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1. Introduction

1.1. The mathematical model equations and known related
results

Consider the Cauchy problem for the two-dimensional incompressible dissipative
quasi-geostrophic equation

∂

∂t
u+ α(−4)ρu+ J(u, (−4)−1/2u) = f(x, t), (1.1)

u(x, 0) = u0(x). (1.2)

In this problem, α > 0 and ρ > 0 are positive constants, x = (x, y) ∈ R2, u = u(x, t)
represents the temperature of the fluid, (−4)−1/2u is called the stream function.
The Jacobian determinant is defined by

J(u, (−4)−1/2u) =
∂

∂x
u
∂

∂y
(−4)−1/2u− ∂

∂y
u
∂

∂x
(−4)−1/2u.

Unlike nonlinear functions in other nonlinear evolution equations, the Jacobian
determinant is not only a nonlinear function, but also a nonlocal term. The Fourier
transformation of the Jacobian determinant is a totally nontrivial problem. The
model equation is called subcritical, critical or supercritical, if ρ > 1/2, ρ = 1/2 or
ρ < 1/2, respectively.

The linear operators

∂

∂x
(−4)−1/2 and

∂

∂y
(−4)−1/2

represent the standard Riesz transformations in R2. The vector field

F(x, t)
def
=

− ∂
∂y (−4)−1/2u

+ ∂
∂x (−4)−1/2u


represents the velocity of the fluid. The fluid is incompressible because ∇ · F = 0.
The model is the dimensionally correct analogue of the three-dimensional incom-
pressible Navier-Stokes equations, if ρ = 1/2. It is derived from a general quasi-
geostrophic equation in the special case of constant potential vorticity and buoyancy
frequency. It is a model in geophysical fluid dynamics because it arises in meteo-
rology and oceanography. Therefore, it is of great interest in applied mathematics.
In particular, the critical dissipative quasi-geostrophic equation is a very important
model for the investigation of the existence of the global smooth solution of the
three-dimensional incompressible Navier-Stokes equations.

There have been many contributions to the existence of global smooth solution,
global weak solution, elementary decay estimates of the Cauchy problem, for the
case f = 0. While it is impossible to list all related results, let us mention some
previous results closely related to this paper. For the existence of the global smooth
solution, particularly the case 1/2 ≤ ρ ≤ 1, and the existence of the global weak
solutions, particularly the case 0 < ρ < 1/2, see Chen, Miao and Zhang [1], Con-
stantin, Cordoba and Wu [2], Constantin and Wu [3], Cordoba and Cordoba [4],
Dong [6], Dong and Du [7], Dong and Pavlovic [8], Ning Ju [11]- [12], Kiselev,
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Nazarov and Volberg [13], and Miao and Xue [14]. For the existence of global weak
solution, which is also a local smooth solution on some unbounded interval (T,∞),
where T � 1 is a sufficiently large positive constant, see Dabkowski [5]. For the
decay estimates of the global weak solutions, see Dong and Du [7], Ferreira, Niche
and Planas [9], Pu and Guo [16], Maria E. Schonbek and Tomas P. Schonbek [17].
For the asymptotic behaviors of other problems, see [10].

Note that, if f = 0, then there exists a unique global smooth solution for each
1/2 ≤ ρ ≤ 1, there exists a global weak solution for each 0 < ρ < 1/2. Moreover,
there holds the following uniform energy estimate{∫∫

R2

|u(x, t)|2dx + 2α

∫ t

0

∫∫
R2

|(−4)ρ/2u(x, τ)|2dxdτ

}1/2

≤
{∫∫

R2

|u0(x)|2dx

}1/2

+

∫ ∞
0

{∫∫
R2

|f(x, t)|2dx

}1/2

dt.

Moreover, if the initial function and the external force are sufficiently small, then
the global weak solution coincides with a global smooth solution. If the initial
function or the external force is large, then after a long time T , the global weak
solution becomes small enough and sufficiently smooth on (T,∞). For our main
purposes, we need the existence of the global weak solution and the existence of the
local smooth solution on (T,∞), but we do not need any estimate on the bounded
interval (0, T ).

Also consider the Cauchy problem for the corresponding linear equation

∂

∂t
v + α(−4)ρv = f(x, t), (1.3)

v(x, t) = u0(x). (1.4)

There exists a unique global smooth solution to the Cauchy problem for the linear
equation, under appropriate conditions on the initial function u0 = u0(x) and the
external force f = f(x, t). For example, if the initial function and the external force
satisfy the following conditions

u0 ∈ L1(R2), f ∈ C∞(R2 × R+),

or if

u0 ∈ L2(R2), f ∈ C∞(R2 × R+),

then

v ∈ C∞(R2 × R+).

Note that the initial functions for the nonlinear problem and the linear problem are
the same, the external forces for both problems are the same as well. We may use
the global smooth solution of the linear problem to approximate the global weak
solutions of the nonlinear problem.

In this paper, we will study the exact limits and the improved decay estimates
with sharp rates for all order derivatives of the global weak solutions to the two-
dimensional incompressible dissipative quasi-geostrophic equation. See Subsection
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1.4 for the statements of the main results. See Section 2 for the proofs of the exact
limits and the improved decay estimates with sharp rates.

There exist special structures in the dissipative quasi-geostrophic equation, espe-
cially in the Fourier transformation of the Jacobian determinant J(u, (−4)−1/2u).
We will reveal the hidden special structures in this paper and we will make complete
use of them to accomplish the exact limits and the improved decay estimates with
sharp rates for all order derivatives of the global weak solutions. Without using the
special structures, it is impossible to obtain the exact limits, the improved decay
estimates with sharp rates and other results.

Notations: We will use the following Banach spaces and Hilbert spaces:

L1(R2) =

{
φ = φ(x) :

∫∫
R2

|φ(x)|dx <∞
}
,

L2(R2) =

{
φ = φ(x) :

∫∫
R2

|φ(x)|2dx <∞
}
,

L∞(R2) =

{
φ = φ(x) : sup

R2

|φ(x)| <∞
}
,

L1(R+, L2(R2)) =

{
ψ = ψ(x, t) :

∫ ∞
0

[∫∫
R2

|ψ(x, t)|2dx

]1/2
dt <∞

}
,

L2(R+, L2(R2)) =

{
ψ = ψ(x, t) :

∫ ∞
0

∫∫
R2

|ψ(x, t)|2dxdt <∞
}
,

L∞(R+, H2m(R2)) =

{
ψ = ψ(x, t) : sup

t>0

∫∫
R2

(1 + |ξ|2)m|ψ̂(ξ, t)|2dξ <∞
}
,

L2(R+, H2m(R2)) =

{
ψ = ψ(x, t) :

∫ ∞
0

∫∫
R2

(1 + |ξ|2)m|ψ̂(ξ, t)|2dξdt <∞
}
.

Definition 1.1. Let the function φ ∈ L1(R2). Define its Fourier transformation by

φ̂(ξ) =

∫∫
R2

exp(−ix · ξ)φ(x)dx,

where

x =

x

y

 ∈ R2, ξ =

 ξ1

ξ2

 ∈ R2, x · ξ = xξ1 + yξ2.

Definition 1.2. Let r be a real constant, typically, r = ρ or r = −1/2. Define the
fractional order derivative (−4)rφ of φ by using the Fourier transformation

̂(−4)rφ(ξ) = |ξ|2rφ̂(ξ),

for all ξ ∈ R2.

1.2. The main motivations - the main purposes - the main
difficulties - the main strategies - the main advances

The main motivations: Here are many very important and interesting questions
about the two-dimensional dissipative quasi-geostrophic equation.
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What are the influences on the global weak solutions u = u(x, t) of the physical
mechanisms, which are represented by the diffusion coefficient α, the order ρ in the
dissipation (−4)ρ, the initial function u0, the external force f , the order m of the
derivative, and the special structures of the Jacobian determinant J(u, (−4)−1/2u)?

What mechanisms have large influences and what mechanisms have minor in-
fluences to the global weak solutions?

Can we greatly improve previous results on the decay estimates of the global
weak solutions?

Can we accomplish the exact limits for all order derivatives of the global weak
solutions in terms of some known information?

As the diffusion coefficient, the order of the dissipation, and the order of the
derivatives increase, how fast will the value of each exact limit change? As the
initial function and the external force increase, how fast will the value of the exact
limit increase?

Can we use the global smooth solution of the corresponding linear equation to
approximate the global weak solutions of the nonlinear equation?

If yes, will the solution of the nonlinear equation become closer and closer to
the solution of the corresponding linear equation as time goes to infinity?

Are there any error estimates to the above approximations? Will the error
become smaller and smaller when time approaches infinity?

Are the global weak solutions of the two-dimensional dissipative quasi-geostrophic
equation stable with respect to perturbations of the initial function and the external
force?

If we drop the Jacobian determinant in the nonlinear equation, will the exact
limits reduce to the exact limits of the global smooth solution of the corresponding
linear equation?

For the nonlinear equation and the linear equation, for each fixed order of the
derivatives, will the ratios of the exact limits be the same? If yes, are there any indi-
cations about the existence of the global smooth solution to the nonlinear equation
with large initial function and large external force, for the case 0 < ρ < 1/2?

Can we provide a more accurate weather forecast ahead of time? The math-
ematical study of the Cauchy problem for the two-dimensional dissipative quasi-
geostrophic equation may help a lot.

Another motivation: The elementary decay estimate with a sharp rate

C
def
= sup

t>0

{
t1/ρ

∫∫
R2

|u(x, t)|2dx

}
, 0 < C <∞,

has been established very well. However, it is not explicit at all how the constant C
depends on the initial function and the external force. Long time accurate numerical
simulations are of particular values in industry, engineering, national defence and
applied mathematics. The constant C in the elementary decay estimate with a sharp
rate may be used to greatly improve the accuracy and stability of numerical schemes
of the two-dimensional dissipative quasi-geostrophic equation. The following exact
limit (which is to be accomplished)

lim
t→∞

{
t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
=

1

(2π)2

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη



152 L. Zhang

·
{∫∫

R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

,

for all constants m ≥ 0, will help to determine the precise value of the constant C.

Another motivation of this paper is to study the influences of the physical mech-
anisms (represented by the diffusion coefficient α, the order ρ in the dissipation
(−4)ρ, the initial function u0, the external force f , the Jacobian determinan-
t J(u, (−4)−1/2u) and the order m of the derivative) on the exact limits for all
order derivatives of the global weak solutions, so that these results have positive
impacts on extremely long time numerical simulations.

The positive solutions to these problems definitely help us to better understand
the properties of the global weak solutions and hopefully to discover new special
structures. We will answer most of these important and interesting questions by us-
ing rigorous mathematical analysis. The study of the exact limits and the improved
decay estimates of the global weak solutions of the two-dimensional equation will
have positive influences on long time safe flight of airplanes and spacecrafts as well
as long time voyages under the oceans.

The main purposes: Let u = u(x, t) represent the global weak solutions of
the Cauchy problem for the two-dimensional dissipative quasi-geostrophic equation.
Let v = v(x, t) represent the global smooth solution of the Cauchy problem for the
corresponding linear equation. Note that the initial function and the external force
(u0, f) = (u0(x), f(x, t)) in both problems are the same.

We will consider two main cases for the initial function and the external force.

The main purpose for Case 1 is to accomplish the following exact limits

lim
t→∞

{
t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
,

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

}
,

in terms of the constants α, ρ, m and some known integrals.

