
Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn

Volume 4, Number 4, December 2022, 791–807 DOI:10.12150/jnma.2022.791

On Time-space Fractional Reaction-diffusion
Equations with Nonlocal Initial Conditions∗
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Abstract This paper investigates the nonlinear time-space fractional reaction-
diffusion equations with nonlocal initial conditions. Based on the operator
semigroup theory, we transform the time-space fractional reaction-diffusion e-
quation into an abstract evolution equation. The existence and uniqueness of
mild solution to the reaction-diffusion equation are obtained by solving the
abstract evolution equation. Finally, we verify the Mittag-Leffler-Ulam sta-
bilities of the nonlinear time-space fractional reaction-diffusion equations with
nonlocal initial conditions. The results in this paper improve and extend some
related conclusions to this topic.

Keywords Time-space fractional reaction-diffusion equation, Nonlocal ini-
tial condition, Mild solution, Existence and uniqueness, Mittag-Leffler-Ulam
stability.

MSC(2010) 35R11, 47J35.

1. Introduction

In this paper, we study the nonlocal initial-boundary value problem for the time-
space fractional reaction-diffusion equations (FRDE for short) with fractional Lapla-
cian

CDα
t u(x, t) + (−∆)βu(x, t) = f(x, t, u(x, t)), (x, t) ∈ Ω× [0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

u(x, 0) = u0(x) +
p∑
k=1

cku(x, tk), (x, tk) ∈ Ω× [0, T ],

(1.1)

where CDα
t is the Caputo fractional derivative of the order α ∈ (0, 1), (−∆)β is

a fractional Laplacian with β ∈ (0, 1), Ω is an open bounded domain in Rn with
the smooth boundary ∂Ω, 0 < t1 < t2 < · · · < tp < T , T > 0 is a constant,
p ∈ N, ck 6= 0(k = 1, 2, ..., p) are real numbers, u0 : Ω→ R, and the nonlinear term
f : Ω× [0, T ]× R→ R is Carathéodory continuous.

FRDE is a subject of extensive research on fractional calculus, which has a wide
range of applications in modeling such as mechanics of materials, fluid mechanics,
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signal processing and control as well as biology (see [4, 10, 15, 22, 28, 32–34] for
details). In recent years, many scholars have been committed to the research of
time-fractional or space-fractional partial differential equation (see [11–13, 38–40,
43]). On the other hand, there are numerous works that have been devoted to
fractional diffusion equations. We only list a number of the numerous papers on the
analysis for fractional diffusion equation. Eidelman and Kochubei [16] considered
an evolution equation with the regularized fractional derivative of an order α ∈
(0, 1). Jia and Li [19] obtained the Maximum principles of time-space fractional
diffusion equation with Riemann-Liouville time-fractional derivative. Kemppainen,
Siljander and Zacher [21] studied the Cauchy problem for a nonlocal heat equation,
which is of fractional order both in space and time. In [23], Li, Liu and Wang
established Lr−Lq estimates and weighted estimates of the fundamental solutions,
and obtained the existence and uniqueness of mild solutions to Keller-Segel type
time-space fractional diffusion equation. The paper [24] constructed the iterative
sequence of mild solution for time-space fractional diffusion equation with delay. A
class of time fractional diffusion equation representation of solutions was derived by
using Laplace transform in [35].

In 1990, Byszewski and Lakshmikantham [8] first investigated the existence of
mild solution for nonlocal differential equations. Since the nonlocal initial condi-
tions had been applied physics with better effect than the classical initial conditions,
researchers began to study differential equations with nonlocal conditions and ob-
tained some fundamental results (see [5, 6, 8, 14, 25, 41] for more comments and
citations). As some results are in relation to the time-space FRDE (1.1), when
ck = 0, k = 1, 2, ..., p, one can see [24] and [30]. Whereas, there are few articles
studying time-space FRDEs with nonlocal initial conditions. The aim of this paper
is to extend the current results of the classical initial conditions considered into
time-space fractional diffusion equations with nonlocal initial conditions. This ex-
tension is not just a mathematical problem, but is caused by numerous physical
applications. As there are multitudinous works describing the significance of frac-
tional and nonlocal models in the anomalous diffusion, one can refer to [30] and its
references for details.

In the theory of functional equations, there are some special kinds of data de-
pendence such as Ulam-Hyers, Ulam-Hyers-Rassias, Ulam-Hyers-Bourgin and Aoki-
Rassias [9, 18, 20]. Motivated by the results of [36], we further study the Mittag-
leffler-Ulam stability of the time-space FRDE (1.1), and obtain some new and in-
teresting stability results.

The main results with respect to the time-space FRDE (1.1) involving nonlocal
initial conditions of this paper are as follows.

