+

σ3B3(t)

t
+
N3(t)

t
.

We note that −r3 − µ3 < 0 and 0 < ε < r3+µ3

e1+e2
. Hence, by Case (1) in Lemma 2.2,

we have limt→+∞ x3(t) = 0.
Case 2. We will prove the conclusion in Case (ii). From (4.4),

lnx1(t)− lnx1(0)

t
≤ r1 − µ1 − α1〈x1(t)〉+

σ1B1(t)

t
+
N1(t)

t
.

According to r1 − µ1 < 0 and Case (1) of Lemma 2.2, we get

lim
t→+∞

x1(t) = 0.

It follows from (4.5) that

lnx2(t)− lnx2(0)

t
≤ r2 − µ2 − α2〈x2(t)〉+

σ2B2(t)

t
+
N2(t)

t
.

By virtue of r2 − µ2 > 0 and Case (1) of Lemma 2.2, we deduce

〈x2(t)〉∗ ≤ r2 − µ2

α2
.

From limt→+∞ x1(t) = 0, we have |〈x1(t)〉| < ε, for sufficiently large t, where

0 < ε <
r2−µ2− c2b3

β2
. Then, for (4.5), we have

lnx2(t)− lnx2(0)

t
≥ r2 − µ2 −

c2
b3
− α2〈x2(t)〉 − β2ε+

σ2B2(t)

t
+
N2(t)

t
.
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By Case (2) in Lemma 2.2, we obtain

〈x2(t)〉∗ ≥
r2 − µ2 − c2

b3
− β2ε

α2
.

According to the arbitrariness of ε, we have

r2 − µ2 − c2
b3

α2
≤ 〈x2(t)〉∗ ≤ 〈x2(t)〉∗ ≤ r2 − µ2

α2
.

Next, for (4.6), we obtain

lnx3(t)− lnx3(0)

t
≤ −r3 − µ3 − α3〈x3(t)〉+

e1

a2
+
e2

b2
+
σ3B3(t)

t
+
N3(t)

t
.

Through −r3 − µ3 + e1
a2

+ e2
b2
> 0, using Case (1) in Lemma 2.2, we have

〈x3(t)〉∗ ≤
−r3 − µ3 + e1

a2
+ e2

b2

α3
.

Again, by (4.6),

lnx3(t)− lnx3(0)

t
≥ −r3 − µ3 − α3〈x3(t)〉+

σ3B3(t)

t
+
N3(t)

t
.

Using Case (2) in Lemma 2.2, we have

〈x3(t)〉∗ ≥
−r3 − µ3

α3
.

To sum up, we can get

−r3 − µ3

α3
≤ 〈x3(t)〉∗ ≤ 〈x3(t)〉∗ ≤

−r3 − µ3 + e1
a2

+ e2
b2

α3
.

Case 3. We will give the proof of Case (iii). By (4.5),

lnx2(t)− lnx2(0)

t
≤ r2 − µ2 − α2〈x2(t)〉+

σ2B2(t)

t
+
N2(t)

t
.

We note that r2 − µ2 < 0. Hence, by Case (1) in Lemma 2.2,

lim
t→+∞

x2(t) = 0.

From (4.4),

lnx1(t)− lnx1(0)

t
≤ r1 − µ1 − α1〈x1(t)〉+

σ1B1(t)

t
+
N1(t)

t
.

Through r1 − µ1 > 0 and Case (1) in Lemma 2.2, we have

〈x1(t)〉∗ ≤ r1 − µ1

α1
.
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From limt→+∞ x2(t) = 0, we obtain 〈|x2(t)|〉 < ε, for sufficiently large t, where

0 < ε <
r1−µ1− c1a3

β1
. Then, for (4.4),

lnx1(t)− lnx1(0)

t
≥ r1 − µ1 −

c1
a3
− β1ε− α1〈x1(t)〉+

σ1B1(t)

t
+
N1(t)

t
.

By Case (2) in Lemma 2.2, we deduce

〈x1(t)〉∗ ≥
r1 − µ1 − c1

a3
− β1ε

α1
.

Therefore, in view of the arbitrariness of ε, we can get

r1 − µ1 − c1
a3

α1
≤ 〈x1(t)〉∗ ≤ 〈x1(t)〉∗ ≤ r1 − µ1

α1
.

The proof of persistent of x3(t) is the same as (ii). Therefore, we ignore it.
Case 4. We will proof Case (iv). From (4.6),

lnx3(t)− lnx3(0)

t
≤ −r3 − µ3 +

e1

a2
+
e2

b2
− α3〈x3(t)〉+

σ3B3(t)

t
+
N3(t)

t
.

Using Case (1) in Lemma 2.2 and −r3 − µ3 + e1
a2

+ e2
b2
< 0, we obtain

lim
t→+∞

x3(t) = 0.

By (4.5),

lnx2(t)− lnx2(0)

t
≤ r2 − µ2 − α2〈x2(t)〉+

σ2B2(t)

t
+
N2(t)

t
.