The main purpose for Case 2 is to accomplish the exact limits

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
,

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

}
,

in terms of the constants α, ρ, m and some other known integrals.

Note that the rates of decay in the two cases are different.

The second purposes are to make use of the exact limits to accomplish the
improved decay estimates with sharp rates for all order derivatives of the global
weak solutions to the two-dimensional dissipative quasi-geostrophic equation. For
Case 1, we will prove the following improved decay estimates with sharp rates

t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx ≤ A1(m) + B1(m)t−(2−2ρ)/ρ,

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx ≤ C1(m) +D1(m)t−(2−2ρ)/ρ,



The Exact Limits and Improved Decay Estimates 153

for all constants m ≥ 0 and for all sufficiently large t� 1, where

A1(m), B1(m), C1(m), D1(m)

are positive constants, independent of t.
By improved decay estimates with sharp rates, we mean that not only the con-

stants

A1(m), B1(m), C1(m), D1(m)

are independent of t, but also these constants are independent of

(1) the integrals of any order derivatives of the initial function u0,

(2) the integrals of any order derivatives of the external force f ,

(3) the integrals of any order derivatives of the nonlinear function u2.

Can we find the best explicit representations for the constants in terms of some
known information?

For Case 2, we will prove the following improved decay estimates with sharp
rates

t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx ≤ A2(m) + B2(m)t−(4−2ρ)/ρ,

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx ≤ C2(m) +D2(m)t−(4−2ρ)/ρ,

for all constants m ≥ 0 and for all sufficiently large t� 1, where

A2(m), B2(m), C2(m), D2(m)

are positive constants, independent of t.
By improved decay estimates with sharp rates, we mean that not only the con-

stants

A2(m), B2(m), C2(m), D2(m)

are independent t, but also these constants are independent of

(1) the integrals of any order derivatives of the functions φ1 and φ2,

(2) the integrals of any order derivatives of the functions ψ1 and ψ2,

(3) the integrals of any order derivatives of the nonlinear function u2.

Can we find the best explicit representations for the constants in terms of some
known information?

The constants in the improved decay estimates with sharp rates for all order
derivatives of the global weak solutions to the two-dimensional dissipative quasi-
geostrophic equation are explicit enough so that the results have significant influence
on numerical simulations.

The main difficulties: Let the parameter 0 < ρ < 1/2. When the initial
function and the external force are large, the uniform energy estimates of any order
derivatives of the global weak solutions have been open. Therefore, the existence
and uniqueness of the global smooth solution u ∈ C∞(R2 × R+) have been open.
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For the main purposes of this paper, we need the existence of the global weak
solutions, which are also local smooth solutions on the unbounded interval (T,∞).
See Dabkowski [5]. Additionally, we will establish some new minor results: the
primary decay estimates with sharp rates for all order derivatives of the global
weak solutions on that interval.

The main technical difficulty for 0 < ρ < 1 is the mathematical analysis of the
following integrals

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

∣∣∣∣∣
2

dη,

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη,

where N (u) = J(u, (−4)−1/2u). We will apply a few novel ideas to establish
optimal estimates for these integrals.

The main strategies: To accomplish the exact limits for all order derivatives
of the global weak solutions of the Cauchy problem for the two-dimensional dissipa-
tive quasi-geostrophic equation, we will use the following strategies. We will couple
together the Parseval’s identity, a few simple properties of the Fourier transforma-
tion, the representation of the Fourier transformation of the global weak solutions,
special structures of the nonlinear function J(u, (−4)−1/2u), the interval decompo-
sition [0, t] = [0, (1− ε)t]∪ [(1− ε)t, t], Lebesgue’s dominated convergence theorem,
a series of new estimates about the integrals

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

∣∣∣∣∣
2

dη,

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη,

and the primary decay estimates with sharp rates for all order derivatives of the
global weak solutions on (T,∞).

Note that the Jacobian determinant J(u, (−4)−1/2u) is a nonlocal term. There
exist special structures in J(u, (−4)−1/2u). The special structures may be revealed
clearly by using the Fourier transformation. We will make complete use of the
special structures to accomplish the main results.

We will make use of the primary decay results to establish optimal estimates
for these integrals. Then we will use the exact limits for all order derivatives of the
global weak solutions to obtain the best possible upper bounds, which depend only
on integrals of functions related to the initial function, integrals of functions related
to the external force and integrals of functions related to the nonlinear function u2.
The upper bound does not depend on the integrals of any order derivatives of these
functions.

It is worth mentioning that the exact limits play a very important role in es-
tablishing the improved decay estimates with sharp rates to make sure that the
constants are independent of the integrals of the derivatives of the initial function
and the derivatives of the global weak solutions.
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The main advances: One of the main technical advances is that we are able
to use the singular integral∫∫

R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

to control the integrals∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

∣∣∣∣∣
2

dη,

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη,

for all constants 0 < δ < 2ρ, 0 < ε < 1 and m ≥ 0 and for all t� 1.
The main advance is that we are able to represent the exact limits for all order

derivatives of the global weak solutions explicitly, in terms of the integrals of func-
tions related to the initial function, the integrals of functions related to the external
force and the integrals of the nonlinear function u2, rather than the integrals of the
derivatives of these functions.

1.3. The mathematical assumptions

We make the following mathematical assumptions for the two-dimensional incom-
pressible dissipative quasi-geostrophic equation. Let α > 0, 0 < δ < 2ρ, 0 < ε < 1
and 0 < ρ < 1 be positive constants. Let m ≥ 0 be any real constant.

(A1) Suppose that the initial function and the external force satisfy the follow-
ing assumptions

u0 ∈ C1(R2) ∩ L1(R2) ∩ L2(R2),

f ∈ C∞(R2 × R+) ∩ L1(R2 × R+) ∩ L1(R+, L2(R2)),

such that ∫∫
R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt 6= 0.

Suppose that there exists the following limit∗

lim
t→∞

{
t(m+1)/ρ

∫∫
R2

|(−4)mf(x, t)|dx

}2

,

for all constants m ≥ 0.
(A2) Suppose that the initial function and the external force satisfy the condi-

tions

u0 ∈ C1(R2) ∩ L1(R2) ∩ L2(R2),

∗Here is a slightly weaker condition

sup
t>0

{
t(m+1)/ρ

∫∫
R2
|(−4)mf(x, t)|dx

}2

<∞,

for all constants m ≥ 0.
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f ∈ C∞(R2 × R+) ∩ L1(R2 × R+) ∩ L1(R+, L2(R2)).

Suppose that there exist real scalar smooth functions

φ1 ∈ C2(R2) ∩ L1(R2), ψ1 ∈ C∞(R2 × R+) ∩ L1(R2 × R+),

φ2 ∈ C2(R2) ∩ L1(R2), ψ2 ∈ C∞(R2 × R+) ∩ L1(R2 × R+),

such that

u0(x) =
∂

∂x
φ1(x) +

∂

∂y
φ2(x), f(x, t) =

∂

∂x
ψ1(x, t) +

∂

∂y
ψ2(x, t),

for all (x, t) ∈ R2 × R+.
Suppose that there exist the following limits†

lim
t→∞

{
2∑
k=1

[
t(m+2)/ρ

∫∫
R2

|(−4)mψk(x, t)|dx

]2}
,

for all constants m ≥ 0.
(A3) Suppose that there exists a unique global smooth solution

u ∈ L∞(R+, H2m(R2)), (−4)ρ/2u ∈ L2(R+, H2m(R2)),

u ∈ C∞(R2 × R+),

if 1/2 ≤ ρ ≤ 1, and if the initial function and the external force satisfy

u0 ∈ C1(R2) ∩H2m(R2),

f ∈ C∞(R2 × R+) ∩ L1(R+, L2(R2)) ∩ L2(R+, H2m(R2)).

Suppose that there exists a global weak solution

u ∈ L∞(R+, L2(R2)), (−4)ρ/2u ∈ L2(R+, L2(R2)),

if 0 < ρ < 1/2, and if the initial function and the external force satisfy

u0 ∈ L2(R2), f ∈ L1(R+, L2(R2)).

(A4) Suppose that the global weak solutions become small enough and suffi-
ciently smooth after a long time. That is, there exists a sufficiently large positive
constant T � 1, such that the global weak solutions of the Cauchy problem for the
two-dimensional dissipative quasi-geostrophic equation satisfy

sup
t>T

{∫∫
R2

|(−4)mu(x, t)|2dx

}
<∞,∫ ∞

T

∫∫
R2

|(−4)m+ρ/2u(x, t)|2dxdt <∞,

†Here are slightly weaker conditions

sup
t>0

{
2∑
k=1

[
t(m+2)/ρ

∫∫
R2
|(−4)mψk(x, t)|dx

]2}
<∞,

for all constants m ≥ 0.
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for all constants m ≥ 0.
(A5) Suppose that there holds the following representation for the Fourier trans-

formation of the global weak solutions

û(ξ, t) = exp(−α|ξ|2ρt)û0(ξ)

+

∫ t

0

exp[−α|ξ|2ρ(t− τ)]f̂(ξ, τ)dτ

−
∫ t

0

exp[−α|ξ|2ρ(t− τ)]N̂ (u)(ξ, τ)dτ,

for all (ξ, t) ∈ R2 × R+, where N (u) = J(u, (−4)−1/2u).
(A6) Suppose that there holds the following elementary decay estimate with a

sharp rate

sup
t>0

{
t1/ρ

∫∫
R2

|u(x, t)|2dx

}
<∞.

Remark 1.1. Suppose that either assumption (A1) or assumption (A2), but not
both, holds.

Remark 1.2. The above decay rate is sharp, only if∫∫
R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt 6= 0.

The decay rate may be improved under additional conditions on the initial function
and the external force.

For the existence of the global smooth solution or the global weak solution and
the elementary decay results of the global weak solutions, see Constantin and Wu [3],
Dabkowski [5], Dong [6], Ju [11]- [12], Kiselev, Nazarov and Volberg [13], Maria E.
Schonbek and Tomas P. Schonbek [17]. The assumptions (A1), (A2), (A3), (A4),
(A5), (A6) are made based on these results.

1.4. The main results

There are three parts in the results.
Part A: The exact limits for all order derivatives of the global weak so-

lutions of the two-dimensional incompressible dissipative quasi-geostrophic
equation.

In each case, we will state the exact limits for all order derivatives of the glob-
al weak solutions. We may use the global smooth solution of the corresponding
linear equation to approximate the global weak solutions of the two-dimensional
dissipative quasi-geostrophic equation.

To make the statements of the exact limits simple and clear, let us define the
following notations

I(m)
def
=

1

(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη,

J def
=

{∫∫
R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

,
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K0
def
=

2∑
k=1

{∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

}2

,

K def
=

2∑
k=1

{∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

}2

+

2∑
k=1

{
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

}2

,

L def
=

2∑
k=1

{
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

}2

,

where

x =

x

y

 ∈ R2, η =

 η1

η2

 ∈ R2, λ =

λ1

λ2

 ∈ R2.

Theorem 1.1. For Case 1, there hold the following exact limits for all order deriva-
tives of the global weak solutions of the two-dimensional dissipative quasi-geostrophic
equation

lim
t→∞

{
t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
= I(m− 1/2)J ,

for all constants m ≥ 0.