Theorem 1.1. Assuming that the nonlinear function f : Ω×[0, T ]×R→ R satisfies
the Carathéodory type condition and the following hypotheses,
(H1) there exist a constant q ∈ [0, α) and a function m(x, t) satisfying ‖m(t)‖Hβ(Ω) ∈
L1/q([0, T ],R+) with M =

( ∫ T
0
‖m(t)‖1/qHβ(Ω)

dt
)q

such that |f(x, t, u)| 6 m(x, t) for

all x ∈ Ω, t ∈ [0, T ], u ∈ R, and the norm ‖ · ‖Hβ(Ω) of Sobolev space Hβ(Ω) is
introduced in the following section;

(H2) ck > 0, k = 1, 2, ..., p and
p∑
k=1

ck < 1 are satisfied, then FRDE (1.1) has at

least one mild solution u ∈ C(Ω× [0, T ],R).

Theorem 1.2. Assuming that the nonlinear function f : Ω×[0, T ]×R→ R satisfies
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condition (H2) and the following condition (H3),

(H3) there exists a positive constant L <
(1−

∑p
k=1 ck)Γ(α+1)

Tα , where Γ(·) is Gamma
function, such that |f(x, t, u) − f(x, t, v)| 6 L|u − v| for all x ∈ Ω, t ∈ [0, T ],
u, v ∈ R, then FRDE (1.1) has a unique mild solution u ∈ C(Ω× [0, T ],R).

Theorem 1.3. Assuming that all assumptions of Theorem 1.2 are satisfied, then
FRDE (1.1) is Mittag-Leffler-Ulam-Hyers stable.

Theorem 1.4. Suppose that the function ϕ ∈ C([0, T ],R+) is increasing, and there
exists η > 0 such that

1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s) ds 6 ηϕ(t), t ∈ [0, T ],

where Γ(·) is Gamma function. If the conditions of Theorem 1.2 are satisfied, then
FRDE (1.1) is generalized Mittag-Leffler-Ulam-Hyers-Rassias stablity with respect
to ηEα, where Eα is Mittag-Leffler function.

The paper is organized as follows. In Section 2, we first introduce some notations
and preliminaries which are used to prove our main results. In Section 3, we prove
the existence and uniqueness of the mild solutions of FRDE (1.1), namely, Theorem
1.1 and Theorem 1.2. In Section 4, we verify the Mittag-Leffler-Ulam-Hyers stability
of FRDE (1.1), namely, Theorem 1.3 and Theorem 1.4.

2. Preliminaries

In this section, we briefly give some notations and definitions for the sake of readers’
convenience.

We adopt the β ∈ (0, 1) order Dirichlet Laplacian (−∆)β by Balakrishnan for-
mula [3]. Let us begin by reviewing the classical spectral Laplacian −∆ with zero
Dirichlet boundary condition. As is known to all, −∆ : D(−∆) ⊂ L2(Ω) → L2(Ω)
is unbounded, positive and closed with dense domain D(−∆) = H1

0 (Ω) ∩ H2(Ω).
Moreover, from [2], one knows that −∆ has a compact resolvent in L2(Ω), and there
exists a non-decreasing sequence 0 < λ1 6 λ2 6 · · · 6 λj 6 · · · called eigenvalues
for −∆, λj → ∞ as j → ∞. Denoting the orthonormal eigenfunctions {φj}j∈N
associated with {λj}j∈N is an orthonormal basis of L2(Ω) as well as an orthogonal
basis of H1

0 (Ω). That is, −∆φj = λjφj , x ∈ Ω,

φj = 0, x ∈ ∂Ω.

Thus, we introduce the fractional power Dirichlet Laplacian.

Definition 2.1. The spectral fractional Laplacian is defined on the space C∞0 (Ω)
as

(−∆)βu :=

∞∑
j=1

λβj ujφj , uj :=

∫
Ω

uφj dx, j ∈ N.

The fractional power Laplacian from spectral theory and the semigroups theory
is

(−∆)βu =
sinβπ

π

∫ ∞
0

λβ−1(λI −∆)−1(−∆)u dλ
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by Balakrishnan formula in [3]. It can be seen from [7] that the spectral definition
is equivalent to the Balakrishnan definition in L2(Ω).

We introduce the following definitions related to fractional-order Sobolev space
on Ω ⊂ Rn, which can be found in [2,27,29]. We denote the norm of L2(Ω) by ‖ · ‖2
and the β ∈ (0, 1) order Sobolev space

Hβ(Ω) :=
{
u ∈ L2(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2β
dx dy <∞

}
endowed with the natural norm

‖u‖Hβ(Ω) =
(
‖u‖22 + |u|2Hβ(Ω)

) 1
2

, u ∈ Hβ(Ω),

where the seminorm |u|2Hβ(Ω) is defined as follows

|u|2Hβ(Ω) :=

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2β
dx dy, u ∈ Hβ(Ω).

Let
Hβ

0 (Ω) := {u ∈ Hβ(Ω) : ∆u(x)|∂Ω = 0}

and

H
1
2
00(Ω) :=

{
u ∈ H 1

2 (Ω) :

∫
Ω

u2(x)

dist(x, ∂Ω)
dx <∞

}
with the norm

‖u‖
H

1
2
00(Ω)

=

(
‖u‖2

H
1
2 (Ω)

+

∫
Ω

u2(x)

dist(x, ∂Ω)
dx

) 1
2

.