By virtue of r2 − µ2 ≥ 0 and Case (1) of Lemma 2.2, we deduce

〈x2(t)〉∗ ≤ r2 − µ2

α2
. (4.7)

From (4.4),

lnx1(t)− lnx1(0)

t
≤ r1 − µ1 − α1〈x1(t)〉+

σ1B1(t)

t
+
N1(t)

t
.

By r1 − µ1 > 0, it follows from Case (1) in Lemma 2.2, we have

〈x1(t)〉∗ ≤ r1 − µ1

α1
. (4.8)

Combining inequality (4.7) and Lemma 2.1, by (4.4), we can obtain

α1〈x1(t)〉∗ ≥ lim inf
t→+∞

{r1 − µ1 −
lnx1(t)− lnx1(0)

t
− c1
a3

− β1〈x2(t)〉+
σ1B1(t)

t
+
N1(t)

t
}

≥r1 − µ1 −
c1
a3
− lim sup

t→+∞

lnx1(t)

t
− β1〈x2(t)〉∗

≥r1 − µ1 −
c1
a3
− β1

r2 − µ2

α2
.

(4.9)
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To sum up, we can get

r1 − µ1 − c1
a3
− β1

r2−µ2

α2

α1
≤ 〈x1(t)〉∗ ≤ 〈x1(t)〉∗ ≤ r1 − µ1

α1
a.s.

Combining inequality (4.8) and Lemma 2.1, by (4.5), we can get

α2〈x2(t)〉∗ ≥ lim inf
t→+∞

{r2 − µ2 −
lnx2(t)− lnx2(0)

t
− c2
b3

− β2〈x1(t)〉+
σ2B2(t)

t
+
N2(t)

t
}

≥r2 − µ2 −
c2
b3
− lim sup

t→+∞

lnx2(t)

t
− β2〈x1(t)〉∗

≥r2 − µ2 −
c2
b3
− β2

r1 − µ1

α1
.

(4.10)

Thus, 〈x2(t)〉∗ ≥
r2−µ2− c2b3−β2

r1−µ1
α1

α2
. To sum up, we can get

r2 − µ2 − c2
b3
− β2

r1−µ1

α1

α2
≤ 〈x2(t)〉∗ ≤ 〈x2(t)〉∗ ≤ r2 − µ2

α2
a.s.

Case 5. We shall prove Case (v). Through (4.6), we obtain

lnx3(t)− lnx3(0)

t
≤ −r3 − µ3 − α3〈x3(t)〉+

e1

a2
+
e2

b2
+
σ3B3(t)

t
+
N3(t)

t
.

Through −r3 − µ3 + e1
a2

+ e2
b2
> 0 and from Case (1) in Lemma 2.2, we have

〈x3(t)〉∗ ≤
−r3 − µ3 + e1

a2
+ e2

b2

α3
.

Again, for (4.6),

lnx3(t)− lnx3(0)

t
≥ −r3 − µ3 − α3〈x3(t)〉+

σ3B3(t)

t
+
N3(t)

t
.

From Case (2) in Lemma 2.2, we have

〈x3(t)〉∗ ≥
−r3 − µ3

α3
.

Therefore, we have

−r3 − µ3

α3
≤ 〈x3(t)〉∗ ≤ 〈x3(t)〉∗ ≤

−r3 − µ3 + e1
a2

+ e2
b2

α3
.

For x1(t) and x2(t), the estimates of the ultimate infimum and ultimate supremum
are the same as those in Case (iv). Therefore, they are omitted. This proof is
completed.
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5. Numerical simulations

In this section, we will demonstrate our theoretical results with the help of computer
simulations through the Milstein method [11]. We choose the same initial value
(x1(0), x2(0), x3(0))T = (0.84, 0.68, 0.15)T. Other parameters always choose r1 =
0.86, r2 = 0.78, r3 = 0.02, α1 = 0.3, α2 = 0.3, α3 = 0.2, c1 = 0.32, c2 = 0.3,
a1 = 0.8, a2 = 1.12, a3 = 0.86, b1 = 0.74, b2 = 0.76, b3 = 0.84, β1 = 0.14, β2 = 0.1,
e1 = 0.24, e2 = 0.25, Y = (0,+∞), λ(Y) = 1.

Next, we will reveal the effects of white noise and Lévy noise to system (1.2) by
considering the following five examples.

Example 5.1. Let γ1 = 0.8, γ2 = 0.6, γ3 = 0.5, σ1 = 1.30, σ2 = 1.24, σ3 = 1.12.
After simple calculation, r1 − µ1 = −0.1972 < 0, r2 − µ2 = −0.1188, −r3 − µ3 =
−0.7414 < 0, then the condition of (i) in Theorem 4.1 is satisfied. Hence, all species
go to extinction (see Figure 1).
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Figure 1. (a), (b) and (c) respectively represent the sample paths of x1(t), x2(t) and x3(t) in the
stochastic model (1.2). The red lines represent the solution of deterministic model, the blue lines repre-
sent the solution of model (1.2), and the black lines represent the solution of the corresponding system
without Lévy noise.

