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On the Boundary of the Attraction Basin in a
Class of Piecewise Linear Systems∗
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Abstract In this paper, we investigate the boundary of the attraction basin
of a class of piecewise linear systems arising from anti-stable linear systems
with saturated linear state feedback. In three-dimensional cases, for this class
of systems, we prove that the equilibrium points other than the origin lie on
the boundary of the attraction basin of the origin. This gives strong evidence
that the boundary of the attraction basin is homeomorphic to a sphere. Some
examples are provided to illustrate the results.
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1. Introduction

In piecewise smooth systems, saturation nonlinearities have attracted a lot of at-
tention, because they are ubiquitous due to the inherent physical limitations of
devices. For example, control systems with saturated feedback are such a class
of piecewise smooth systems which have been widely studied in the literature
[5, 8, 9, 12, 13, 16, 19–21, 25, 28–31, 33, 35–37]. It is easy to see that any stabiliz-
ing linear feedback would locally stabilize a linear system with saturated actuators
in the presence of actuator saturation, and the attraction basin of the origin may
be bounded [3, 11,14,15,17,26,27].

The research on the properties of the boundary of the attraction basin is of
great importance because of its practical significance and a theoretical challenge
from the viewpoint of dynamical system. Clearly, the structure of the boundary
of the attraction basin provides much information on the dynamical behaviour of
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trajectories before approaching the origin. It is a well-known fact that a fractal
boundary usually gives rise to the transient chaotic behaviour for trajectories near
the boundary [1, 2, 18,23].

The attraction basin problem of the anti-stable linear control system with satu-
rated state feedback is a typical problem in control systems. For a planar anti-stable
linear system with saturated stabilizing state feedback, Hu, Lin and Qiu [16] showed
that the boundary of the attraction basin of the closed loop system is a convex limit
cycle. In view of this result, it is reasonable to conjecture that the boundary of the
attraction basin in a three-dimensional anti-stable linear system with saturated sta-
bilizing state feedback is homeomorphic to a sphere. Our numerical simulations on
a lot of specific systems support this conjecture. Suppose the boundary of the at-
traction basin of the origin is homeomorphic to a sphere, then according to the
Poincaré–Hopf theorem and its corollary [10,22], there generically exist at least two
equilibrium points on the boundary of the attraction basin. Therefore, in order to
verify the above conjecture, it is natural to prove that the equilibrium points (if
exist) other than the origin are indeed contained in the boundary of the attraction
basin as a first step.

To the best of our knowledge, no study on the boundary of the attraction basin
of three-dimensional anti-stable linear systems with saturated stabilizing state feed-
back or even higher dimensions has appeared in the literature. Since the existence
and distribution of equilibrium points affect estimation of the attraction basin, we
investigate the properties of equilibrium points in such a class of n-dimensional
piecewise linear systems. We prove that such an n-dimensional system has a unique
equilibrium point if n is an even number, and has three equilibrium points if n is an
odd number. Furthermore, for three-dimensional cases, we prove that two equilib-
rium points other than the origin are contained in the boundary of the attraction
basin of the origin.

The paper is organized as follows. Some preliminaries regarding control systems
with saturated stabilizing state feedback are presented in Section 2. The main
results are established in Section 3, and the proofs are given in Section 4 and Section
5. Section 6 offers some examples to illustrate the main results, while Subsection 6.3
gives the steps of finding the boundary of the attraction basin. A brief conclusion
is given in Section 7.

2. Preliminaries

A matrix is called to be Hurwitz, if all of its eigenvalues have negative real parts.
A matrix is called to be anti-stable, if all of its eigenvalues have positive real parts.

Consider the piecewise smooth system of the following form

ẋ = Ax+Bu, x ∈ Rn, (2.1)

where A ∈ Rn×n, ∥u∥ = max{|ui|} ≤M , where u = (u1, · · · , um)T ∈ Rm, M > 0.
Define sat: R → R as

sat(s) = sign(s)min{M, |s|},
and for u ∈ Rm,

sat(u) = (sat(u1), · · · , sat(um))T ,

where (·)T means the transpose. The feedback law u = sat(Kx) is said to be
stabilizing, if A+BK is Hurwitz. Assume that the system (A,B) is controllable.
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Then, according to eigenvalue placement theorem [31], system (2.1) is stabilizable
by linear state feedback, which means that there existsK ∈ Rm×n such thatA+BK
is Hurwitz.