From [2], we also define the fractional Sobolev space

Hβ(Ω) :=

{
u =

∞∑
j=1

ujφj ∈ L2(Ω) : ‖u‖2Hβ(Ω) :=

∞∑
j=1

λβj u
2
j <∞

}
,

where λj are the eigenvalues of −∆ with zero Dirichlet boundary conditions on Ω,
and φj are eigenfunctions with respect to λj and

uj =

∫
Ω

uφj dx.

The characterization of the Sobolev space Hβ(Ω) is as follows

Hβ(Ω) =


Hβ(Ω) = Hβ

0 (Ω), β ∈ (0, 1
2 ),

H
1
2
00(Ω), β = 1

2 ,

Hβ
0 (Ω), β ∈ ( 1

2 , 1).

Let C([0, T ],Hβ(Ω)) be a Banach space of all Hβ(Ω)-value continuous functions
on [0, T ] with the norms ‖u‖C := supt∈[0,T ] ‖u(t)‖Hβ(Ω) and Au = −∆u, u ∈ Hβ(Ω).
It is well-known that a positive, uniformly bounded analytic semigroup T (t)(t > 0)
has been generated by −A from [1] and [31], since −A has compact resolvent in
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L2(Ω), and then T (t)(t > 0) is also a compact semigroup. From [42], based on the
equivalence of spectral definition and Balakrishnan definition, we know that −Aβ
generates a positive, compact and uniformly bounded analytic semigroup Tβ(t)(t >
0). Moreover, Tβ(t)(t > 0) is a contractive semigroup.

For u ∈ Hβ(Ω), define the two operators Tα,β(t)(t > 0) and Sα,β(t)(t > 0) by

Tα,β(t)u =

∫ ∞
0

hα(s)Tβ(tαs)u ds, Sα,β(t)u = α

∫ ∞
0

shα(s)Tβ(tαs)u ds,

where

hα(s) =
1

πα

∞∑
n=1

(−s)n−1 Γ(nα+ 1)

n!
sin(nπα), s ∈ (0,∞)

is a function of Wright type defined on (0,∞) satisfying

hα(s) > 0, s ∈ (0,∞),

∫ ∞
0

hα(s)ds = 1,

and ∫ ∞
0

sγhα(s)ds =
Γ(1 + γ)

Γ(1 + αγ)
, γ ∈ [0, 1].

The following lemma can be found in [17,37].

Lemma 2.1. The operators Tα,β(t)(t > 0) and Sα,β(t)(t > 0) have the following
properties.

(i) The operators Tα,β(t)(t > 0) and Sα,β(t)(t > 0) are strongly continuous,
which means that for any u ∈ Hβ(Ω) and 0 6 t1 6 t2 6 T , as t2 − t1 → 0,

‖Tα,β(t2)u−Tα,β(t1)u‖Hβ(Ω) → 0, ‖Sα,β(t2)u−Sα,β(t1)u‖Hβ(Ω) → 0.

(ii) If C0-semigroup Tβ(t)(t > 0) is uniformly bounded and contractive, then for
any fixed t > 0, Tα,β(t) and Sα,β(t) are linear and bounded operators, which
means that for any u ∈ Hβ(Ω),

‖Tα,β(t)u‖Hβ(Ω) 6 ‖u‖Hβ(Ω), ‖Sα,β(t)u‖Hβ(Ω) 6
1

Γ(α)
‖u‖Hβ(Ω).

(iii) If C0-semigroup Tβ(t)(t > 0) is compact, then Tα,β(t) and Sα,β(t) are compact
operators for every t > 0.

(iv) If C0-semigroup Tβ(t)(t > 0) is continuous by operator norm for every t > 0,
then Tα,β(t) and Sα,β(t) are uniformly continuous for every t > 0.

By the contraction of semigroup Tβ(t)(t > 0) and condition (H2), we have

∥∥∥ p∑
k=1

ckTα,β(tk)
∥∥∥
Hβ(Ω)

6
p∑
k=1

ck < 1.

According to the operator spectral theorem, we know that the operator

B :=
(
I −

p∑
k=1

ckTα,β(tk)
)−1
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exists and is bounded. Moreover, by Neumann expression, B can be expressed by

B =

∞∑
n=0

( p∑
k=1

ckTα,β(tk)
)n
. (2.1)

Therefore,

‖B‖Hβ(Ω) 6
∞∑
n=0

∥∥∥ p∑
k=1

ckTα,β(tk)
∥∥∥n
Hβ(Ω)

=
1

1− ‖
∑p
k=1 ckTα,β(tk)‖Hβ(Ω)

6
1

1−
∑p
k=1 ck

. (2.2)

Lemma 2.2. For σ ∈ (0, 1] and 0 < a 6 b, we have

|aσ − bσ| 6 (b− a)σ.