Theorem 1.2. For Case 2, there hold the following exact limits for all order deriva-
tives of the global weak solutions

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
=

1

2
I(m)K,

for all constants m ≥ 0.

Theorem 1.3. For both cases, there hold the following exact limits for all order
derivatives of the global weak solutions

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

}
=

1

2
I(m)L,

for all constants m ≥ 0.

Theorem 1.4. The ratio of the exact limits of the global weak solutions of the two-
dimensional dissipative quasi-geostrophic equation is the same as the ratio of the
exact limits of the global smooth solution of the corresponding linear equation, for
each fixed constant m. For Case 2‡, there hold{

lim
t→∞

[
t(2m+2ρ+2)/ρ

∫∫
R2

|(−4)m+ρu(x, t)|2dx

]}
/

{
lim
t→∞

[
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

]}
‡For simplicity, we will focus on Case 2 and skip Case 1.
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=

{
lim
t→∞

[
t(2m+2ρ+2)/ρ

∫∫
R2

|(−4)m+ρv(x, t)|2dx

]}
/

{
lim
t→∞

[
t(2m+2)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

]}
=

(2m+ 2)(2m+ ρ+ 2)

(2αρ)2
,

and {
lim
t→∞

[
t(2m+4ρ+2)/ρ

∫∫
R2

|(−4)m+2ρu(x, t)|2dx

]}
/

{
lim
t→∞

[
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

]}
=

{
lim
t→∞

[
t(2m+4ρ+2)/ρ

∫∫
R2

|(−4)m+2ρv(x, t)|2dx

]}
/

{
lim
t→∞

[
t(2m+2)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

]}
=

(2m+ 2)(2m+ ρ+ 2)(2m+ 2ρ+ 2)(2m+ 3ρ+ 2)

(2αρ)4
,

for all constants m ≥ 0. Moreover{
lim
t→∞

[
t(2m+2ρ+2)/ρ

∫∫
R2

|(−4)m+ρ[u(x, t)− v(x, t)]|2dx

]}
/

{
lim
t→∞

[
t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

]}
=

{
lim
t→∞

[
t(2m+2ρ+2)/ρ

∫∫
R2

|(−4)m+ρv(x, t)|2dx

]}
/

{
lim
t→∞

[
t(2m+2)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

]}
=

(2m+ 2)(2m+ ρ+ 2)

(2αρ)2
,

and {
lim
t→∞

[
t(2m+4ρ+2)/ρ

∫∫
R2

|(−4)m+2ρ[u(x, t)− v(x, t)]|2dx

]}
/

{
lim
t→∞

[
t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

]}
=

{
lim
t→∞

[
t(2m+4ρ+2)/ρ

∫∫
R2

|(−4)m+2ρv(x, t)|2dx

]}
/

{
lim
t→∞

[
t(2m+2)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

]}
=

(2m+ 2)(2m+ ρ+ 2)(2m+ 2ρ+ 2)(2m+ 3ρ+ 2)

(2αρ)4
,

for all constants m ≥ 0.
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Part B: The primary decay estimates and the improved decay es-
timates with sharp rates for all order derivatives of the global weak
solutions.

Here are the primary decay estimates with sharp rates for all constants m ≥ 0
and for all sufficiently large t � 1. Note that the rates of decay in the two cases
are different.

Theorem 1.5. For Case 1, there hold the following primary decay estimates with
sharp rates for all order derivatives of the global weak solutions

sup
t>T

{
t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
<∞,

for all constants m ≥ 0, where T � 1 is a sufficiently large positive constant, it is
the same constant as in (A4).

Theorem 1.6. For Case 2, there hold the following primary decay estimates with
sharp rates for all order derivatives of the global weak solutions

sup
t>T

{
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
<∞,

for all constants m ≥ 0.

Here are the improved decay estimates with sharp rates for all constants m ≥ 0
and for all sufficiently large t� 1.

To make the statements of the improved decay estimates with sharp rates of the
two-dimensional dissipative quasi-geostrophic equation simple and clear, first of all,
let us define the following notations

E1(u0) =

{∫∫
R2

|u0(x)|dx

}2

,

E2(f) =

{∫ ∞
0

∫∫
R2

|f(x, t)|dxdt

}2

,

E3(u) =

{∫ ∞
0

∫∫
R2

|u(x, t)|2dxdt

}2

,

E4(m) = lim
t→∞

{[
t(m+1)/ρ

∫∫
R2

|(−4)mf(x, t)|dx

]2}
,

I(m) =
1

(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη,

J =

{∫∫
R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

,

S =
1

(2π)2

∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη.

In this paper, we will use C0 = C0(m) > 0 to represent any positive constant,
which is independent of (α, ρ), (δ, ε), (u0, f), u and (x, t). Then let us define the
following quantities

A1(m) = A1(α, δ, ε, ρ,m)
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def
= 5I(m− 1/2)

{
E1(u0) +

E2(f) + E3(u)

ε(2m+1)/ρ

}
,

B1(m) = B1(α, δ, ε, ρ,m)
def
= 10C0(m)S

{
E4(m− ρ+ (1 + δ)/2) + I(−1/2)I(m− ρ+ (1 + δ)/2)J 2

}
,

C1(m) = C1(α, δ, ε, ρ,m)

def
= 2I(m− 1/2)

{
E3(u)

ε(2m+1)/ρ

}
,

D1(m) = D1(α, δ, ε, ρ,m)
def
= 2C0(m)S

{
I(−1/2)I(m− ρ+ (1 + δ)/2)J 2

}
.

Theorem 1.7. For Case 1, there hold the following improved decay estimates with
sharp rates for all order derivatives of the global weak solutions

t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx ≤ A1(m) + B1(m)t−(2−2ρ)/ρ,

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx ≤ C1(m) +D1(m)t−(2−2ρ)/ρ,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all constants m ≥ 0 and for
all sufficiently large t� 1.

Let us define the following notations

F1(u0) =

2∑
k=1

{∫∫
R2

|φk(x)|dx

}2

,

F2(f) =

2∑
k=1

{∫ ∞
0

∫∫
R2

|ψk(x, t)|dxdt

}2

,

F3(u) =

{∫ ∞
0

∫∫
R2

|u(x, t)|2dxdt

}2

,

F4(m) = lim
t→∞

{
2∑
k=1

[
t(m+2)/ρ

∫∫
R2

|(−4)mψk(x, t)|dx

]2}
,

I(m) =
1

(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη,

K =

2∑
k=1

{∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

}2

+

2∑
k=1

{
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dxdt

}2

,

S =
1

(2π)2

∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη.

Then let us define the following quantities

A2(m) = A2(α, δ, ε, ρ,m)

def
= 5I(m)

{
F1(u0) +

F2(f) + F3(u)

ε(2m+2)/ρ

}
,
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B2(m) = B2(α, δ, ε, ρ,m)
def
= 10C0(m)S

{
F4(m+ 1− ρ+ δ/2) + I(0)I(m+ 1− ρ+ δ/2)K2

}
,

C2(m) = C2(α, δ, ε, ρ,m)

def
= 2I(m)

{
F3(u)

ε(2m+2)/ρ

}
,

D2(m) = D2(α, δ, ε, ρ,m)
def
= 2C0(m)S

{
I(0)I(m+ 1− ρ+ δ/2)K2

}
.

Theorem 1.8. For Case 2, there hold the following improved decay estimates with
sharp rates for all order derivatives of the global weak solutions

t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx ≤ A2(m) + B2(m)t−(4−2ρ)/ρ,

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx ≤ C2(m) +D2(m)t−(4−2ρ)/ρ,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all constants m ≥ 0 and for
all sufficiently large t� 1.

Part C: The linear results - The exact limits for all order derivatives
of the global smooth solution of the linear equation.

Theorem 1.9. For Case 1, there hold the following exact limits for all order deriva-
tives of the global smooth solutions

lim
t→∞

{
t(2m+1)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

}
= I(m− 1/2)J ,{

lim
t→∞

[
t(2m+2ρ+1)/ρ

∫∫
R2

|(−4)m+ρv(x, t)|2dx

]}
/

{
lim
t→∞

[
t(2m+1)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

]}
=

2(2m+ 1)(2m+ ρ+ 1)

(4αρ)2
,{

lim
t→∞

[
t(2m+4ρ+1)/ρ

∫∫
R2

|(−4)m+2ρv(x, t)|2dx

]}
/

{
lim
t→∞

[
t(2m+1)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

]}
=

2(2m+ 1)(2m+ ρ+ 1)(2m+ 2ρ+ 1)(2m+ 3ρ+ 1)

(4αρ)4
.

Theorem 1.10. For Case 2, there hold the following exact limits for all order
derivatives of the global smooth solutions

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

}
=

1

2
I(m)K0,{

lim
t→∞

[
t(2m+2ρ+2)/ρ

∫∫
R2

|(−4)m+ρv(x, t)|2dx

]}
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/

{
lim
t→∞

[
t(2m+2)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

]}
=

2(2m+ 2)(2m+ ρ+ 2)

(4αρ)2
,{

lim
t→∞

[
t(2m+4ρ+2)/ρ

∫∫
R2

|(−4)m+2ρv(x, t)|2dx

]}
/

{
lim
t→∞

[
t(2m+2)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

]}
=

2(2m+ 2)(2m+ ρ+ 2)(2m+ 2ρ+ 2)(2m+ 3ρ+ 2)

(4αρ)4
.

The proofs of the results are given in Section 2. There are many important
and interesting remarks on the main results. They are listed in Subsection 3.2
(Remarks).

2. The Mathematical Analysis and the Proofs of the
Main Results

The main purposes of this section are to accomplish the exact limits and the im-
proved decay estimates with sharp rates for all order derivatives of the global weak
solutions of the two-dimensional incompressible dissipative quasi-geostrophic equa-
tion. The main difficulties are that the existence and uniqueness of the global
smooth solution are unknown, if 0 < ρ < 1/2 and if the initial function and the
external force are large. There exists no available uniform energy estimates for any
order derivatives. To overcome the main difficulties, we will make use of the special
structure and the semi-explicit representations of the Fourier transformations of the
global weak solutions, to establish the primary decay estimates with sharp rates for
all order derivatives on the interval (T,∞), where T � 1 is a sufficiently large
positive constant. Then we will couple together existing ideas, existing results and
a few novel ideas to accomplish the exact limits and the improved decay estimates
with sharp rates.

If there exists a unique global smooth solution to the Cauchy problem for the
two-dimensional incompressible dissipative quasi-geostropic equation, then the en-
ergy

∫∫
R2 |(−4)mu(x, t)|2dx is finite, for all m > 0 and for all t > 0. If there exists a

global weak solution, then the energy
∫∫

R2 |(−4)mu(x, t)|2dx is finite, for all m > 0
for all sufficiently large t > T . It is unknown if it is equal to infinity at some finite
time 0 < t0 < T .

Let α > 0, 0 < δ < 2ρ, 0 < ε < 1 and 0 < ρ < 1 be positive constants. Let
m ≥ 0 and κ ≥ 0 be real constants.

As mentioned in Section 1, we will consider two main cases. Let us quickly
review the two cases before we make the rigorous mathematical analysis.

Case 1: Suppose that the initial function and the external force satisfy

u0 ∈ C1(R2) ∩ L1(R2) ∩ L2(R2),

f ∈ C∞(R2 × R+) ∩ L1(R2 × R+) ∩ L1(R+, L2(R2)),
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such that ∫∫
R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt 6= 0.