It is easy to see that under stabilizing saturated state feedback u = sat(Kx),
and the closed loop system

ẋ = Ax+B sat(Kx) (2.2)

has the origin as its asymptotically stable equilibrium point xe0. This makes up a
class of piecewise linear systems.

In this paper, what we are interested is the structure of the boundary of the
attraction basin of the origin of system (2.2), when A is anti-stable. It is not
difficult to obtain that the attraction basin of the origin of system (2.2) is bounded,
if A is anti-stable (see [14] for more details). The attraction basin is defined as
follows.

Definition 2.1. The attraction basin of the stable equilibrium point xe0 of system
(2.2) is defined as

DK = {x0 ∈ Rn | lim
t→+∞

ϕK(t,x0) = xe0},

where ϕK(t,x0) is the solution of system (2.2) with the initial condition ϕK(0,x0) =
x0. The boundary of DK is denoted by ∂DK.

It is easy to get that DK is an open set and ∂DK is an invariant set.

3. Statements of main results

On one hand, it is interesting to study the boundary of the attraction basin from
both theoretical and practical points of view. On the other hand, the locations of
other (unstable) equilibrium points are also of some interest, because the “size” of
the attraction basin cannot be large to contain the equilibrium points other than the
origin. As noted in [14], system (2.2) may have 3m “potentia” equilibrium points.
However, only some of them are real equilibrium points.

The multiple inputs are general cases, but they are very complicated and difficult
to study. There are no systematic theoretical results even in the single input case.
Thus, before going further into the multiple inputs case, we consider the single input
case first.

Definition 3.1. Consider the equation

Ax+ bsat(bx) = 0. (3.1)

A zero point of (3.1) is said to be in general position, if it is not on the plane
kx = ±M .

Theorem 3.1. For the following piecewise smooth system

ẋ = Ax+ bu, x ∈ Rn, (3.2)

where A is anti-stable, let u = sat(kx) be a stabilizing state feedback for (3.2). Then
generically the system

ẋ = Ax+ b sat(kx) (3.3)
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has a unique equilibrium point, the origin, if n is an even number, and has three
equilibrium points if n is an odd number.

Theorem 3.1 is proved in Section 4.
Since our concern with the equilibrium points of system (3.3) is how to char-

acterize the boundary of the attraction basin of the origin, we will give a brief
discussion on the boundary property in this section.

According to Theorem 3.1 and Poincaré–Hopf index theorem, the following is
obvious.

Proposition 3.1. For piecewise linear system (3.3), if the attraction basin of the
origin is homeomorphic to Sn−1(1), then the equilibrium points other than the origin
all lie on the boundary if n is odd, and no equilibrium point lies on the boundary, if
n is even.

It is known that the structure of the boundary of the attraction basin provides
a measure of how a trajectory in the attraction basin approaches the origin. If the
boundary of the attraction basin is homeomorphic to a sphere, then the equilibrium
points other than the origin lie on the boundary of the attraction basin. In order to
study the property of the boundary of the attraction basin of system (3.3), as the
first step, we will prove that the equilibrium points other than the origin all lie on
the boundary in three-dimensional cases. The main result is shown in the following.

Theorem 3.2. Consider a class of three-dimensional piecewise linear system

ẋ = Ax+ b sat(kx), (3.4)

where x, b ∈ R3. If A ∈ R3×3 is anti-stable and (A, b) is controllable, then system
(3.4) with any saturated stabilizing state feedback u = sat(kx) has three equilibrium
points, and the two equilibrium points other than the origin must lie on the boundary
of the attraction basin of the origin.

The proof of Theorem 3.2 will be given in Section 5.

4. Proof of Theorem 3.1

We will complete the proof of Theorem 3.1 using Proposition 4.1 and Theorem 4.1
given in this section (see [6,22] for the proofs of Proposition 4.1 and Theorem 4.1).
The detailed proving process can be found in [34].