Theorem 2.1 (Theorem 1.4, [26]). For any t ∈ [0, T ), if

u(t) 6 a(t) +

n∑
i=1

bi(t)

∫ t

0

(t− s)αi−1u(s) ds,

where not all the functions are negative continuous. The constants αi > 0, bi(i =
1, 2, ..., n) are the bounded and monotonic increasing functions on [0, T ), then

u(t) 6
∞∑
k=1

(
n∑

1′,2′,··· ,k′=1

∏k
i=1[bi′(t)Γ(αi′)]

Γ(
∑k
i=1 αi′)

∫ t

0

(t− s)
∑k
i=1 αi′−1a(s) ds

)
.

Remark 2.1. For n = 2, if the constants b1, b2 > 0, α1, α2 > 0, a(t) is nonnegative
and locally intergrable on 0 6 t < T , and u(t) is nonnegative and locally integrable
on 0 6 t < T with

u(t) 6 a(t) + b1

∫ t

0

(t− s)α1−1u(s) ds+ b2

∫ t

0

(t− s)α2−1u(s) ds.

Then,

u(t) 6 a(t)+

∞∑
k=1

[
(b1Γ(α1))k

Γ(kα1)

∫ t

0

(t−s)kα1−1a(s) ds+
(b2Γ(α2))k

Γ(kα2)

∫ t

0

(t−s)kα2−1a(s) ds

]
.

Remark 2.2. Under the hypothesis of Remark 2.1, let a(t) be a nondecreasing
function on 0 6 t < T . Then, we have

u(t) 6 a(t)(Eα1
[b1Γ(α1)tα1 ] + Eα2

[b2Γ(α2)tα2 ]),

where Eα[·] is the Mittag-Leffler function defined by Eα[z] =
∑∞
k=0

zk

Γ(kα+1) , z ∈ C.
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3. Existence and uniqueness of mild solutions

In this section, we will give a proof of the existence and uniqueness of mild solutions
to the time-space FRDE (1.1). That is to say, we will prove Theorem 1.1 and
Theorem 1.2. Let u(t) = u(·, t), f(t, u(t)) = f(·, t, u(·, t)), u0 +

∑p
k=1 cku(tk) =

u0(·) +
∑p
k=1 cku(·, tk). Then, FRDE (1.1) can be rewritten as an abstract form in

C([0, T ],Hβ(Ω)) of the fractional evolution equation with nonlocal conditions
CDα

t u(t) +Aβu(t) = f(t, u(t)), t ∈ [0, T ],

u(0) = u0 +
p∑
k=1

cku(tk).
(3.1)

Definition 3.1. A function u ∈ C([0, T ],Hβ(Ω)) is a mild solution to (3.1), if it
satisfies

u(t) = Tα,β(t)Bu0 +

p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, u(s)) ds

+

∫ t

0

(t− s)α−1Sα,β(t− s)f(s, u(s)) ds. (3.2)

Proof of Theorem 1.1. From the above, we know that FRDE (1.1) can be
transformed into the abstract nonlocal evolution (3.1). In what follows, we prove
the existence of the mild solution to the nonlocal problem (3.1) by applying fixed
point theorem. We set

BR,T =
{
u ∈ C([0, T ],Hβ(Ω)) | ‖u‖C 6 R,R > 0

}
as a nonempty, closed and convex subset in C([0, T ],Hβ(Ω)). Then, for any u ∈
BR,T , we consider the operator P on C([0, T ],Hβ(Ω)) defined by

(Pu)(t) =Tα,β(t)Bu0 +

p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, u(s)) ds

+

∫ t

0

(t− s)α−1Sα,β(t− s)f(s, u(s)) ds. (3.3)

From Definition 3.1, the mild solution of the nonlocal problem (3.1) on [0, T ] is
equivalent to the fixed point of the operator P defined by (3.3). Next, we prove
that the operator P has a fixed point via Schauder fixed point theorem.

First, we demonstrate that P is continuous on BR,T . Let {un}∞n=1 ⊂ C([0, T ],Hβ(Ω))
be a sequence and limn→∞ un = u in C([0, T ],Hβ(Ω)). Owing to the continuity of
f , we know limn→∞ f(s, un(s)) = f(s, u(s)) for all s ∈ [0, T ]. Therefore,

sup
s∈[0,T ]

‖f(s, un(s))− f(s, u(s))‖Hβ(Ω) → 0 as n→∞. (3.4)

Then, for t ∈ [0, T ], we have

‖(Pun)(t)− (Pu)(t)‖Hβ(Ω)

6

∑p
k=1 ck

1−
∑p
k=1 ck

1

Γ(α)

∫ tk

0

(tk − s)α−1‖f(s, un(s))− f(s, u(s))‖Hβ(Ω) ds



798 P. Chen & P. Gao

+
1

Γ(α)

∫ t

0

(t− s)α−1‖f(s, un(s))− f(s, u(s))‖Hβ(Ω) ds

6

∑p
k=1 ckT

α

(1−
∑p
k=1 ck)Γ(1 + α)

sup
s∈[0,T ]

‖f(s, un(s))− f(s, u(s))‖Hβ(Ω)

+
Tα

Γ(1 + α)
sup

s∈[0,T ]

‖f(s, un(s))− f(s, u(s))‖Hβ(Ω)

=
Tα

(1−
∑p
k=1 ck)Γ(1 + α)

sup
s∈[0,T ]

‖f(s, un(s))− f(s, u(s))‖Hβ(Ω),

which means

‖(Pun)− (Pu)‖C 6
Tα

(1−
∑p
k=1 ck)Γ(1 + α)

sup
s∈[0,T ]

‖f(s, un(s))− f(s, u(s))‖Hβ(Ω).