Case 2: Suppose that the initial function and the external force satisfy

u0 ∈ C1(R2) ∩ L1(R2) ∩ L2(R2),

f ∈ C∞(R2 × R+) ∩ L1(R2 × R+) ∩ L1(R+, L2(R2)).

Suppose that there exist real scalar smooth functions

φ1 ∈ C2(R2) ∩ L1(R2), ψ1 ∈ C∞(R2 × R+) ∩ L1(R2 × R+),

φ2 ∈ C2(R2) ∩ L1(R2), ψ2 ∈ C∞(R2 × R+) ∩ L1(R2 × R+),

such that

u0(x) =
∂

∂x
φ1(x) +

∂

∂y
φ2(x), f(x, t) =

∂

∂x
ψ1(x, t) +

∂

∂y
ψ2(x, t),

for all (x, t) ∈ R2 × R+.
Performing the Fourier transformation to these functions leads to

û0(ξ) = i

{
2∑
k=1

ξkφ̂k(ξ)

}
, f̂(ξ, t) = i

{
2∑
k=1

ξkψ̂k(ξ, t)

}
.

Applying the change of variables η = t1/(2ρ)ξ, we have

t1/(2ρ)û0(t−1/(2ρ)η) = i

{
2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

}
,

t1/(2ρ)f̂(t−1/(2ρ)η, t) = i

{
2∑
k=1

ηkψ̂k(t−1/(2ρ)η, t)

}
,

for all (η, t) ∈ R2 × R+.
Let the real vectors

λ =

λ1

λ2

 ∈ R2, η =

 η1

η2

 ∈ R2.

As usual, we define

|λ| = (|λ1|2 + |λ2|2)1/2, |η| = (|η1|2 + |η2|2)1/2.

Let us define the notation λ� η by

λ� η = det

λ1 η1

λ2 η2

 = λ1η2 − λ2η1.

Let us do some basic preparations before the rigorous analysis. To further
simplify the notations in the mathematical analysis, let us define

R1u =
∂

∂x
(−4)−1/2u, R2u =

∂

∂y
(−4)−1/2u.
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We will write the interval [0, t] as [0, (1 − ε)t] ∪ [(1 − ε)t, t], where 0 < ε <
1. The treatments of the Fourier transformation of J(u, (−4)−1/2u) on different
subintervals will be very different. Note that

J(u, (−4)−1/2u) =
∂

∂x
u
∂

∂y
(−4)−1/2u− ∂

∂y
u
∂

∂x
(−4)−1/2u

=
∂

∂x

{
u
∂

∂y
(−4)−1/2u

}
− ∂

∂y

{
u
∂

∂x
(−4)−1/2u

}
.

That is

N (u) =
∂

∂x
(uR2u)− ∂

∂y
(uR1u).

Now the Fourier transformation

N̂ (u)(ξ, t) = iξ1ûR2u(ξ, t)− iξ2ûR1u(ξ, t).

By the definition of the Fourier transformation and the Parseval’s identity, we have

ûR1u(ξ, t) = − 1

(2π)2

∫∫
R2

iλ1
|λ|

û(λ+ ξ, t)û(λ, t)dλ,

ûR2u(ξ, t) = − 1

(2π)2

∫∫
R2

iλ2
|λ|

û(λ+ ξ, t)û(λ, t)dλ.

Now the Fourier transformation

N̂ (u)(ξ, t) = − 1

(2π)2

∫∫
R2

λ1ξ2 − λ2ξ1
|λ|

û(λ+ ξ, t)û(λ, t)dλ,

for all (ξ, t) ∈ R2 × R+. Moreover, there holds the following elementary estimate∣∣∣N̂ (u)(ξ, t)
∣∣∣ ≤ |ξ|∫∫

R2

|u(x, t)|2dx,

for all (ξ, t) ∈ R2 × R+. Making the change of variables η = t1/(2ρ)ξ, we have

t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)

= − 1

(2π)2

∫∫
R2

λ� η
|λ|

û(λ+ t−1/(2ρ)η, τ)û(λ, τ)dλ,

for all (η, t) ∈ R2 × R+, where τ ∈ [(1− ε)t, t] and 0 < ε < 1.

2.1. The elementary estimates: Case 1

Let the positive constants 0 < δ < 2ρ and 0 < ε < 1, let the constant m ≥ 0. First
of all, we will establish a series of elementary estimates for Case 1.

Lemma 2.1. There hold the following elementary estimates:
(1) ∫∫

R2

|η|4m
∣∣∣exp(−α|η|2ρ)û0(t−1/(2ρ)η)

∣∣∣2 dη
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≤
∫∫

R2

|η|4m exp(−2α|η|2ρ)dη
{∫∫

R2

|u0(x)|dx

}2

.

(2)

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤
∫∫

R2

|η|4m exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|f(x, t)|dxdt

}2

.

(3)

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤
∫∫

R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

.

(4)

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤ C0(m)t−(2−2ρ)/ρ
{∫∫

R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m−ρ+(1+δ)/2f(x, τ)|dx

}2

.

(5)

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤ C0(m)t−(2−2ρ)/ρ
{∫∫

R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
.

These estimates are true for all constants m ≥ 0 and for all t > 0.

Proof. The proof of the lemma is skipped.

Lemma 2.2. Define the following complex auxiliary functions

Λ1(η, t) = exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ
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−
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ,

Γ1(η, t) = exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ,

for all (η, t) ∈ R2 × R+. Then there holds the following estimate∣∣∣∣∫∫
R2

|η|4m|Λ1(η, t)|2dη −
∫∫

R2

|η|4m|Γ1(η, t)|2dη

∣∣∣∣
≤
∫∫

R2

|η|4m|Λ1(η, t)− Γ1(η, t)|2dη

+ 2

{∫∫
R2

|η|4m|Γ1(η, t)|2dη

}1/2{∫∫
R2

|η|4m|Λ1(η, t)− Γ1(η, t)|2dη

}1/2

,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and for all t > 0.

Proof. Note that

Λ1(η, t)− Γ1(η, t) =

∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ,

and

|Λ1(η, t)|2 − |Γ1(η, t)|2

= |Λ1(η, t)− Γ1(η, t)|2 + 2 Re [(Λ1(η, t)− Γ1(η, t))Γ1(η, t)].

Now we have ∫∫
R2

|η|4m|Λ1(η, t)|2dη −
∫∫

R2

|η|4m|Γ1(η, t)|2dη

=

∫∫
R2

|η|4m|Λ1(η, t)− Γ1(η, t)|2dη

+ 2 Re

∫∫
R2

|η|4m[Λ1(η, t)− Γ1(η, t)]Γ1(η, t)dη.

By using the Cauchy-Schwartz’s inequality, we have the estimate∣∣∣∣2 Re

∫∫
R2

|η|4m[Λ1(η, t)− Γ1(η, t)]Γ1(η, t)dη

∣∣∣∣
≤ 2

{∫∫
R2

|η|4m|Γ1(η, t)|2dη

}1/2{∫∫
R2

|η|4m|Λ1(η, t)− Γ1(η, t)|2dη

}1/2

.

Overall, we have finished the proof of the estimate∣∣∣∣∫∫
R2

|η|4m|Λ1(η, t)|2dη −
∫∫

R2

|η|4m|Γ1(η, t)|2dη

∣∣∣∣
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≤
∫∫

R2

|η|4m|Λ1(η, t)− Γ1(η, t)|2dη

+ 2

{∫∫
R2

|η|4m|Γ1(η, t)|2dη

}1/2{∫∫
R2

|η|4m|Λ1(η, t)− Γ1(η, t)|2dη

}1/2

.

The proof of the lemma is completed.

2.2. The elementary estimates: Case 2

Let the positive constants 0 < δ < 2ρ and 0 < ε < 1, let the constant m ≥ 0. First
of all, we will establish a series of elementary estimates for Case 2.

Lemma 2.3. There hold the following elementary estimates:
(1) ∫∫

R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]∣∣∣∣∣
2

dη

≤
∫∫

R2

|η|4m+2 exp(−2α|η|2ρ)dη

{
2∑
k=1

[∫∫
R2

|φk(x)|dx

]2}
.

(2) ∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

∣∣∣∣∣
2

dη

≤
∫∫

R2

|η|4m+2 exp(−2αε|η|2ρ)dη

{
2∑
k=1

[∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

]2}
.

(3) ∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤
∫∫

R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

.

(4) ∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
] [

i
2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

∣∣∣∣∣
2

dη

≤ C0(m)t−(4−2ρ)/ρ
{∫∫

R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
·

{
2∑
k=1

sup
(1−ε)t≤τ≤t

[
τ (2m+6+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m+1−ρ+δ/2ψk(x, τ)|dx

]2}
.

(5) ∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη
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≤ C0(m)t−(4−2ρ)/ρ
{∫∫

R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
,

· sup
(1−ε)t≤τ≤t

{
τ2/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
.

These estimates are true for all constants m ≥ 0 and for all t > 0.

Proof. The proof of the lemma is skipped.

Lemma 2.4. Define the following complex auxiliary functions

Λ2(η, t) = exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

and

Γ2(η, t) = exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ,

for all (η, t) ∈ R2 × R+. Then there holds the following estimate∣∣∣∣∫∫
R2

|η|4m|Λ2(η, t)|2dη −
∫∫

R2

|η|4m|Γ2(η, t)|2dη

∣∣∣∣
≤
∫∫

R2

|η|4m|Λ2(η, t)− Γ2(η, t)|2dη

+ 2

{∫∫
R2

|η|4m|Γ2(η, t)|2dη

}1/2{∫∫
R2

|η|4m|Λ2(η, t)− Γ2(η, t)|2dη

}1/2

,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and for all t > 0.

Proof. The proof is very similar to that of Lemma 2.2. The details are skipped.

2.3. The comprehensive analysis: Case 1

The main purposes of this subsection are to make use of the elementary estimates
for Case 1 and the representation of the Fourier transformation of the global weak
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solutions to establish optimal estimates for t(2m+1)/ρ
∫∫

R2 |(−4)mu(x, t)|2dx and

t(2m+2)/ρ
∫∫

R2 |(−4)m[u(x, t)− v(x, t)]|2dx. These estimates will play very impor-
tant roles when we accomplish the primary decay estimates and the improved decay
estimates with sharp rates for all order derivatives of the global weak solutions of
the two-dimensional dissipative quasi-geostrophic equation.

Lemma 2.5. For Case 1, there holds the following optimal estimate

t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

≤ 5

(2π)2

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη
{∫∫

R2

|u0(x)|dx

}2

+
5

(2π)2

∫∫
R2

|η|4m exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|f(x, t)|dxdt

}2

+
5t−1/ρ

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
5C0(m)

(2π)2
t−(2−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m−ρ+(1+δ)/2f(x, τ)|dx

}2

+
5C0(m)

(2π)2
t−(3−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and for all
(sufficiently large) t > 0.

