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Existence of Nonoscillatory Solutions for a
Rational Difference Equation of Higher Order∗

Shaoxia Jin1 and Xianyi Li2,†

Abstract In this paper, we investigate a rational difference equation of higher
order for the existence of nonoscillatory solutions. To prove our main results,
we use an inclusion theorem stated and proved in [4]. In this way, we give an
answer of an open problem formulated in [3].
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1 Introduction and preliminaries

In their paper, Amleh et al., [2] investigated the global stability, boundedness and
periodicity of the positive solutions for the following rational difference equation

xn+1 = α+
xn−1
xn

, n = 0, 1, · · · , (1.1)

where α is a positive real constant, and the initial conditions x−1, x0 are positive
real numbers. Under the condition that α is a negative real number and the initial
conditions x−1, x0 are negative numbers, Hamza has recently studied the global
stability, permanence and oscillation of equation (1.1) in [13]. However, none of the
researchers above considered the existence of non-oscillatory solutions of equation
(1.1).

In [11], DeVault, Kent and Kosmala considered the behavior of positive solutions
to rational difference equation

xn+1 = α+
xn−k
xn

, n = 0, 1, · · · , (1.2)

where α > 0, and k ∈ N is a fixed positive integer. Among other things, they have
proved that all nonoscillatory solutions of equation (1.2) converge to the positive
equilibrium x̄ = α + 1. However, it was not shown that such solutions do exist,
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which is an interesting problem. Therefore, they presented the open problem as
follows.
Open problem 1. Do there exist nonoscillatory solutions of equation (1.2)?

To the best of our knowledge, there have been no results for the above open
problem. Our main aim in this note is to solve the above problem in a more general
framework. More generally and precisely speaking, we will investigate the existence
of nonoscillatory solutions for the following higher-order rational difference equation

xn+1 = α+
xn−k∑k−1

i=0 bixn−i
, n = 0, 1, · · · , (1.3)

where α is a positive real number, k ∈ N is a fixed positive integer, b0 > 0, bi ≥
0, i = 1, 2, · · · k − 1, and the initial values x−k, x−k+1, · · · , x−1, x0 are nonnegative

real numbers such that
∑k−1
i=0 bix−i > 0. Without loss of generality, we may assume∑k−1

i=0 bi = 1.
It is easy to see that equation (1.3) with the equilibrium point x̄ = α+1 contains

equation (1.1) and equation (1.2) as its special cases.
Rational difference equation is a kind of typical nonlinear difference equation,

which has always been a hot spot among the subjects studied in recent years. It is
more important for one to find some prototypes for the development of the basic
theory of the global behavior of nonlinear difference equations of order greater than
one comes from the results for rational difference equations. For the systematical
investigations of this aspect, the monographs [1, 17, 18], the papers [3, 6, 8, 12–16,
20–22,24,25,30] and the references cited therein are hereby referred to.

Berg’s inclusion theorem [4] is the main tool to prove our main results in this
paper. For its proof, we refer the reader to [5].

The paper is organized as follows. In Section 2, we give some auxiliary results
needed for the proof of our main results. In Section 3, we formulate and prove our
main results. In Section 4, we give examples for our main result. In Section 5,
concluding remarks are given.

2 Auxiliary results

Consider the following general real nonlinear difference equation with order m ≥ 1,

F (xn, xn+1, · · · , xn+m) = 0, (2.1)

where F : Rm+1 7→ R, n ∈ N0.
Suppose that ϕn and ψn are two consequences satisfying ψn > 0 and ψn = o(ϕn)

as n→∞. Then, (maybe under certain additional conditions), for any given ε > 0,
there are a solution {xn}∞n=−1 of equation (2.1) and an n0(ε) ∈ N such

ϕn − εψn ≤ xn ≤ ϕn + εψn, n ≥ n0(ε). (2.2)

Define
X(ε) = {xn : ϕn − εψn ≤ xn ≤ ϕn + εψn, n ≥ n0(ε)},

which is called an asymptotic stripe. Therefore, if xn belongs to X(ε), then there
exists a real sequence Cn such that xn = ϕn + Cnψn and |Cn| ≤ ε for n ≥ n0(ε).