By (3.4), we conclude

‖(Pun)− (Pu)‖C → 0 as n→∞.

Namely, P is continuous on BR,T .
Next, we show that there exists a constant R > 0 being determined latter such

that P (BR,T ) ⊂ BR,T . For any u ∈ BR,T and t ∈ [0, T ], following condition (H1),
we have

‖(Pu)(t)‖Hβ(Ω)

6‖B‖Hβ(Ω) · ‖u0‖Hβ(Ω) +

p∑
k=1

ck · ‖B‖Hβ(Ω)

1

Γ(α)

∫ tk

0

(tk − s)α−1‖f(s, u(s))‖Hβ(Ω) ds

+
1

Γ(α)

∫ t

0

(t− s)α−1‖f(s, u(s))‖Hβ(Ω) ds

6
‖u0‖Hβ(Ω)

1−
∑p
k=1 ck

+

∑p
k=1 ck

1−
∑p
k=1 ck

1

Γ(α)

(∫ tk

0

(
tk − s

)α−1
1−q ds

)1−q(∫ tk

0

‖m(s)‖1/qHβ(Ω)
ds
)q

+
1

Γ(α)

(∫ t

0

(
t− s

)α−1
1−q ds

)1−q(∫ t

0

‖m(s)‖1/qHβ(Ω)
ds
)q

6
1

1−
∑p
k=1 ck

(
‖u0‖Hβ(Ω) +

MTα−q

Γ(α)

( 1− q
α− q

)1−q)
:= R. (3.5)

Hence, P : BR,T → BR,T is bounded.
In what follows, we prove that the P (BR,T ) is equicontinuous. For any u ∈ BR,T

and 0 6 t1 < t2 6 T , we have

(Pu)(t2)− (Pu)(t1)

= Tα,β(t2)Bu0 −Tα,β(t1)Bu0

+

p∑
k=1

ck(Tα,β(t2)−Tα,β(t1))B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, u(s)) ds

+

∫ t2

t1

(t2 − s)α−1Sα,β(t2 − s)f(s, u(s)) ds

+

∫ t1

0

((t2 − s)α−1 − (t1 − s)α−1)Sα,β(t2 − s)f(s, u(s)) ds
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+

∫ t1

0

((t1 − s)α−1(Sα,β(t2 − s)−Sα,β(t1 − s))f(s, u(s)) ds

:= J1 + J2 + J3 + J4 + J5.

Owing to

‖(Pu)(t2)− (Pu)(t1)‖Hβ(Ω) 6
5∑
i=1

‖Ji‖Hβ(Ω),

we just need to examine that ‖Ji‖Hβ(Ω) → 0(i = 1, 2, ..., 5) is independent of u ∈
BR,T , as t2 − t1 → 0.
According to (i) of Lemma 2.1, ‖J1‖Hβ(Ω) 6 ‖Tα,β(t2)−Tα,β(t1)‖Hβ(Ω)Bu0 → 0,

‖J2‖Hβ(Ω) 6‖Tα,β(t2)−Tα,β(t1)‖Hβ(Ω)

×
p∑
k=1

ckB

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, u(s)) ds→ 0,

and ‖J3‖Hβ(Ω) → 0 are available as t2 → t1.
For J4, using the Lemma 2.1, Lemma 2.2 and the Hölder inequality,

‖J4‖Hβ(Ω) 6
1

Γ(α)

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
‖m(s)‖Hβ(Ω) ds

6
1

Γ(α)

(∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

) 1
1−q ds

)1−q

×
(∫ t1

0

‖m(s)‖1/qHβ(Ω)
ds

)q
6

M

Γ(α)

(∫ t1

0

(
(t1 − s)

α−1
1−q − (t2 − s)

α−1
1−q
)
ds

)1−q

6
M

Γ(α)

( 1− q
α− q

)1−q(
t
α−q
1−q
1 − t

α−q
1−q
2 + (t2 − t1)

α−q
1−q
)1−q

6
M

Γ(α)

( 1− q
α− q

)1−q(
2(t2 − t1)

)α−q → 0 as t2 → t1.