Consider a differentiable map f : Rn → Rn. Suppose that there is an r > 0 such
that f(x) ̸= 0 for all x ∈ Sn−1(r), where

Sn−1(r) = {x ∈ Rn| ∥x∥ = r},

where ∥·∥ means a vector norm. Define the sphere map f̄ : Sn−1(r) → Sn−1(1) as

f̄(x) =
f(x)

∥f(x)∥
, x ∈ Sn−1(r).

Definition 4.1. The index of f , denoted by ind fB(r), and B(r) is defined as the
topological degree of f̄ , where

B(r) = {x ∈ Rn| ∥x∥ ≤ r}.



232 Y. Zhang, W. Huang & X. Yang

Proposition 4.1. Let A be a nonsingular matrix. Suppose that g : Rn → Rn is
bounded. Then there is an r > 0 such that the map Ax + g(x) restricted to B(r),
has index (−1)m, where m is the number of the eigenvalues of A with negative real
parts.

This fact is obvious, and for the map Ā = Ax
∥Ax∥ , one has ind ĀB(r) = sign(detA)

by arguments in [22].
Suppose that f has only isolated zero points. Letting x̄ be a zero point of f ,

the index of at x̄ is defined as

ind f(x̄) = degree of f̄ : Sn−1(x̄, δ) → Sn−1(1),

where
Sn−1(x̄, δ) = {x ∈ Rn| ∥x− x̄∥ = δ}

and

f̄(x) =
f(x)

∥f(x)∥
, x ∈ Sn−1(x̄, δ).

We have the following theorem.

Theorem 4.1. Suppose that f : B(r) → Rn has the following properties. Then,

1) ∥f(x)∥ ≠ 0, for ∀x ∈ Sn−1(r).

2) Every zero point of f is isolated.

Denoted by E, the set of zero points of f in B(r), then∑
x̄∈E

indf (x̄) = ind fB(r).

Now, we are going to prove Theorem 3.1.
Proof. In generic cases, every equilibrium point is not on the hyperplane kx =
±M . Hence the index of the origin is (−1)n, and the index of the other equilibrium
point is 1, because A is anti-stable, and all these equilibrium points are located off
the saturated region.

Now, for r sufficiently large, following from Proposition 4.1, we have

ind(Ax+ b sat(kx))B(r) = ind(Ax)B(r) = 1.

Thus, by Theorem 4.1,∑
x̄∈E

indf (x̄) = 1, f = Ax+ b sat(kx).

It is easy to obtain that Ax+ b sat(kx) has a unique zero, if n is an even number,
and has three zeros, if n is an odd number. Consequently, we complete the proof of
Theorem 3.1.

5. Proof of Theorem 3.2

To complete the proof of Theorem 3.2, we need several lemmas to prove the bound-
edness of the map F (t,xh).
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Lemma 5.1. The function

F1(t) =
e−tγβ(α2 + β2) + e−tαγ[β(γ − 2α) cosβt− (α2 − β2 − αγ) sinβt]

β[(α− γ)2 + β2]

satisfies |F1(t)| < 1, for all t > 0, where α, β, γ > 0.

Proof. Differentiating F1(t) with respect to t gives

F ′
1(t) =

(α2 + β2)γ[−βe−tγ + βe−tα cosβt+ (α− γ)e−tα sinβt]

β[(α− γ)2 + β2]
.

Let

G(t) = −e−t(γ−α) + cosβt+
α− γ

β
sinβt. (5.1)

It is sufficient to study G(t) instead of F ′
1(t) for considering the monotonicity of

F1(t).
Letting α− γ = mβ, βt = τ and

cos θ =
m√

1 +m2
, sin θ =

1√
1 +m2

,

then G(t) = Ḡ(τ), where

Ḡ(τ) = −emτ +
√
1 +m2 sin(τ + θ)

and
Ḡ′(τ) = −memτ +

√
1 +m2 cos(τ + θ).