Proof. Let N (u) = J(u, (−4)−1/2u). First of all, recall that there holds the
following representation for the Fourier transformation of the global weak solutions:

û(t−1/(2ρ)η, t) = exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ,

for all (η, t) ∈ R2 × R+.
By coupling together the Parseval’s identity, a simple property of the Fourier

transformation, the change of variables η = t1/(2ρ)ξ, so that |η|2ρ = |ξ|2ρt and
dη = t1/ρdξ, the representation of the Fourier transformation û(t−1/(2ρ)η, t) of the
global weak solutions, the elementary estimates in Subsection 2.1, we have the
following computations and estimates

t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx
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=
t(2m+1)/ρ

(2π)2

∫∫
R2

|ξ|4m|û(ξ, t)|2dξ

=
1

(2π)2

∫∫
R2

|η|4m|û(t−1/(2ρ)η, t)|2dη

=
1

(2π)2

∫∫
R2

|η|4m
∣∣∣exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣2 dη

=
1

(2π)2

∫∫
R2

|η|4m
∣∣∣exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

+

∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤ 5

(2π)2

∫∫
R2

|η|4m
∣∣∣exp(−α|η|2ρ)û0(t−1/(2ρ)η)

∣∣∣2 dη

+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤ 5

(2π)2

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη
{∫∫

R2

|u0(x)|dx

}2

+
5

(2π)2

∫∫
R2

|η|4m exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|f(x, t)|dxdt

}2

+
5t−1/ρ

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
5C0(m)

(2π)2
t−(2−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
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· sup
(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m−ρ+(1+δ)/2f(x, τ)|dx

}2

+
5C0(m)

(2π)2
t−(3−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > 0. The
proof of the lemma is finished now.

Lemma 2.6. There holds the following optimal estimate

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

≤ 2

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
2C0(m)

(2π)2
t−(2−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > 0, where
C0 = C0(m) > 0 is a positive constant, independent of (α, ρ), (δ, ε), (u0, f), u and
(x, t).

Proof. Recall that there holds the following representation for the Fourier trans-
formation of u− v:

û(t−1/(2ρ)η, t)− v̂(t−1/(2ρ)η, t) = −
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ,

for all (η, t) ∈ R2 × R+. The main ideas and the main steps of the proof are the
same. For the completeness of this paper, we will give all the details. By coupling
together the Parseval’s identity, a simple property of the Fourier transformation, the
change of variables η = t1/(2ρ)ξ, the representation of the Fourier transformation
û(t−1/(2ρ)η, t) − v̂(t−1/(2ρ)η, t) and the elementary estimates in Subsection 2.1, we
have the following computations and estimates

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

=
t(2m+2)/ρ

(2π)2

∫∫
R2

|ξ|4m|û(ξ, t)− v̂(ξ, t)|2dξ

=
1

(2π)2

∫∫
R2

|η|4m|t1/(2ρ)[û(t−1/(2ρ)η, t)− v̂(t−1/(2ρ)η, t)]|2dη
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=
1

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣2 dη

=
1

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

+

∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤ 2

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

+
2

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤ 2

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
2C0(m)

(2π)2
t−(2−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > 0. The
proof of the lemma is finished now.

2.4. The comprehensive analysis: Case 2

The main purposes of this subsection are to make use of the elementary estimates
for Case 2 and the representation of the Fourier transformation of the global weak
solutions to establish optimal estimates for t(2m+2)/ρ

∫∫
R2 |(−4)mu(x, t)|2dx and

t(2m+2)/ρ
∫∫

R2 |(−4)m[u(x, t)− v(x, t)]|2dx. These estimates will play very impor-
tant roles when we accomplish the primary decay estimates and the improved decay
estimates with sharp rates for all order derivatives of the global weak solutions of
the two-dimensional dissipative quasi-geostrophic equation.

Lemma 2.7. For Case 2, there holds the following optimal estimate

t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

≤ 5

(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

{
2∑
k=1

[∫∫
R2

|φk(x)|dx

]2}

+
5

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη

{
2∑
k=1

[∫ ∞
0

∫∫
R2

|ψk(x, t)|dxdt

]2}

+
5

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2
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+
5C0(m)

(2π)2
t−(4−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
2∑
k=1

[
τ (2m+6+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m+1−ρ+δ/2ψk(x, τ)|dx

]2}

+
5C0(m)

(2π)2
t−(4−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ2/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > 0.

Proof. As before, let N (u) = J(u, (−4)−1/2u). For Case 2, there holds the
following representation for the Fourier transformation of the global weak solutions:

t1/(2ρ)û(t−1/(2ρ)η, t) = i exp(−α|η|2ρ)

{
2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

}

+ i

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]{ 2∑

k=1

ηkψ̂k(t−1/(2ρ)η, τ)

}
dτ

−
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ,

for all (η, t) ∈ R2 × R+.
We have the following computations and estimates

t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

=
t(2m+2)/ρ

(2π)2

∫∫
R2

|ξ|4m|û(ξ, t)|2dξ

=
1

(2π)2

∫∫
R2

|η|4m|t1/(2ρ)û(t−1/(2ρ)η, t)|2dη

=
1

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣2 dη

=
1

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ
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−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

+

∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤ 5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]∣∣∣∣∣
2

dη

+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

∣∣∣∣∣
2

dη

+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

∣∣∣∣∣
2

dη

+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤ 5

(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

{
2∑
k=1

[∫∫
R2

|φk(x)|dx

]2}

+
5

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη

{
2∑
k=1

[∫ ∞
0

∫∫
R2

|ψk(x, t)|dxdt

]2}

+
5

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
5C0(m)

(2π)2
t−(4−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
·

2∑
k=1

{
sup

(1−ε)t≤τ≤t

[
τ (2m+6+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m+1−ρ+δ/2ψk(x, τ)|dx

]2}

+
5C0(m)

(2π)2
t−(4−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ2/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > 0. The
proof of the lemma is finished now.
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Lemma 2.8. There holds the following optimal estimate

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

≤ 2

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
2C0(m)

(2π)2
t−(4−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ2/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > 0, where
C0 = C0(m) > 0 is positive constant, independent of (α, ρ), (δ, ε), (u0, f), u and
(x, t).

Proof. Recall that there holds the following representation for the Fourier trans-
formation of u− v:

û(t−1/(2ρ)η, t)− v̂(t−1/(2ρ)η, t) = −
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ,

for all (η, t) ∈ R2 × R+.
By coupling together the Parseval’s identity, a simple property of the Fourier

transformation, the change of variables η = t1/(2ρ)ξ, so that |η|2ρ = |ξ|2ρt and
dη = t1/ρdξ, the representation of the Fourier transformation t1/(2ρ)[û(t−1/(2ρ)η, t)−
v̂(t−1/(2ρ)η, t)] of the global weak solutions, the elementary estimates in Subsection
2.2, we have the following computations and estimates

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

=
t(2m+2)/ρ

(2π)2

∫∫
R2

|ξ|4m|û(ξ, t)− v̂(ξ, t)|2dξ

=
1

(2π)2

∫∫
R2

|η|4m|t1/(2ρ)[û(t−1/(2ρ)η, t)− v̂(t−1/(2ρ)η, t)]|2dη

=
1

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣2 dη

=
1

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

+

∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤ 2

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

+
2

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη
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≤ 2

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
2C0(m)

(2π)2
t−(4−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ2/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > 0. The
proof of the lemma is finished now.

2.5. The primary decay estimates with sharp rates

The main purposes of this subsection are to establish the primary decay estimates
with sharp rates for both cases. The main idea is to apply the estimates obtained
in the comprehensive analysis and the iteration technique. These primary decay
estimates will be used to accomplish the exact limits.

Let the positive constants 0 < δ < 2ρ and 0 < ε < 1, let the real constants
m ≥ 0 and κ ≥ 0.

Recall that there holds the elementary decay estimate with a sharp rate

sup
t>0

{
t1/ρ

∫∫
R2

|u(x, t)|2dx

}
<∞.

Also recall that there hold the following uniform estimates

sup
t>T

{∫∫
R2

|(−4)mu(x, t)|2dx

}
<∞,

for all constants m ≥ 0.
The Proof of Theorem 1.5: Multiplying the inequality in Lemma 2.5 by

t−κ/ρ, we have

t(2m+1−κ)/ρ
∫∫

R2

|(−4)mu(x, t)|2dx

≤ 5t−κ/ρ

(2π)2

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη
{∫∫

R2

|u0(x)|dx

}2

+
5t−κ/ρ

(2π)2

∫∫
R2

|η|4m exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|f(x, t)|dxdt

}2

+
5t−(1+κ)/ρ

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
5C0(m)

(2π)2
t−(2+κ−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m−ρ+(1+δ)/2f(x, τ)|dx

}2

+
5C0(m)

(2π)2
t−(3+κ−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
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· sup
(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > 0. The
positive constant C0 = C0(m) > 0 is independent of (α, ρ), (δ, ε), (u0, f), (x, t), u
and κ.

Let us iterate the above procedure for a finite number of times, so that each time
the decay rate increases (1−δ)/ρ. Without loss of generality, we may make δ slightly
smaller by letting 0 < δ < min{1, 2ρ}. This way we may establish the primary decay
estimates with sharp rates for each fixed positive constant m > 0. Precisely, let ri
be the rate of decay we obtain if we let κ = κi, where i = 1, 2, 3, · · · ,M , and M is
a finite positive integer. We have the following iteration process

κ = κ1 = 2m+ δ, r1 =
1− δ
ρ

,

κ = κ2 = (2m+ δ)− (1− δ), r2 =
2(1− δ)

ρ
,

κ = κ3 = (2m+ δ)− 2(1− δ), r3 =
3(1− δ)

ρ
,

κ = κ4 = (2m+ δ)− 3(1− δ), r4 =
4(1− δ)

ρ
,

· · · · · · · · · · · ·

κ = κM = (2m+ δ)− (M − 1)(1− δ), rM =
M(1− δ)

ρ
.

If there exists a positive integer M > 1, such that

M
1− δ
ρ

=
2m+ 1

ρ
,

then we have finished the proof of Theorem 1.5.
If there exists a positive integer M > 1, such that

M
1− δ
ρ

<
2m+ 1

ρ
< (M + 1)

1− δ
ρ

,

then letting κM+1 = 0, we get rM+1 = (2m+ 1)/ρ.
The primary decay estimates with sharp rates for all order derivatives of the

global weak solutions have been finished now, for Case 1.

Remark 2.1. By Theorem 1.5, Case 1, there holds the estimate

sup
t>T

{
t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
<∞,

for all constants m ≥ 0. Therefore, we have

sup
t>T

{
t1/ρ

∫∫
R2

|u(x, t)|2dx

}
<∞,
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sup
t>T

{
t(2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, t)|2dx

}
<∞,

for all constants 0 < δ < 2ρ and m ≥ 0. Now

sup
(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
<∞,

sup
(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
<∞,

for all constants 0 < δ < 2ρ, 0 < ε < 1 and m ≥ 0, and for all (1 − ε)t > T .
Therefore, we have∫∫

R2
|η|4m

∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1−

τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)

∣∣∣∣∣
2

dη ≤ C0(m)t−(2−2ρ)/ρ,

for all constants 0 < δ < 2ρ, 0 < ε < 1 and m ≥ 0, and for all (1− ε)t > T .