It is conspicuous that ‖J5‖Hβ(Ω) = 0, when t1 = 0, 0 < t2 6 T . Now, we consider
t1 > 0 and 0 < ε < t1, and based on the equicontinuity of the semigroup Tβ(t)(t >
0), we have

‖J5‖Hβ(Ω)

6
∫ t1−ε

0

(t1 − s)α−1‖Sα,β(t2 − s)−Sα,β(t1 − s)‖Hβ(Ω) · ‖f(s, u(s))‖Hβ(Ω) ds

+

∫ t1

t1−ε
(t1 − s)α−1‖Sα,β(t2 − s)−Sα,β(t1 − s)‖Hβ(Ω) · ‖f(s, u(s))‖Hβ(Ω) ds

6 sup
s∈[0,t1−ε]

‖Sα,β(t2 − s)−Sα,β(t1 − s)‖Hβ(Ω)

∫ t1−ε

0

(t1 − s)α−1‖m(s)‖Hβ(Ω) ds

+
2

Γ(α)

∫ t1

t1−ε
(t1 − s)α−1‖m(s)‖Hβ(Ω) ds
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6 sup
s∈[0,t1−ε]

‖Sα,β(t2 − s)−Sα,β(t1 − s)‖Hβ(Ω) ·M
( 1− q
α− q

)1−q(
t
α−q
1−q
1 − ε

α−q
1−q

)1−q

+
2M

Γ(α)

( 1− q
α− q

)1−q
εα−q → 0 as t2 → t1, ε→ 0.

Therefore, ‖(Pu)(t2) − (Pu)(t1)‖Hβ(Ω) → 0 as t2 → t1, and it is not dependent on
u ∈ BR,T , which means that P : BR,T → BR,T is equicontinuous.

Finally, we prove that the set (PBR,T )(t) is relatively compact in BR,T . For
ε > 0, we define a set

(PεBR,T )(t) = {(Pεu)(t) | u ∈ BR,T , t ∈ [0, T ]},

where Pεu is defined as follows

(Pεu)(t) =Tα,β(t+ ε)Bu0 +

p∑
k=1

ckTα,β(t+ ε)B

×
∫ tk

0

(tk − s)α−1Sα,β(tk + ε− s)f(s, u(s)) ds

+

∫ t

0

(t− s)α−1Sα,β(t+ ε− s)f(s, u(s)) ds

=Tα,β(ε)Tα,β(t)Bu0 + Tα,β(ε)Sα,β(ε)

p∑
k=1

ckTα,β(t)B

×
∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, u(s)) ds

+ Sα,β(ε)

∫ t

0

(t− s)α−1Sα,β(t− s)f(s, u(s)) ds,

for every t ∈ [0, T ]. Since the operators Tα,β(ε) and Sα,β(ε) are compact in Hβ(Ω),
then the set (PεBR,T )(t) is relatively compact in Hβ(Ω). Since

‖(Pu)(t)− (Pεu)(t)‖Hβ(Ω)

6‖Tα,β(t)Bu0 −Tα,β(ε)Tα,β(t)Bu0‖Hβ(Ω)

+

∥∥∥∥ p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, u(s)) ds

−Tα,β(ε)Sα,β(ε)

p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, u(s)) ds

∥∥∥∥
Hβ(Ω)

+

∥∥∥∥∫ t

0

(t− s)α−1Sα,β(t− s)f(s, u(s)) ds

−Sα,β(ε)

∫ t

0

(t− s)α−1Sα,β(t− s)f(s, u(s)) ds

∥∥∥∥
Hβ(Ω)

→0, as ε→ 0,

which yields that (PBR,T )(t) is relatively compact. By the Arzela-Ascoli theorem,
P is a compact continuous operator on BR,T .
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Therefore, P : BR,T → BR,T has at least one fixed point via the Schauder
fixed point theorem, which means the nonlocal problem (3.1) has mild solution
u ∈ C([0, T ],Hβ(Ω)). Following the time-space FRDE (1.1), it can be transformed
into the abstract evolution equation (3.1). Thus, FRDE (1.1) has at least one mild
solution u(x, t) ∈ C(Ω× [0, T ],R). This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. From the proof of Theorem 1.1, we know that FRDE (1.1)
can be transformed into the abstract nonlocal evolution equation (3.1) in Sobolev s-
pace Hβ(Ω), and the mild solutions of the abstract nonlocal evolution equation (3.1)
are equivalent to the fixed point of operator P : C([0, T ],Hβ(Ω))→ C([0, T ],Hβ(Ω))
defined by (3.3). By condition (H3), we get

‖f(t, u(t))− f(t, v(t))‖Hβ(Ω) 6

( ∞∑
j=1

λβj

(∫
Ω

|f(t, u(t))− f(t, v(t))|φj dx
)2
) 1

2

6

( ∞∑
j=1

λβj

(∫
Ω

L|u(t)− v(t)|φj dx
)2
) 1

2

= L‖u(t)− v(t)‖Hβ(Ω).