The main result in [4] is the following theorem, which is called inclusion theorem.
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Theorem 2.1. Let F (ω0, ω1, · · · , ωm) be continuously differential, when ωi = yn+i,
for i = 0, 1, · · · ,m, and yn ∈ X(1). Let the partial derivatives of F satisfy

Fωi
(yn, yn+1, · · · , yn+m) ∼ Fωi

(ϕn, ϕn+1, · · · , ϕn+m)

as n→∞ uniformly in Cj for |Cj | ≤ 1, n ≤ j ≤ n+m, as far as Fωi 6≡ 0. Assume
that there exist a sequence fn > 0 and constants A0, A1, · · · , Am such that both

F (ϕn, · · · , ϕn+m) = o(fn)

and
ψn+iFwi

(ϕn, · · · , ϕn+m) ∼ Aifn
for i = 0, 1, · · · ,m as n → ∞, and suppose that there exists an integer k with
0 ≤ k ≤ m, such that

|A0|+ · · ·+ |Ak−1|+ |Ak+1|+ · · ·+ |Am| < |Ak|.

Then, for sufficiently large n, there exists a solution {xn}∞n=−1 of equation (2.1)
satisfying (2.2).

3 Main results

Our main results in this paper are as follows.

Theorem 3.1. Let x̄ be the positive equilibrium point of equation (1.3). Assume
that α > 0. Then, equation (1.3) possesses nonoscillatory solutions.

As an application, the following corollary is derived.

Corollary 3.2. Both equation (1.1) and equation (1.2) possess nonoscillatory so-
lutions.

Hence, our result presents positive confirmation to open problem 1, and also
gives the existence result for nonoscillatory solutions of equation (1.1), which has
not been studied yet.

Proof of Theorem 3.1 Put yn = xn − x̄. Then, equation (1.3) is transformed
into

yn+k+1

∑k−1
i=0 biyn+k−i + x̄yn+k+1 +

∑k−1
i=0 biyn+k−i − yn = 0,

n = −k,−k + 1,−k + 2, · · · .
(3.1)

Equation (3.1) can be rewritten in the following form

x̄yn+k+1 +

k−1∑
i=0

biyn+k−i − yn = 0, n = −k,−k + 1,−k + 2, · · · (3.2)

provided that yn → 0 as n→∞. The general solution of equation (3.2) is

yn =

k+1∑
i=1

cit
n
i ,
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where ci ∈ C, i = 1, 2, · · · , k + 1 and ti ∈ C, i = 1, 2, · · · , k + 1 are the k + 1 roots
of the polynomial equation

P (t) = x̄tk+1 +

k−1∑
i=0

bit
k−i − 1 = 0.

The known assumption α > 0 implies P (0)P (1) < 0. Therefore, P (t) = 0 has a
positive root t lying in the interval (0, 1). Now, choose the solution zn = tn for this
t ∈ (0, 1). For some λ ∈ (1, 2), define the sequences {ϕn} and {ψn} as follows

ϕn = tn and ψn = tλn. (3.3)

Obviously, ψn > 0 and ψn = o(ϕn) as n→∞.
Now, define the function again

F (ω0, ω1, ω2, · · · , ωk+1) = ωk+1(

k−1∑
i=0

biωk−i + x̄) +

k−1∑
i=0

biωk−i − ω0.

Then, the partial derivatives of F with respect to ω0, ω1, · · · , ωk+1 are respectively

Fω0 = −1,

Fωi
= (ωk+1 + 1)bk−i, i = 1, · · · , k,

Fωk+1
=

∑k−1
i=0 biωk−i + x̄.

(3.4)

When yn ∈ X(1), we have yn ∼ ϕn. Hence, one has

Fωi
(yn, yn+1, · · · , yn+k+1) ∼ Fωi

(ϕn, ϕn+1, · · · , ϕn+k+1), i = 0, 1, · · · , k + 1,

as n→∞ uniformly in Cj for |Cj | ≤ 1, n ≤ j ≤ n+ k + 1.
Moreover, according to the definitions of the function F , (3.3) and (3.4), it

follows

F (ϕn, ϕn+1, · · · , ϕn+k+1) = t2n+k+1
∑k−1
i=0 bit

k−i,

ψnFω0
(ϕn, ϕn+1, · · · , ϕn+k+1) = −tλn,

ψn+iFωi
(ϕn, ϕn+1, · · · , ϕn+k+1) = bk−it

λ(n+i)(tn+k+1 + 1), i = 1, · · · , k,

ψn+k+1Fωk+1
(ϕn, ϕn+1, · · · , ϕn+k+1) = tλ(n+k+1)(

∑k−1
i=0 bit

n+k−i + x̄).