First, we consider the case m ≥ 0. On one hand, it is apparent to see that Ḡ′(τ)
monotonically decreases with respect to τ , for τ ∈ [0, π − θ] and Ḡ′(0) = 0.
It follows that

Ḡ′(τ) < 0, τ ∈ [0, π − θ].

For Ḡ(0) = 0, we have
Ḡ(τ) < 0, τ ∈ [0, π − θ].

On the other hand, it is easy to find√
1 +m2(sin(τ + θ)) < 1, τ ∈ (π − 2θ, 2π),

which means
Ḡ(τ) < 0, τ ∈ (π − 2θ, 2π].

Thus, we get
Ḡ(τ) < 0, τ ∈ (0, 2π].

In view of
Ḡ(τ + 2nπ) ≤ Ḡ(τ),

where n is any positive integer, we obtain Ḡ(τ) < 0 for all τ > 0, which implies
that F1(t) monotonically decreases with respect to t for all t ≥ 0. Since

lim
t→+∞

F1(t) = 0, F1(0) = 1,
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we have
0 < F1(t) < 1 for all t ≥ 0.

It remains to show |F1(t)| < 1 for all t > 0, if m < 0. In this case, π/2 < θ < π.
Similar to the case of m ≥ 0, we have

Ḡ(τ) < 0, τ ∈ [0, π − θ].

It is obvious to get
Ḡ(τ) < 0, τ ∈ [π − θ, 2π − θ].

Since √
1 +m2 sin(τ + θ) ≥ 1, τ ∈ [3π − 2θ, 2π],

we have
Ḡ(τ) > 0, τ ∈ [3π − 2θ, 2π].

It can be easily checked that Ḡ(τ) monotonically increases with respect to τ for
τ ∈ (2π−θ, 3π−2θ). Thus, F1(t) has a minimum when t ∈ ((2π−θ)/β, (3π−2θ)/β).
Thus, from F1(2π/β) < F1(0), we have

F1(t) < F1(0) = 1, t ∈ (0, 2π/β].

It is easy to obtain

F1(t+ 2nπ/β) < e−
2nαπ

β F1(t), t ∈ [0, 2π/β], n ∈ N.

Therefore, we have
F1(t) < 1 for all t > 0.

Next, we will show that F1(t) has a lower bound for t > 0. It is easy to see that
F1(t) can be transformed into

e−tα(α2 + β2)

(α− γ)2 + β2

(
e−t(γ−α) − cosβt− γ(α2 − β2 − αγ)

β(α2 + β2)
sinβt

)
+ e−tα cosβt. (5.2)

Denote the minimum of F1(t) on ( (2n+1)π−θ
β , (2n+3)π−2θ

β ), n ∈ N by t̄n. Then, t̄n
satisfies

sinβt̄n < 0, e−t̄n(γ−α) − cosβt̄n =
α− γ

β
sinβt̄n. (5.3)

By substituting (5.3) into (5.2), we have

F1(t̄n) = e−t̄nα

(
α

β
sinβt̄n + cosβt̄n

)
≥ −e−πα/β

√(
α

β

)2

+ 1 > −1.

Therefore, we conclude |F1(t)| < 1, for all t > 0.

Lemma 5.2. Suppose λ3 < λ2 < λ1 < 0. Then, the function

F2(t) = c1e
λ1t − c2e

λ2t + c3e
λ3t,

where

c1 =
λ2λ3

(λ1 − λ2)(λ1 − λ3)
, c2 =

λ1λ3
(λ1 − λ2)(λ2 − λ3)

, c3 =
λ1λ2

(λ1 − λ3)(λ2 − λ3)

satisfies 0 < F2(t) < 1, for all t > 0.
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Proof. Multiplying F2(t) by e
−λ3t, we have

e−λ3tF2(t) = c1e
(λ1−λ3)t − c2e

(λ2−λ3)t + c3. (5.4)

Letting g1(t) denote the right hand side of (5.4), the derivative of g1(t) with respect
to t is given as

g′1(t) = e(λ2−λ3)t
λ2λ3e

(λ1−λ2)t − λ1λ3
λ1 − λ2

> 0.