The Proof of Theorem 1.6: We have the following computations and esti-
mates

t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

=
t(2m+2)/ρ

(2π)2

∫∫
R2

|ξ|4m|û(ξ, t)|2dξ

=
1

(2π)2

∫∫
R2

|η|4m|t1/(2ρ)û(t−1/(2ρ)η, t)|2dη

=
1

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣2 dη

=
1

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

+

∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)

∣∣∣∣∣
2

dη

≤ 5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]∣∣∣∣∣
2

dη
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+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

∣∣∣∣∣
2

dη

+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

∣∣∣∣∣
2

dη

+
5

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

≤ 5

(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

{
2∑
k=1

[∫∫
R2

|φk(x)|dx

]2}

+
5

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη

{
2∑
k=1

[∫ ∞
0

∫∫
R2

|ψk(x, t)|dxdt

]2}

+
5

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
5C0(m)

(2π)2
t−(4−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
·

{
2∑
k=1

sup
(1−ε)t≤τ≤t

[
τ (2m+6+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m+1−ρ+δ/2ψk(x, τ)|dx

]2}

+
5C0(m)

(2π)2
t−(2−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
≤ C,

for all constants 0 < δ < 2ρ, 0 < ε < 1, m ≥ 0 and for all sufficiently large t > 0.
The proof of Theorem 1.6 is finished now. �

Remark 2.2. By Theorem 1.6, there holds the estimate

sup
t>T

{
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
<∞,

for all constants m ≥ 0. Therefore, we have

sup
t>T

{
t2/ρ

∫∫
R2

|u(x, t)|2dx

}
<∞,

sup
t>T

{
t(2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, t)|2dx

}
<∞,
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for all constants 0 < δ < 2ρ and for all m ≥ 0. Now

sup
(1−ε)t≤τ≤t

{
τ2/ρ

∫∫
R2

|u(x, τ)|2dx

}
<∞,

sup
(1−ε)t≤τ≤t

{
τ (2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
<∞,

for all constants 0 < δ < 2ρ, 0 < ε < 1 and m ≥ 0, and for all (1 − ε)t > T .
Therefore, we have∫∫

R2
|η|4m

∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1−

τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)

∣∣∣∣∣
2

dη ≤ C0(m)t−(4−2ρ)/ρ,

for all constants 0 < δ < 2ρ, 0 < ε < 1 and m ≥ 0, and for all (1− ε)t > T .

2.6. The fundamental limits

Now we are ready to make use of the elementary estimates and the primary decay
estimates to establish several fundamental limits for the global weak solutions of the
two-dimensional dissipative quasi-geostropic equation. Let the positive constants
0 < δ < 2ρ and 0 < ε < 1. Let the constant m ≥ 0 and let η ∈ R2.

Observation. Note that∫∫
R2

η21 |η|4m exp(−2α|η|2ρ)dη

=

∫∫
R2

η22 |η|4m exp(−2α|η|2ρ)dη

=
1

2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη,

and ∫∫
R2

η1η2|η|4m exp(−2α|η|2ρ)dη = 0.

Therefore ∫∫
R2

|η|4m
∣∣∣∣∣

2∑
k=1

akηk + i

2∑
k=1

bkηk

∣∣∣∣∣
2

exp(−2α|η|2ρ)dη

=
1

2

2∑
k=1

(a2k + b2k)

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη,

for all constants α > 0, 0 < ρ < 1, ai ∈ R, bi ∈ R and m ≥ 0. First of all, let us
compute a few limits closely related to the Fourier transformation of the Jacobian
determinant J(u, (−4)−1/2u), as t→∞.

Lemma 2.9. There holds the following limit

lim
t→∞

{
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)

}
= − 1

(2π)2

∫∫
R2

λ� η
|λ|
|û(λ, τ)|2dλ,

for all (η, t) ∈ R2 × R+.
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Proof. Recall that the Jacobian determinant is

J(u, (−4)−1/2u) =
∂

∂x
u
∂

∂y
(−4)−1/2u− ∂

∂y
u
∂

∂x
(−4)−1/2u

=
∂

∂x

{
u
∂

∂y
(−4)−1/2u

}
− ∂

∂y

{
u
∂

∂x
(−4)−1/2u

}
.

Hence the Fourier transformation

N̂ (u)(ξ, t) = iξ1ûR2u(ξ, t)− iξ2ûR1u(ξ, t)

= − 1

(2π)2

∫∫
R2

λ1ξ2 − λ2ξ1
|λ|

û(λ+ ξ, t)û(λ, t)dλ,

for all (ξ, t) ∈ R2 × R+, where

ûR1u(ξ, t) = − 1

(2π)2

∫∫
R2

iλ1
|λ|

û(λ+ ξ, t)û(λ, t)dλ,

ûR2u(ξ, t) = − 1

(2π)2

∫∫
R2

iλ2
|λ|

û(λ+ ξ, t)û(λ, t)dλ.

Making the change of variables η = t1/(2ρ)ξ, we have

t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ) = − 1

(2π)2

∫∫
R2

λ� η
|λ|

û(λ+ t−1/(2ρ)µ, τ)û(λ, τ)dλ,

for all (η, τ) ∈ R2 × R+.

The limit follows from the Lebesgue’s dominated convergence theorem. The
proof of the lemma is finished now.

Lemma 2.10. There holds the following limit

lim
t→∞

{
−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

}

= exp(−α|η|2ρ)
{

1

(2π)2

∫ ∞
0

∫∫
R2

λ� η
|λ|
|û(λ, t)|2dλdt

}
.

Proof. The limit follows from Lebesgue’s dominated convergence theorem and
the result of Lemma 2.9.

Lemma 2.11. For Case 1, there holds the following limit

lim
t→∞

{
exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

}

= exp(−α|η|2ρ)
{∫∫

R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}
.
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For Case 2, there holds the following limit

lim
t→∞

{
exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

}

= exp(−α|η|2ρ)

{
i

2∑
k=1

ηk

[∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

]
+

1

(2π)2

∫ ∞
0

∫∫
R2

λ� η
|λ|
|û(λ, t)|2dλdt

}
.

Proof: The proof follows from Lebesgue’s dominated convergence theorem, the
continuity of the Fourier transformations and the estimates in Lemma 2.1. The
details are omitted. �

Lemma 2.12. For Case 1, there holds the following limit

lim
t→∞

{∫∫
R2

|η|4m
∣∣∣exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη


=

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη
{∫∫

R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

.

For Case 2, there holds the following limit

lim
t→∞

{∫∫
R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη


=

1

2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

]2

+

2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

]2}
.
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Proof: The proof follows from Lebesgue’s dominated convergence theorem, the
estimates in Lemma 2.1 and Lemma 2.3, and the limits in Lemma 2.11. �

Lemma 2.13. For Case 1, there holds the following limit

lim
t→∞

{∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

 = 0.

For Case 2, there holds the following limit

lim
t→∞

{∫∫
R2

|η|4m
∣∣∣∣∣
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ t

(1−ε)t
exp

[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη

 = 0.

Proof: The proof follows from the estimates in Remark 2.1 and Remark 2.2.
The details are omitted. �

Lemma 2.14. For Case 1, there hold the following limits

lim
t→∞

{∫∫
R2

|η|4m
∣∣∣exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣2 dη

}

= lim
t→∞

{∫∫
R2

|η|4m
∣∣∣exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη


=

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη
{∫∫

R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

.

For Case 2, there hold the following limits

lim
t→∞

{∫∫
R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ
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−
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣2 dη

}

= lim
t→∞

{∫∫
R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη


=

1

2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

]2

+

2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

]2}
.

Proof: The proof follows from the squeeze theorem, the limits in Lemma 2.12
and Lemma 2.13, and the estimates in Lemma 2.1, Lemma 2.2, Lemma 2.3 and
Lemma 2.4. The details are omitted. �

The Proof of Theorem 1.9: By using the explicit representation of the Fourier
transformation

v̂(t−1/(2ρ)η, t) = exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ,

and the ideas in this subsection, we can finish the computations of the exact limits
easily. There hold the following identities{∫∫

R2

|η|4m+4ρ+2 exp(−2α|η|2ρ)dη
}

/

{∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη
}

=
(2m+ 2)(2m+ ρ+ 2)

(2αρ)2
,{∫∫

R2

|η|4m+8ρ+2 exp(−2α|η|2ρ)dη
}

/

{∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη
}

=
(2m+ 2)(2m+ ρ+ 2)(2m+ 2ρ+ 2)(2m+ 3ρ+ 2)

(2αρ)4
,

for all positive constants α > 0 and ρ > 0, for all m ≥ 0. By using these identities,
the ratios of the exact limits are not difficult to compute. The proof is finished. �
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The Proof of Theorem 1.10: There holds the following representation for
the Fourier transformation of the global smooth solution of (1.3)-(1.4):

t1/(2ρ)û(t−1/(2ρ)η, t) = exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ,

for all (η, t) ∈ R2 × R+. The details are very similar to those of Theorem 1.9 and
they are omitted. �

2.7. The exact limits

The main purposes of this subsection are to make complete use of the fundamental
limits to accomplish the exact limits for all order derivatives of the global weak
solutions of the two-dimensional dissipative quasi-geostrophic equation. For Case
1, we will prove the exact limit

lim
t→∞

{
t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
=

1

(2π)2

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη

·
{∫∫

R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

.

For Case 2, we will prove the following exact limit

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
=

1

2(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

]2

+

2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

]2}
.

For both cases, we will prove the limit

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

}
=

1

2(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

]2}
.
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Recall that u = u(x, t) represents the global weak solutions of the two-dimensional
dissipative quasi-geostrophic equation, v = v(x, t) represents the global smooth so-
lution of the corresponding linear equation. Note that the initial functions for the
two problems are the same, the external forces are the same as well.

The Proof of Theorem 1.1: By coupling together the Parseval’s identity,
a simple property of the Fourier transformation, the simple change of variables
η = t1/(2ρ)ξ, so that |η|2ρ = |ξ|2ρt and dη = t1/ρdξ, the representation of the
Fourier transformation û(t−1/(2ρ)η, t), the elementary estimates in Lemma 2.1 and
the fundamental limits, we have the following computations

lim
t→∞

{
t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
= lim

t→∞

{
t(2m+1)/ρ

(2π)2

∫∫
R2

|ξ|4m|û(ξ, t)|2dξ

}
= lim

t→∞

{
1

(2π)2

∫∫
R2

|η|4m|û(t−1/(2ρ)η, t)|2dη

}
= lim

t→∞

{
1

(2π)2

∫∫
R2

|η|4m
∣∣∣exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣2 dη

}

= lim
t→∞

{
1

(2π)2

∫∫
R2

|η|4m
∣∣∣exp(−α|η|2ρ)û0(t−1/(2ρ)η)

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
f̂(t−1/(2ρ)η, τ)dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη


=

1

(2π)2

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη
{∫∫

R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

.

The Proof of Theorem 1.2: There are several subtle differences between the
main steps of the proof of Theorem 1.1 and the proof of Theorem 1.2. We give the
details of the proof of Theorem 1.2 for the completeness of the paper. We have the
following computations

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
= lim

t→∞

{
t(2m+2)/ρ

(2π)2

∫∫
R2

|ξ|4m|û(ξ, t)|2dξ

}
= lim

t→∞

{
1

(2π)2

∫∫
R2

|η|4m|t1/(2ρ)û(t−1/(2ρ)η, t)|2dη

}
= lim

t→∞

{
1

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]
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+

∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣2 dη

}

= lim
t→∞

{
1

(2π)2

∫∫
R2

|η|4m
∣∣∣∣∣exp(−α|η|2ρ)

[
i

2∑
k=1

ηkφ̂k(t−1/(2ρ)η)

]

+

∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
] [

i

2∑
k=1

ηkψ̂k(t−1/(2ρ)η, τ)

]
dτ

−
∫ (1−ε)t

0

exp
[
−α|η|2ρ(1− τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη


=

1

(2π)2

∫∫
R2

|η|4m exp(−2α|η|2ρ)

·

∣∣∣∣∣i
2∑
k=1

ηk

[∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

]

+
1

(2π)2

∫ ∞
0

∫∫
R2

λ� η
|λ|
|û(λ, t)|2dλdt

∣∣∣∣2 dη

=
1

2(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

]2

+

2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

]2}
.