Then, for every t ∈ [0, T ] and any u, v ∈ C([0, T ],Hβ(Ω)),

‖(Pu)(t)− (Pv)(t)‖Hβ(Ω)

6

∑p
k=1 ck

1−
∑p
k=1 ck

1

Γ(α)

∫ tk

0

(tk − s)α−1‖f(s, u(s))− f(s, v(s))‖Hβ(Ω) ds

+
1

Γ(α)

∫ t

0

(t− s)α−1‖f(s, u(s))− f(s, v(s))‖Hβ(Ω) ds

6

∑p
k=1 ckT

α

(1−
∑p
k=1 ck)Γ(α+ 1)

L‖u− v‖C +
Tα

Γ(α+ 1)
L‖u− v‖C

6
L

(1−
∑p
k=1 ck)Γ(α+ 1)

Tα‖u− v‖C < ‖u− v‖C ,

which means

‖Pu− Pv‖C = sup
t∈[0,T ]

‖(Pu)(t)− (Pv)(t)‖Hβ(Ω) < ‖u− v‖C .

Hence, P : C([0, T ],Hβ(Ω)) → C([0, T ],Hβ(Ω)) is a contraction operator, and we
know that P has a unique fixed point u ∈ C([0, T ],Hβ(Ω)). That is, the nonlocal
problem (3.1) has a unique mild solution on [0, T ], then FRDE (1.1) has a unique
mild solution u(x, t) ∈ C(Ω× [0, T ],R). This completes the proof of Theorem 1.2.�

4. Mittag-Leffler-Ulam stabilities

In this section, we consider the Mittag-leffler-Ulam stability of FRDE (1.1). From
the discussion of the previous parts, we only need to study the stability of the
nonlocal problem (3.1). Letting ε > 0 and ϕ ∈ C([0, T ],R+), we consider the
following inequalities

‖CDα
t v(t) +Aβv(t)− f(t, v(t))‖Hβ(Ω) 6 ε, t ∈ [0, T ]; (4.1)
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‖CDα
t v(t) +Aβv(t)− f(t, v(t))‖Hβ(Ω) 6 ϕ(t), t ∈ [0, T ]; (4.2)

‖CDα
t v(t) +Aβv(t)− f(t, v(t))‖Hβ(Ω) 6 εϕ(t), t ∈ [0, T ]. (4.3)

Definition 4.1. Equation (3.1) is Mittag-Leffler-Ulam-Hyers stable with respect
to Eα, if there exists a real number c > 0 such that for each ε > 0, and for
each solution v ∈ C1([0, T ],Hβ(Ω)) of inequality (4.1), there exists a mild solution
u ∈ C([0, T ],Hβ(Ω)) of equation (3.1) with ‖v(t)− u(t)‖Hβ(Ω) 6 cεEα[t], t ∈ [0, T ].

Definition 4.2. Equation (3.1) is generalized Mittag-Leffler-Ulam-Hyers stablity
with respect to Eα, if there exists ψ ∈ C(R+,R+), ψ(0) = 0 such that for each
solution v ∈ C1([0, T ],Hβ(Ω)) of inequality (4.1), there exists a mild solution u ∈
C([0, T ],Hβ(Ω)) of equation (3.1) with ‖v(t)− u(t)‖Hβ(Ω) 6 ψ(ε)Eα[t], t ∈ [0, T ].

Definition 4.3. Equation (3.1) is Mittag-Leffler-Ulam-Hyers-Rassias stable with
respect to ϕEα, if there exists Cϕ > 0 such that for each ε > 0, and for each
solution v ∈ C1([0, T ],Hβ(Ω)) of inequality (4.3), there exists a mild solution u ∈
C([0, T ],Hβ(Ω)) of equation (3.1) with ‖v(t)−u(t)‖Hβ(Ω) 6 Cϕεϕ(t)Eα[t], t ∈ [0, T ].

Definition 4.4. Equation (3.1) is generalized Mittag-Leffler-Ulam-Hyers-Rassias
stablity with respect to ϕEα, if there exists Cϕ > 0 such that for each solu-
tion v ∈ C1([0, T ],Hβ(Ω)) of inequality (4.2), there exists a mild solution u ∈
C([0, T ],Hβ(Ω)) of equation (3.1) with ‖v(t)−u(t)‖Hβ(Ω) 6 Cϕϕ(t)Eα[t], t ∈ [0, T ].

Remark 4.1. It is clear that: (i) Definition 4.1 ⇒ Definition 4.2; (ii) Definition
4.3 ⇒ Definition 4.4.

Remark 4.2. A function v ∈ C1([0, T ],Hβ(Ω)) is a solution of inequality (4.1), if
and only if there exists a function g ∈ C([0, T ],Hβ(Ω)) (which depend on v) such
that
(i) ‖g(t)‖Hβ(Ω) 6 ε, for all t ∈ [0, T ];

(ii) CDα
t u(t) +Aβu(t) = f(t, u(t)) + g(t), t ∈ [0, T ].

We have similar remarks for inequalities (4.2) and (4.3).