It is apparent to see
g1(t) > g1(0) = 1, t > 0.

Thus, we get F2(t) > 0 for all t > 0.
The derivative of F2(t) is

F ′
2(t) = c1λ1e

λ1t − c2λ2e
λ2t + c3λ3e

λ3t.

Similarly, letting

g2(t) = e−λ3tF ′
2(t) = c1λ1e

(λ1−λ3)t − c2λ2e
(λ2−λ3)t + c3λ3,

we have

g′2(t) =
λ1λ2λ3
λ1 − λ2

[e(λ1−λ3)t − e(λ2−λ3)t] < 0.

It follows that
g2(t) < g2(0) = 0.

Thus, F2(t) < F2(0) = 1, for all t > 0.

Lemma 5.3. Suppose that λ1 ̸= λ2, λ1, λ2 < 0. Then the function

F3(t) = eλ1t(d1 + d2t) + d3e
λ2t,

where

d1 =
λ2(λ2 − 2λ1)

(λ1 − λ2)2
, d2 =

λ1λ2
λ1 − λ2

, d3 =
λ21

(λ1 − λ2)2

satisfies 0 < F3(t) < 1, for all t > 0.

Proof. Suppose λ2 < λ1. Then letting

g3(t) = e−λ2tF3(t) = e(λ1−λ2)t(d1 + d2t) + d3,

it is easy to find that the derivative of g3(t) with respect to t is

g′3(t) = e(λ1−λ2)t[d2 + (λ1 − λ2)(d1 + d2t)] = e(λ1−λ2)t(λ1λ2t− λ2) > 0.

It follows that
g3(t) > g3(0) = 1, t > 0,

which implies F3(t) > 0, for all t > 0.
If λ1 < λ2, then we have

e−λ1tF3(t) ≥ (1 + (λ2 − λ1)t)d3 + d1 + d2t = 1 +
λ21 − λ1λ2
λ2 − λ1

t > 0.
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Thus, F3(t) > 0, for all t > 0.
It remains to show that F3(t) has an upper bound of less than 1, for t > 0. It

can be easily seen that

F ′
3(t) = eλ1t(d2 + λ1d1 + λ1d2t) + λ2d3e

λ2t.

If λ2 < λ1, let

g4(t) = e−λ2tF ′
3(t) = e(λ1−λ2)t(d2 + λ1d1 + λ1d2t) + λ2d3,

and then the derivative of g4(t) with respect to t is given by

g′4(t) = e(λ1−λ2)t(λ1 − λ2)λ1d2t < 0.

It is easy to obtain
g4(t) < g4(0) = 0.

Thus, F ′
3(t) < 0, for all t > 0.

If λ1 < λ2, then

e−λ1tF ′
3(t) < [1 + (λ2 − λ1)t]λ2d3 + d2 + λ1d1 + λ1d2t = 0,

which implies F ′
3(t) < 0, for all t > 0.

In conclusion, we have

F3(t) < F3(0) = 1, for all t > 0.

We are now turning to the proof of Theorem 3.2. For simplicity of presentation,
some notations are defined as:

Σk
± ={x ∈ R3 | ±kx =M}, Σk

±,out = {x ∈ R3 | ±kx > M},
Σk

in ={x ∈ R3 | −M ≤ kx ≤M}.

Proof. It is easy to find that if (A,b) is controllable, and u = sat(kx) is sta-
bilizing, then system (3.4) has three equilibrium points: xe+ = −A−1b, xe− =
A−1b, and xe0 = 0. Because all the eigenvalues of A + bk have negative real
parts, and all the eigenvalues of A have positive real parts, xe0 is asymptotically
stable, and xe+,xe− are repelling.

Suppose ρ1, ρ2, ρ3, where Re ρi > 0, i = 1, 2, 3, are the eigenvalues of A and
λ1, λ2, λ3, where Re λi < 0, i = 1, 2, 3 are the eigenvalues of A + bk. Then, for
different k, the eigenvalues of A+ bk may be one of the following four cases.

i) two complex eigenvalues λ1 = µ+ iν, λ2 = µ− iν, µ < 0, ν > 0;

ii) distinct negative eigenvalues λi ̸= λj , i ̸= j, i, j = 1, 2, 3;

iii) two different negative eigenvalues λ1 = λ2 ̸= λ3;

iv) multiple negative eigenvalues λ1 = λ2 = λ3 = λ.