The Proof of Theorem 1.3: The main ideas and the main steps of the proof
of Theorem 1.3 are the same as those of Theorem 1.1. For the completeness of this
paper, we give all the details here. We have the following computations

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2
|(−4)m[u(x, t)− v(x, t)]|2dx

}
= lim
t→∞

{
t(2m+2)/ρ

(2π)2

∫∫
R2
|ξ|4m|û(ξ, t)− v̂(ξ, t)|2dξ

}

= lim
t→∞

{
1

(2π)2

∫∫
R2
|η|4m|t1/(2ρ)[û(t−1/(2ρ)η, t)− v̂(t−1/(2ρ)η, t)]|2dη

}
= lim
t→∞

{
1

(2π)2

∫∫
R2
|η|4m

∣∣∣∣∫ t

0
exp

[
−α|η|2ρ(1−

τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣2 dη
}

= lim
t→∞

 1

(2π)2

∫∫
R2
|η|4m

∣∣∣∣∣
∫ (1−ε)t

0
exp

[
−α|η|2ρ(1−

τ

t
)
]
t1/(2ρ)N̂ (u)(t−1/(2ρ)η, τ)dτ

∣∣∣∣∣
2

dη


=

1

2(2π)2

∫∫
R2
|η|4m+2 exp(−2α|η|2ρ)dη ·

{
2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk

|λ|
|û(λ, t)|2dλdt

]2}

=
1

2
I(m)L.
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The Proof of Theorem 1.4: To prove the ratios, let us make the change of
variables ζ = (2α)1/(2ρ)η. Then |ζ|2ρ = 2α|η|2ρ and dζ = (2α)1/ρdη. Moreover, we
have∫∫

R2

|η|4m+2 exp(−2α|η|2ρ)dη = (2α)−(2m+2)/ρ

∫∫
R2

|ζ|4m+2 exp(−|ζ|2ρ)dζ,

for all positive constants α > 0 and ρ > 0, for all m ≥ 0. Let us differentiate the
above equation with respect to α, twice and four times, respectively, to get

4

∫∫
R2

|η|4m+4ρ+2 exp(−2α|η|2ρ)dη

= 4(2α)−2−(2m+2)/ρ 2m+ 2

ρ

(
1 +

2m+ 2

ρ

)∫∫
R2

|ζ|4m+2 exp(−|ζ|2ρ)dζ

=
4

(2α)2
2m+ 2

ρ

(
1 +

2m+ 2

ρ

)∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη,

and

16

∫∫
R2

|η|4m+8ρ+2 exp(−2α|η|2ρ)dη

= 16(2α)−4−(2m+2)/ρ 2m+ 2

ρ

(
1 +

2m+ 2

ρ

)(
2 +

2m+ 2

ρ

)(
3 +

2m+ 2

ρ

)
·
∫∫

R2

|ζ|4m+2 exp(−|ζ|2ρ)dζ

=
16

(2α)4
2m+ 2

ρ

(
1 +

2m+ 2

ρ

)(
2 +

2m+ 2

ρ

)(
3 +

2m+ 2

ρ

)
·
∫∫

R2

|η|4m+2 exp(−|η|2ρ)dη.

Now we get the basic ratios{∫∫
R2

|η|4m+4ρ+2 exp(−2α|η|2ρ)dη
}
/

{∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη
}

=
(2m+ 2)(2m+ ρ+ 2)

(2αρ)2
,

and {∫∫
R2

|η|4m+8ρ+2 exp(−2α|η|2ρ)dη
}
/

{∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη
}

=
(2m+ 2)(2m+ ρ+ 2)(2m+ 2ρ+ 2)(2m+ 3ρ+ 2)

(2αρ)4
.

2.8. The improved decay estimates with sharp rates

The main purposes of this subsection are to make complete use of the comprehensive
analysis and the exact limits for all order derivatives of the global weak solutions to
accomplish the improved decay estimates with sharp rates for all order derivatives
of the global weak solutions of the two-dimensional incompressible dissipative quasi-
geostrophic equation.
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The Proof of Theorem 1.7: Recall that there hold the following estimates

t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

≤ 5

(2π)2

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη
{∫∫

R2

|u0(x)|dx

}2

+
5

(2π)2

∫∫
R2

|η|4m exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|f(x, t)|dxdt

}2

+
5t−1/ρ

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
5C0(m)

(2π)2
t−(2−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m−ρ+(1+δ)/2f(x, τ)|dx

}2

+
5C0(m)

(2π)2
t−(3−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

and

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

≤ 2

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
2C0(m)

(2π)2
t−(2−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > T .

To improve the decay estimates, we must control the following three quantities

sup
(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m−ρ+(1+δ)/2f(x, τ)|dx

}2

,

sup
(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
,

sup
(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
.
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Recall that there hold the following exact limits

lim
t→∞

{
t(m+1)/ρ

∫∫
R2

|(−4)mf(x, t)|dx

}2

= E4(m),

and

lim
t→∞

{
t1/ρ

∫∫
R2

|u(x, t)|2dx

}
= I(−1/2)J ,

lim
t→∞

{
t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
= I(m− 1/2)J ,

for all constants m ≥ 0, where

I(m) =
1

(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη,

J =

{∫∫
R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

.

By using the squeeze theorem, we have the following limits

lim
t→∞

{
sup

(1−ε)t≤τ≤t

[
τ (2m+3+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m−ρ+(1+δ)/2f(x, τ)|dx

]2}
= E4(m− ρ+ (1 + δ)/2),

and

lim
t→∞

{
sup

(1−ε)t≤τ≤t

[
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

]}
= I(−1/2)J ,

lim
t→∞

{
sup

(1−ε)t≤τ≤t

[
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

]}
= I(m− ρ+ (1 + δ)/2)J ,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0.
Therefore, there exists a sufficiently large positive constant T � 1, such that

sup
(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m−ρ+(1+δ)/2f(x, τ)|dx

}2

≤ 2E4(m− ρ+ (1 + δ)/2),

and

sup
(1−ε)t≤τ≤t

{
τ1/ρ

∫∫
R2

|u(x, τ)|2dx

}
≤ 2I(−1/2)J ,

sup
(1−ε)t≤τ≤t

{
τ (2m+3+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
≤ 2I(m− ρ+ (1 + δ)/2)J ,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > T .
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Now by coupling together the estimates in the comprehensive analysis and all
of the above estimates, we have finished the proof of the improved decay estimates
with sharp rates

t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx ≤ A1(m) + B1(m)t−(2−2ρ)/ρ,

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx ≤ C1(m) +D1(m)t−(2−2ρ)/ρ,

for all order derivatives of the global weak solutions of the two-dimensional in-
compressible dissipative quasi-geostrophic equation. The proof of Theorem 1.7 is
finished now. �

The Proof of Theorem 1.8: Recall that there hold the following estimates

t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

≤ 5

(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

{
2∑
k=1

[∫∫
R2

|φk(x)|dx

]2}

+
5

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη

{
2∑
k=1

[∫ ∞
0

∫∫
R2

|ψk(x, t)|dxdt

]2}

+
5

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
5C0(m)

(2π)2
t−(4−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
·

2∑
k=1

{
sup

(1−ε)t≤τ≤t

[
τ (2m+6+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m+1−ρ+δ/2ψk(x, τ)|dx

]2}

+
5C0(m)

(2π)2
t−(4−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ2/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,

and

t(2ρ+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

≤ 2

(2π)2

∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

+
2C0(m)

(2π)2
t(4−2ρ)/ρ

{∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη

}
· sup

(1−ε)t≤τ≤t

{
τ2/ρ

∫∫
R2

|u(x, τ)|2dx

}
· sup

(1−ε)t≤τ≤t

{
τ (2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
,
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for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > T .
To improve these decay estimates, we will make complete use of the exact limits

in Assumption (A1) and Theorem 1.1 to replace

2∑
k=1

{
sup

(1−ε)t≤τ≤t

[
τ (2m+6+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m+1−ρ+δ/2ψk(x, τ)|dx

]2}
,

sup
(1−ε)t≤τ≤t

{
τ2/ρ

∫∫
R2

|u(x, τ)|2dx

}
,

sup
(1−ε)t

{
τ (2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

}
.

Recall that there hold the following exact limits

lim
t→∞

2∑
k=1

{
t(m+2)/ρ

∫∫
R2

|(−4)mψk(x, t)|dx

}2

= F4(m),

and

lim
t→∞

{
t2/ρ

∫∫
R2

|u(x, t)|2dx

}
= I(0)K,

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
= I(m)K,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0, where

I(m) =
1

(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη,

K =

2∑
k=1

{∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

}2

+

2∑
k=1

{
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

}2

.

Now there exist the limits

lim
t→∞

2∑
k=1

{
sup

(1−ε)t≤τ≤t

[
τ (2m+6+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m+1−ρ+δ/2ψk(x, τ)|dx

]2}
= F4(m+ 1− ρ+ δ/2),

and

lim
t→∞

{
sup

(1−ε)t≤τ≤t

[
τ2/ρ

∫∫
R2

|u(x, τ)|2dx

]}
= I(0)K,

lim
t→∞

{
sup

(1−ε)t≤τ≤t

[
τ (2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ)|2dx

]}
= I(m+ 1− ρ+ δ/2)K,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0.
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Therefore, there exists a sufficiently large positive constant T � 1, such that

2∑
k=1

sup
(1−ε)t≤τ≤t

{
τ (2m+6+δ−2ρ)/(2ρ)

∫∫
R2

|(−4)m+1−ρ+δ/2ψk(x, τ)|dx

}2

≤ 2F4(m+ 1− ρ+ δ/2),

and

sup
(1−ε)t≤τ≤t

{
τ2/ρ

∫∫
R2

|u(x, τ)|2dx

}
≤ 2I(0)K,

sup
(1−ε)t≤τ≤t

{
τ (2m+4+δ−2ρ)/ρ

∫∫
R2

|(−4)m+1−ρ+δ/2u(x, τ |2dx

}
≤ 2I(m+ 1− ρ+ δ/2)K,

for all positive constants 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0 and t > 0.
Therefore, by coupling together all of the above estimates, we have finished the

proof of the improved decay estimates with sharp rates

t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx ≤ A2(m) + B2(m)t−(4−2ρ)/ρ,

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx ≤ C2(m) +D2(m)t−(4−2ρ)/ρ,

for all order derivatives of the global weak solutions and for all sufficiently large t.
The proof of Theorem 1.8 is finished now. �

Note that there hold the following relationships∫∫
R2

|η|4m+2 exp(−2αε|η|2ρ)dη = ε−(2m+2)/ρ

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη,∫∫
R2

[1− exp(−αε|η|2ρ)]2

α2|η|2+2δ
dη =

(αε)δ/ρ

α2

∫∫
R2

[1− exp(−|η|2ρ)]2

|η|2+2δ
dη,

for all positive constants α > 0, 0 < δ < 2ρ and 0 < ε < 1, for all m ≥ 0.