Example 5.2. Let γ1 = 0.8, γ2 = 0.3, γ3 = 0.1, σ1 = 1.2, σ2 = 0.24, σ3 = 0.08.
After calculation, r1 − µ1 = −0.0722 < 0, r2 − µ2 = 0.7136 > max{0, 0.3571},
−r3 − µ3 + e1

a2
+ e2

b2
= 0.5153 > 0, then the condition of (ii) in Theorem 4.1 is

satisfied. Therefore, the prey population x1(t) becomes extinct, and the predator
populations x2(t), x3(t) are persistent in the mean in Figure 2.
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Figure 2. (a), (b) and (c) respectively represent the sample paths of x1(t), x2(t) and x3(t) in the
stochastic model (1.2). The red lines represent the solution of deterministic model, the blue lines repre-
sent the solution of model (1.2), and the black lines represent the solution of the corresponding system
without Lévy noise.
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Example 5.3. Let γ1 = 0.3, γ2 = 0.74, γ3 = 0.1, σ1 = 0.32, σ2 = 1.24, σ3 = 0.08.
After calculation, r1 − µ1 = 0.7712 > max{0, 0.3721}, r2 − µ2 = −0.1749 < 0,
−r3 − µ3 + e1

a2
+ e2

b2
= 0.5153 > 0, From the condition of (iii) in Theorem 4.1, the

population x2(t) becomes extinct, and the populations x1(t), x3(t) are persistent in
the mean (see Figure 3).
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Figure 3. (a), (b) and (c) respectively represent the sample paths of x1(t), x2(t) and x3(t) in the
stochastic model (1.2). The red lines represent the solution of deterministic model, the blue lines repre-
sent the solution of model (1.2), and the black lines represent the solution of the corresponding system
without Lévy noise.

Example 5.4. Let γ1 = 0.3, γ2 = 0.3, γ3 = 0.68, σ1 = 0.32, σ2 = 0.24, σ3 = 1.12.
By simple calculation, r1 − µ1 = 0.7712 > max{0, 0.7051}, r2 − µ2 = 0.7136 >
max{0, 0.6142}, −r3 − µ3 + e1

a2
+ e2

b2
= −0.2652 < 0. Then, the condition of (iv) in

Theorem 4.1 tells us that the population x3(t) becomes extinct, and the populations
x1(t), x2(t) are persistent in the mean (see Figure 4).
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Figure 4. (a), (b) and (c) respectively represent the sample paths of x1(t), x2(t) and x3(t) in the
stochastic model (1.2). The red lines represent the solution of deterministic model, the blue lines repre-
sent the solution of model (1.2) and the black lines represent the solution of the corresponding system
without Lévy noise.

Example 5.5. Let γ1 = 0.3, γ2 = 0.3, γ3 = 0.1, σ1 = 0.32, σ2 = 0.24, σ3 =
0.08. By calculation, r1 − µ1 = 0.7712 > max{0, 0.7051}, r2 − µ2 = 0.7136 >
max{0, 0.6142}, −r3 − µ3 + e1

a2
+ e2

b2
= 0.5153 > 0. Then, the condition of (v) in

Theorem 4.1 is satisfied. Hence, we can know that all populations of system (1.2)
are persistent in the mean (see Figure 5).
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Figure 5. (a), (b) and (c) respectively represent the sample paths of x1(t), x2(t) and x3(t) in the
stochastic model (1.2). The red lines represent the solution of deterministic model, the blue lines repre-
sent the solution of model (1.2) and the black lines represent the solution of the corresponding system
without Lévy noise.

6. Conclusion

This paper is related to a stochastic two-prey one-predator model with Beddington-
DeAngeli functional response and Lévy jumps. Under some sufficient conditions, we
study the dynamical properties of system (1.2) such as extinction and persistence
in the mean. In each case, we have proved that each species is either persistent or
extinct (see Figures 1-5). Finally, the theoretical results are verified by numerical
simulation. We conclude that both white noise and Lévy noise have a great impact
on population dynamics. By Theorem 4.1, under Lévy jumps interference, if the
species are extinct in the deterministic system, it will become persistent in the
stochastic system (1.2), and we only need to ensure that A = min{r1 − µ1, r2 −
µ2,−r3 − µ3} > 0. Under the interference of white noise, the persistent population
in the deterministic system will become extinct, but the extinct population cannot
become persistent, because the white noise σi can only be positive constant. In a
word, strong white noise and Lévy noise will lead to the extinction of the population.
However, relatively small white noise and Lévy jump can ensure the survival of
species.

For the stochastic population model with Lévy jumps, we can also consider
introducing impulses and time delay into the model, which is worthy of in-depth
study in our future work.
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[15] N. Lakoš, Existence of steady-state solutions for a one-predator-two prey sys-
tem, SIAM Journal on Mathematical Analysis, 2006, 21(3), 647–659.

[16] S. Li and S. Guo, Permanence of a stochastic prey–predator model with a gener-
al functional response, Mathematics and Computers in Simulation, 2021, 187,
308–336.

[17] X. Li and X. Mao, Population dynamical behavior of non-autonomous Lotka-
Volterra competitive system with random perturbation, Discrete and Continuous
Dynamical Systems. Series A., 2009, 24(2), 523–545.

[18] M. Liu and C. Bai, Dynamics of a stochastic one-prey two-predator model with
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