Let Dk be the attraction basin of xe0, and let ∂Dk be the boundary of Dk. Since
system (3.4) is symmetric about the origin, the boundary of the attraction basin of
the origin is also symmetric about the origin. Therefore, we have that if xe+ ∈ ∂Dk,
then xe− ∈ ∂Dk. These two equilibrium points always come in pairs. To complete
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the proof of this theorem, it is sufficient to show that there exists a heteroclinic
orbit between xe+ and xe0. In other words, we need to find a special point x such
that

lim
t→+∞

ϕk(t,x) = xe0, lim
t→−∞

ϕk(t,x) = xe+,

where ϕk(t,x) is the solution of system (3.4).
The special point we choose satisfies

kx =M, k(A+ bk)x = 0, k(A+ bk)2x = 0. (5.5)

Denote this point by xh, which satisfies xh ∈ Σk
+.

Consider the function
F (t,xh) = kϕk(t,xh).

If
|F (t,xh)| ≤M, for all t > 0,

then the trajectory of ϕk(t,xh) stays within Σk
in, which implies

lim
t→+∞

ϕk(t,xh) = xe0.

If
F (t,xh) ≥M, for all t ≤ 0,

then the trajectory of ϕk(t,xh) lies within Σk
+,out for all t ≤ 0. Since the backward

trajectory of xh cannot tent to infinity at t→ −∞ and the periodic orbits of system
(3.4) cannot lie within Σk

+,out entirely, we have

ϕk(t,xh) → xe+, as t→ −∞.

Since (A,b) is controllable, we get that system (3.4) can be transformed into
the following companion system

ż = Āz+ b̄u =


0 1 0

0 0 1

a1 a2 a3

 z+


0

0

1

 sat(k̄z), (5.6)

where
a1 = ρ1ρ2ρ3, a2 = −ρ1ρ2 − ρ2ρ3 − ρ1ρ3, a3 = ρ1 + ρ2 + ρ3

and

k̄ = kT−1 =


−a1 + λ1λ2λ3

−a2 − λ1λ2 − λ1λ2 − λ2λ3

−a3 + λ1 + λ2 + λ3


T

by the nonsingular linear transformation z = Tx,T = (b Ab A2b).
Let ψk̄(t, z0) denote the solution of system (5.6) with the initial condition

ψk̄(0, z0) = z0 = Tx0. It is easy to see

F (t,x0) = kϕk(t,x0) = k̄ψk̄(t, z0),
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since
Ā = TAT−1, b̄ = Tb, k̄ = kT−1.

Therefore, we have
F (t,xh) = k̄ψk̄(t, zh), (5.7)

where zh = Txh satisfies

k̄zh =M, k̄(Ā+ b̄k̄)zh = 0, k̄(Ā+ b̄k̄)2zh = 0.

We will show that the point xh determined by (5.5) satisfies

lim
t→+∞

ϕk(t,xh) = xe0, lim
t→−∞

ϕk(t,xh) = xe+

for each case in virtue of the companion form (5.6) and function (5.7).
Without loss of generality, let M = 1. Our first goal is to show

−1 < F (t,xh) < 1, for all t > 0.

It is easy to see that there exists a t1 > 0 such that

ϕk(t,xh) ∈ Σk
in, 0 < t < t1.

Case (i). A routine computation gives rise to

F (t,xh) =
etλ3ν(µ2 + ν2)− etµλ3[ν(2µ− λ3) cos νt+ (ν2 + µλ3 − µ2) sin νt]

ν[(µ− λ3)2 + ν2]
.

(5.8)
By comparing (5.8) with the function in Lemma 5.1, we obtain

|F (t,xh)| < 1, for 0 < t < t1,

which implies
ϕk(t1,xh) ∈ Σk

in.