3. Conclusion and Remarks

3.1. Summary

Consider the Cauchy problem for the two-dimensional incompressible dissipative
quasi-geostrophic equation

∂

∂t
u+ α(−4)ρu+ J(u, (−4)−1/2u) = f(x, t),

u(x, 0) = u0(x).

In the system, u = u(x, t) represents the temperature of the fluid, the Jacobian
determinant J(u, (−4)−1/2u) is defined by

J(u, (−4)−1/2u) =
∂

∂x
u
∂

∂y
(−4)−1/2u− ∂

∂y
u
∂

∂x
(−4)−1/2u.
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The operators

∂

∂x
(−4)−1/2 and

∂

∂y
(−4)−1/2

represent the Riesz transformations in R2. Moreover, the real vector valued function

F(x, t) ≡

− ∂
∂y (−4)−1/2u

+ ∂
∂x (−4)−1/2u


represents the velocity of the fluid. Note that ∇ · F = 0. Therefore, the fluid is
incompressible.

Also consider the Cauchy problem for the corresponding linear equation

∂

∂t
v + α(−4)ρv = f(x, t),

v(x, 0) = u0(x).

We have studied the following two main cases.
Case 1: Suppose that the initial function and the external force satisfy the

following conditions

u0 ∈ C1(R2) ∩ L1(R2) ∩ L2(R2),

f ∈ C∞(R2 × R+) ∩ L1(R2 × R+) ∩ L1(R+, L2(R2)),

such that ∫∫
R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt 6= 0.

Case 2: Suppose that the initial function and the external force satisfy the
following conditions

u0 ∈ C1(R2) ∩ L1(R2) ∩ L2(R2),

f ∈ C∞(R2 × R+) ∩ L1(R2 × R+) ∩ L1(R+, L2(R2)).

Suppose that there exist real scalar smooth functions

φ1 ∈ C2(R2) ∩ L1(R2), ψ1 ∈ C∞(R2 × R+) ∩ L1(R2 × R+),

φ2 ∈ C2(R2) ∩ L1(R2), ψ2 ∈ C∞(R2 × R+) ∩ L1(R2 × R+),

such that

u0(x) =
∂

∂x
φ1(x) +

∂

∂y
φ2(x), f(x, t) =

∂

∂x
ψ1(x, t) +

∂

∂y
ψ2(x, t).

For Case 1, we have accomplished the exact limits

lim
t→∞

{
t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
=

1

(2π)2

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη
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·
{∫∫

R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

,

for all constants m ≥ 0.
For Case 2, we have accomplished the exact limits

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
=

1

2(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

]2

+

2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

]2}
,

for all constants m ≥ 0.
For both cases, we have accomplished the exact limits

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

}
=

1

2(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

]2}
,

for all constants m ≥ 0.
Moreover, for Case 1, we have accomplished the following improved decay esti-

mates with sharp rates

t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx ≤ A1(m) + B1(m)t−(2−2ρ)/ρ,

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx ≤ C1(m) +D1(m)t−(2−2ρ)/ρ,

for all order derivatives of the global weak solutions and for all sufficiently large
t� 1.

For Case 2, we have established the following improved decay estimates with
sharp rates

t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx ≤ A2(m) + B2(m)t−(4−2ρ)/ρ,

t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx ≤ C2(m) +D2(m)t−(4−2ρ)/ρ,

for all constants m ≥ 0 and for all sufficiently large t� 1.

3.2. Remarks

Remark 3.1. If we drop the Jacobian determinant, then the exact limits for all
order derivatives of the global weak solutions reduce to the exact limits for all order
derivatives of the global smooth solution of the corresponding linear equation.
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Remark 3.2. In Case 1, the exact limits for the nonlinear equation and the linear
equation are the same. That is,

lim
t→∞

{
t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
= lim

t→∞

{
t(2m+1)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

}
=

1

(2π)2

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη

·
{∫∫

R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

,

for each constant m ≥ 0.
In Case 2, the exact limit for the nonlinear equation is larger than the exact

limit for the linear equation. That is,

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
=

1

2(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

]2

+

2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

]2}

> lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)mv(x, t)|2dx

}
=

1

2(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

]2}
,

for each constant m ≥ 0.

Remark 3.3. For Case 1, the exact limits

lim
t→∞

{
t(2m+1)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
=

1

(2π)2

∫∫
R2

|η|4m exp(−2α|η|2ρ)dη

·
{∫∫

R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

,

and

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

}
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=
1

2(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

]2}
,

are independent of

(1) the integrals of any order derivatives of the initial function u0,

(2) the integrals of any order derivatives of the external force f ,

(3) the integrals of any order derivatives of the nonlinear function u2.

For Case 2, the exact limits

lim
t→∞

{
t(2m+2)/ρ

∫∫
R2

|(−4)mu(x, t)|2dx

}
=

1

2(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

]2

+

2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

]2}
,

lim
t→∞

{∫∫
R2

|(−4)m[u(x, t)− v(x, t)]|2dx

}
=

1

2(2π)2

∫∫
R2

|η|4m+2 exp(−2α|η|2ρ)dη

·

{
2∑
k=1

[
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

]2}
,

are independent of

(1) the integrals of any order derivatives of the functions φ1 and φ2,

(2) the integrals of any order derivatives of the functions ψ1 and ψ2,

(3) the integrals of any order derivatives of the function u2.

Remark 3.4. For Case 1, the exact limits are decreasing functions of α and ρ. The
exact limits are increasing functions of m, J and L, where

J =

{∫∫
R2

u0(x)dx +

∫ ∞
0

∫∫
R2

f(x, t)dxdt

}2

,

L =

2∑
k=1

{
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

}2

.

For Case 2, the exact limits are decreasing functions of α and ρ. The exact limits
are increasing functions of m, K and L, where

K =

2∑
k=1

{∫∫
R2

φk(x)dx +

∫ ∞
0

∫∫
R2

ψk(x, t)dxdt

}2
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+

2∑
k=1

{
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

}2

,

L =

2∑
k=1

{
1

(2π)2

∫ ∞
0

∫∫
R2

λk
|λ|
|û(λ, t)|2dλdt

}2

.

Remark 3.5. Recall that there holds the following elementary decay estimate

sup
t>0

{
(1 + t)1/ρ

∫∫
R2

|u(x, t)|2dx

}
<∞.

Also recall that 0 < ρ < 1. Therefore, the following integrals∫ ∞
0

∫∫
R2

|u(x, t)|2dxdt,∫ ∞
0

∫∫
R2

λ1
|λ|
|û(λ, t)|2dλdt,∫ ∞

0

∫∫
R2

λ2
|λ|
|û(λ, t)|2dλdt,

exist.

Remark 3.6. Even though the following integrals{
1

(2π)2

∫ ∞
0

∫∫
R2

λ1
|λ|
|û(λ, t)|2dλdt

}2

,{
1

(2π)2

∫ ∞
0

∫∫
R2

λ2
|λ|
|û(λ, t)|2dλdt

}2

,

are not explicitly represented in terms of α, ρ and the integrals of u0 and f , we
may still view them as known information because we know that these integrals
exist. That is why we call the main results the exact limits because they are given
explicitly in terms of known information.

Remark 3.7. For the linear equation, if both the initial function and the exter-
nal force are radially symmetric, then the global smooth solution is also radially
symmetric.

For the nonlinear equation, this is unknown.

Remark 3.8. The main results obtained in this paper have indirect, but great
influences on numerical simulations, in particular, in the accuracy and stability of
numerical schemes of the equation.

Remark 3.9. By using Cauchy-Schwartz’s inequality and Parseval’s identity, it is
easy to establish the following estimate{

1

(2π)2

∫ ∞
0

∫∫
R2

λ1
|λ|
|û(λ, t)|2dλdt

}2

+

{
1

(2π)2

∫ ∞
0

∫∫
R2

λ2
|λ|
|û(λ, t)|2dλdt

}2

≤
{∫ ∞

0

∫∫
R2

|u(x, t)|2dxdt

}2

.
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3.3. Open problems

Problem 3.1. Consider the Korteweg-de Vries-Burgers equation

∂

∂t
u+

∂

∂x
u+

∂3u

∂x3
− α∂

2u

∂x2
+ β

∂

∂x
(u2) = f(x, t),

u(x, 0) = u0(x),

the Benjamin-Bona-Mahony-Burgers equation

∂

∂t
u+

∂

∂x
u− ∂3u

∂x2∂t
− α∂

2u

∂x2
+ β

∂

∂x
(u2) = f(x, t),

u(x, 0) = u0(x),

and the Benjamin-Ono-Burgers equation

∂

∂t
u+

∂

∂x
u+H

∂2

∂x2
u− α ∂2

∂x2
u+ β

∂

∂x
(u2) = f(x, t),

u(x, 0) = u0(x),

where α > 0 and β > 0 are real constants. In the Benjamin-Ono-Burgers equation,
H represents the Hilbert singular integral operator, defined by

(Hφ)(x) = principal value
1

π

∫
R

φ(y)

x− y
dy,

for φ ∈ L2(R).
Given the elementary decay estimate

sup
t>0

{
t1/2

∫
R
|u(x, t)|2dx

}
<∞,

and given the fundamental exact limit

lim
t→∞

{
t1/2

∫
R
|u(x, t)|2dx

}
,

in terms of the constants α, β and the integrals∫
R
u0(x)dx,

∫ ∞
0

∫
R
f(x, t)dxdt,

can we accomplish the following exact limits

lim
t→∞

{
tm+1/2

∫
R

∣∣∣∣ ∂m∂xmu(x, t)

∣∣∣∣2 dx

}
,

and the following improved decay estimates with sharp rates

tm+1/2

∫
R

∣∣∣∣ ∂m∂xmu(x, t)

∣∣∣∣2 dx ≤ A(m) + B(m)t−1/2,

tm+1

∫
R

∣∣∣∣ ∂m∂xm [u(x, t)− v(x, t)]

∣∣∣∣2 dx ≤ C(m) +D(m)t−1/2,
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for all order derivatives of the global smooth solution to the Korteweg-de Vries-
Burgers equation in terms of α, β and the integrals∫

R
u0(x)dx,

∫ ∞
0

∫
R
f(x, t)dxdt?

For the Benjamin-Bona-Mahony-Burgers equation and the Benjamin-Ono-Burgers
equation, can we do the same things?

3.4. Technical lemmas

We have applied many traditional technical lemmas in this paper, such as the
Cauchy-Schwartz’s inequality, Lebesgue’s dominated convergence theorem and the
regular Gagliardo-Nirenberg’s interpolation inequality, etc. However, we only list
two lemmas below.

Lemma 3.1. There holds the Parseval’s identity∫∫
R2

|φ(x)|2dx =
1

(2π)2

∫∫
R2

|φ̂(ξ)|2dξ,

for all functions φ ∈ L2(R2).

Lemma 3.2. There exists a positive constant C0 = C0(m) > 0, such that{∫∫
R2

|(−4)m[φ(x)ψ(x)]|dx

}2

≤ C0(m)

{∫∫
R2

|φ(x)|2dx

}{∫∫
R2

|(−4)mψ(x)|2dx

}
+ C0(m)

{∫∫
R2

|(−4)mφ(x)|2dx

}{∫∫
R2

|ψ(x)|2dx

}
,

for all functions φ ∈ H2m(R2) and ψ ∈ H2m(R2).
In this paper, C0 = C0(m) > 0 is the smallest such positive constant.
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