Remark 4.3. If v ∈ C1([0, T ],Hβ(Ω)) is a solution of inequation (4.1), then v
satisfies the following inequality∥∥∥∥v(t)−Tα,β(t)Bv0 −

p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, v(s)) ds

−
∫ t

0

(t− s)α−1Sα,β(t− s)f(s, v(s)) ds

∥∥∥∥
Hβ(Ω)

6ε
∫ t

0

(t− s)α−1‖Sα,β(t− s)‖Hβ(Ω) ds.

We have similar remarks for the solutions of inequations (4.2) and (4.3).
Now, we give the proof of Mittag-Leffler-Ulam stabilities of FRDE (1.1).

Proof of Theorem 1.3. Let v ∈ C1([0, T ],Hβ(Ω)) be a solution of the inequation
(4.1), and denoted by u ∈ C([0, T ],Hβ(Ω)), the unique mild solution of the problem
is as follows CDα

t u(t) +Aβu(t) = f(t, u(t)), t ∈ [0, T ],

u(0) = v(0).
(4.4)
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We have

u(t) =Tα,β(t)Bv0 +

p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, u(s)) ds

+

∫ t

0

(t− s)α−1Sα,β(t− s)f(s, u(s)) ds,

and by Remark 4.2, we get∥∥∥∥v(t)−Tα,β(t)Bv0 −
p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, v(s)) ds

−
∫ t

0

(t− s)α−1Sα,β(t− s)f(s, v(s)) ds

∥∥∥∥
Hβ(Ω)

6ε
∫ t

0

(t− s)α−1‖Sα,β(t− s)‖Hβ(Ω) ds 6
Tα

Γ(α+ 1)
ε.

From these relations, we have

‖v(t)− u(t)‖Hβ(Ω)

=

∥∥∥∥v(t)−Tα,β(t)Bv0 −
p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, u(s)) ds

−
∫ t

0

(t− s)α−1Sα,β(t− s)f(s, u(s)) ds

∥∥∥∥
Hβ(Ω)

6

∥∥∥∥v(t)−Tα,β(t)Bv0 −
p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, v(s)) ds

−
∫ t

0

(t− s)α−1Sα,β(t− s)f(s, v(s)) ds

∥∥∥∥
Hβ(Ω)

+

∥∥∥∥ p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)[f(s, v(s))− f(s, u(s))] ds

∥∥∥∥
Hβ(Ω)

+

∥∥∥∥ ∫ t

0

(t− s)α−1Sα,β(t− s)[f(s, v(s))− f(s, u(s))] ds

∥∥∥∥
Hβ(Ω)

6
Tα

Γ(α+ 1)
ε+

∑p
k=1 ckL

(1−
∑p
k=1 ck)Γ(α)

∫ tk

0

(tk − s)α−1‖v(s))− u(s)‖Hβ(Ω) ds

+
L

Γ(α)

∫ t

0

(t− s)α−1‖v(s))− u(s)‖Hβ(Ω) ds. (4.5)

Applying Remark 2.1 and Remark 2.2 to inequality (4.5), we get

‖v(t)− u(t)‖Hβ(Ω) 6
Tα

Γ(α+ 1)

(
Eα

[ ∑p
k=1 ckL

1−
∑p
k=1 ck

tαk

]
+ Eα[Ltα]

)
ε.

Hence, by Definition 4.1, the nonlocal problem (3.1) is Mittag-Leffler-Ulam-Hyers
stable. This completes the proof of Theorem 1.3. �
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Proof of Theorem 1.4. Let v ∈ C1([0, T ],Hβ(Ω)) be a solution of inequation
4.2. By Remark 4.2, we get∥∥∥∥v(t)−Tα,β(t)Bv0 −

p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, v(s)) ds

−
∫ t

0

(t− s)α−1Sα,β(t− s)f(s, v(s)) ds

∥∥∥∥
Hβ(Ω)

6
∫ t

0

(t− s)α−1‖Sα,β(t− s)‖Hβ(Ω)ϕ(s) ds 6
1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s) ds 6 ηϕ(t).

Letting us be denoted by u ∈ C([0, T ],Hβ(Ω)), the unique mild solution of problem
(4.4), we have

u(t) =Tα,β(t)Bv0 +

p∑
k=1

ckTα,β(t)B

∫ tk

0

(tk − s)α−1Sα,β(tk − s)f(s, v(s)) ds

+

∫ t

0

(t− s)α−1Sα,β(t− s)f(s, v(s)) ds.

Estimating ‖v(t) − u(t)‖Hβ(Ω) in the same manner as (4.5), from Remark 2.1 and
Remark 2.2, we have

‖v(t)− u(t)‖Hβ(Ω) 6 ηϕ(t)

(
Eα

[ ∑p
k=1 ckL

1−
∑p
k=1 ck

tαk

]
+ Eα[Ltα]

)
.

By Definition 4.4, then the nonlocal problem (3.1) is generalized Mittag-Leffler-
Ulam-Hyers-Rassias stable. This completes the proof of Theorem 1.4. �
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[9] L. Cădariu, Stabilitatea Ulam–Hyers–Bourgin Pentru Ecuaţii Funcţionale, Ed-
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