Hence, it is easy to get that t1 can be extended to infinity and

|F (t,xh)| < 1, for all t > 0.

Therefore, we have
lim

t→+∞
ϕk(t,xh) = xe0.

Case (ii). A simple manipulation leads to

F (t,xh) = c1e
λ1t − c2e

λ2t + c3e
λ3t, 0 < t < t1,

where

c1 =
λ2λ3

(λ1 − λ2)(λ1 − λ3)
, c2 =

λ1λ3
(λ1 − λ2)(λ2 − λ3)

, c3 =
λ1λ2

(λ1 − λ3)(λ2 − λ3)
.

Similar to Case (i), we get from Lemma 5.2 that t1 can be extended to infinity and

0 < F (t,xh) < 1 for all t > 0,
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which implies
lim

t→+∞
ϕk(t,xh) = xe0.

Case (iii). Some computation gives

F (t,xh) = eλ1t(d1 + d2t) + d3e
λ3t, 0 < t < t1,

where

d1 =
λ3(λ3 − 2λ1)

(λ1 − λ3)2
, d2 =

λ1λ3
λ1 − λ3

, d3 =
λ21

(λ1 − λ3)2
.

Then, similarly, according to Lemma 5.3, we have that t1 can be extended to infinity
and

0 < F (t,xh) < 1 for all t > 0.

Thus, we have
lim

t→+∞
ϕk(t,xh) = xe0.

Case (iv). It is easy to obtain

F (t,xh) =
1

2
eλt

[
(λt− 1)2 + 1

]
, 0 < t < t1 (5.9)

and
∂F

∂t
(t,xh) =

λ3

2
t2eλt, 0 < t < t1. (5.10)

It follows from (5.9) and (5.10) that t1 can be extended to infinity and

0 < F (t,xh) < 1 for all t > 0.

Therefore, we have
lim

t→+∞
ϕk(t,xh) = xe0.

The next thing is to prove F (t,xh) ≥ 1 for all t < 0. It is easy to find from the
above process that if we let

yh = xh − xe+, c = k(xh − xe+),

then
k
[
yh Ayh A2yh

]
=

[
c 0 0

]
,

where c < 0.
Hence, we obtain

|ke−Atyh| < −c, t > 0,

which implies
F (t,xh) > 1, for all t < 0.

Therefore, we have
lim

t→−∞
ϕk(t,xh) = xe+.

In conclusion, we have

lim
t→+∞

ϕk(t,xh) = xe0, lim
t→−∞

ϕk(t,xh) = xe+.

Thus, the proof is completed.
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6. Examples and simulation

To illustrate the results in Section 3, we give some examples.

6.1. Example 1

Consider the following closed loop system

ẋ =


Ax+ b for kx > 1,

(A+ bk)x for |kx| ≤ 1

Ax− b for kx < −1,

, (6.1)

where

A =


1 −3 0

3 1 0

0 0 4

 , b =


1

2

4

 . (6.2)

If k = [ 73 ,
4
3 ,−

35
12 ], then the eigenvalues of A+bk are −1,−2 and −3. Hence, the

origin is asymptotically stable. In this case, the special point is xh={− 97
130 ,

9
130 ,−

34
35}.

The backward trajectory starting from this point will tend to xe+, and the forward
trajectory will tend to the origin, as shown in Figure 1. The attraction basin Dk

can be obtained by numerical simulation, as shown in Figure 2. The boundary of
the attraction basin ∂Dk is divided into two parts by a periodic orbit Γ, one of
which is colored and the other is transparent. These two parts are symmetric about
the origin.

kx = 1

kx = −1

xh
xe+

xe−

xe0

(a)

kx = 1

xh

xe+

(b)

Figure 1. A special trajectory of system (6.1) with parameters (6.2): (a) The trajectory of the special
point xh; (b) A part of the trajectory through the special point xh