Let us choose fn = tλn. Then, it is not difficult to derive both

F (ϕn, ϕn+1, · · · , ϕn+k+1) = o(fn)

and

ψn+iFωi
(ϕn, ϕn+1, · · · , ϕn+k+1) ∼ Aifn, i = 0, 1, · · · , k + 1,

where A0 = −1, Ai = bk−it
λi, i = 1, · · · , k, Ak+1 = tλ(k+1)x̄.
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Noticing λ ∈ (1, 2) and t ∈ (0, 1), one has

k+1∑
i=1

|Ai| =
k∑
i=1

bk−it
λi + tλ(k+1)x̄ <

k∑
i=1

bk−it
i + tk+1x̄ = 1 = |A0|.

This implies that all conditions of Theorem 2.1 are satisfied. Accordingly, we see
that, for arbitrary ε ∈ (0, 1) and for sufficiently large n, saying n ≥ N0 ∈ N ,
equation (3.1) has a solution {yn}∞n=−1 in the stripe

ϕn − εψn ≤ yn ≤ ϕn + εψn, n ≥ N0,

where ϕn and ψn are defined in (3.3). It is easy to see yn > 0 for n ≥ N0, because
ϕn − εψn > ϕn − ψn = tn − tλn > 0. Thus, equation (1.3) has a solution {xn}∞n=−1
satisfying xn = yn + x̄ > x̄ for n ≥ N0. Since equation (1.3) is an autonomous
equation, and {xn+N0+1}∞n=−1 is still its solution, evidently satisfying xn+N0+1 > x̄
for n ≥ −1. Therefore, the proof is complete.

Remark 3.3. Equation (1.3) has also solutions with a single negative semicyle.
In fact, ϕn is taken as −tn in (3.3), then ϕn + εψn < −tn + tλn < 0, which
indicates that equation (1.3) possesses the solution {xn}∞n=−1, remaining below its
equilibrium for all n ≥ −1.

Remark 3.4. Consider the following difference equation

xn+1 =
a+

∑k
i=0 aixn−i

b+
∑k
i=0 bixn−i

, n = 0, 1, · · · , (3.5)

where the initial conditions x−k, · · · , x−1, x0 are arbitrary positive real numbers, k
is a positive integer number, and the parameters a, b, ai, bi for i = 0, 1, · · · , k are
nonnegative with a+

∑k
i=0 ai > 0 and b+

∑k
i=0 bi > 0 such that the denominator

is always positive.
The authors in [33] obtained the existence of nonoscillatory solutions of equation

(3.5) by using the inclusion theorem, too. Nevertheless, one can see that equation
(1.3) and equation (3.5) are two different difference equations.

4 Examples

Example 4.1. Consider the following difference equation

xn+1 = α+
xn−1
xn

, n = 0, 1, · · · ,

where α is a positive real constant, and the initial conditions x−1, x0 are positive
real numbers.

Obviously, this difference equation, i.e., equation (1.1) is a special case of equa-
tion (1.3) under the conditions k = 1 and b0 = 1. According to Theorem 2.1, this
difference equation has nonoscillatory solutions.

Example 4.2. In this note, we investigate the existence of nonoscillatory solutions
for a rational difference equation of higher order. As a corollary, our result solves
an open problem presented in [11]. The higher-order rational difference equation
we study in this paper is different from the one considered in [33].
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The investigations on rational difference equations are still interesting for many
readers. Some problems for rational difference equations, such as dichotomy [9,10],
trichotomy [23], bifurcation [26, 28, 31, 32] and chaos [31, 32], are worthy of further
consideration under the difference equation as follows

xn+1 = α+
xn−k
xn

, n = 0, 1, · · · ,

where α > 0 and k ∈ N is a fixed positive integer.

Equation (1.3) with b0 = 1, b1 = b2 = · · · = bk−1 = 0 is reduced to the above
difference equation, namely, equation (1.2). Therefore, in view of Theorem 2.1, this
difference equation possesses nonoscillatory solutions.

Combining the results in the above two examples, one can see the correctness
of Corollary 3.2.

5 Conclusions and discussions

In this note, we investigate the existence of nonoscillatory solutions for a rational
difference equation of higher order. As a corollary, our result solves an open problem
presented in [11]. The higher-order rational difference equation we study in this
paper is different with the one considered in [33].

The investigations on rational difference equations are still interesting for many
readers. Some problems for rational difference equations, such as dichotomy [9,
10], trichotomy [23], bifurcation [26, 31, 32] and chaos [31], are worthy of further
consideration.
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