If k = [ 73 ,−
2
3 ,−

41
12 ], then the eigenvalues of A + bk are −1 ± 4i and −2. In

this case, the special point is xh = {− 81
106 ,−

77
318 ,−

106
123}. It is easy to find that the

solution passing through xh approaches the origin as t → +∞ and approaches the
repelling equilibrium point xe+ as t→ −∞, as shown in Figure 3.
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Figure 2. The boundary of the attraction basin of the origin of system (6.1) with parameters (6.2)

kx = 1

kx = −1

xh

xe+

xe0

Figure 3. The trajectory of system (6.1) with parameters (6.2) through the special point xh

6.2. Example 2

Consider the following linear system with saturated input

ẋ = Ax+ bu =


0 1 0

0 0 1

78 −32 5

x+


0

0

1

 sat(kx). (6.3)

Choosing k = (−142,−16,−17), it is easy to get that the two repelling equi-
librium points are xe± = (∓1/78, 0, 0). By numerical calculation, we observe the
following facts, as shown in Figure 4 and 5.

(i) The boundary of the attraction basin of the origin of system (6.3) contains
three periodic orbits Γr,Γs,Γ

−
s , where the information about Γr,Γs,Γ

−
s is

given in Table 1. The steps of finding the boundary of attraction basin are
given in Subsection 6.3. According to the Floquet multipliers, Γs,Γ

−
s are

saddle, and Γr is repelling.
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Table 1. Three periodic orbits of system (6.3)

Initial points Periods Floquet multipliers

Γr (0.006444, 0.070062, -0.227774) 1.0807 8.6717, 4.1651, 1

Γs (-0.012955, -0.016369, 0.066214) 1.1596 13.3414, 1, 0.0337

Γ−
s (0.012955, 0.016369, -0.066214) 1.1596 13.3414, 1, 0.0337

(ii) The boundary of the attraction basin of the origin of system is composed of
the two equilibrium points xe+,xe−, the repelling periodic orbit Γr and the
stable manifolds of Γs,Γ

−
s . This verifies that the boundary of the attraction

basin of the origin of system (6.3) is homeomorphic to a sphere.

Γr

Γs

Γ−
s

xe+

Figure 4. Structure of the boundary of the attraction basin of the origin of system (6.3) with k =
(−142,−16,−17). The purple orbit on the boundary of the attraction basin is periodic orbit Γr, and
the orange orbit nearest to xe+ is the periodic orbit Γs

.

Γs

(a)

Γr

Γs

(b)

Figure 5. Figure (a) shows some trajectories on the stable manifold of Γs, and Figure (b) shows some
trajectories on the stable manifold of Γs bounded by Γs and Γr.

6.3. The steps of finding the boundary of attraction basin

The method that we find the boundary of attraction basin of the origin in three-
dimensional control systems with linear state feedback is briefly described as follows.
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Step 1. (Search a repelling periodic orbit) Pick an initial point p1 very
close to the origin (e.g., (0.01, 0, 0) or (0, 0.01, 0)) and consider the reversed-time
evolution trajectory ϕ(t,p1) of p1 under the system. If ϕ(t,p1) tends to a periodic
orbit as t → −∞, then a repelling periodic orbit Γr is discovered. According to
the results of numerical calculation, the period T̄r and a initial value p̄r of Γr can
be estimated. Then, proceed to Step 2. If ϕ(t,p1) tends to a equilibrium point
as t → −∞, the system may not have a repelling periodic orbit, then it directly
proceeds to Step 3.

Step 2. (Obtain a high-precision location of the repelling periodic or-
bit) Construct a cross-section to the vector field at p̄r and consider the Poincaré
map Pr and P̄r = x−Pr(x). By using the interval Newton method [4,32], the high-
precision zero pr of P̄r can be calculated numerically, which is a good initial value
of Γr. The high-precision period Tr is obtained at the same time. The repellingness
of the periodic orbit Γr can be verified by calculating the corresponding Floquet
multipliers [7] or Lyapunov exponents [24]. Then, proceed to Step 3.

Step 3. (Search a saddle periodic orbit) Take a line L (e.g., x-axis, y-axis
or z-axis) that goes through the origin. Consider the dynamic behaviors of the
trajectories starting from the line. If the initial point pl ∈ L is near the origin,
ϕ(t,pl) will tend to the origin as t → ∞. If pl ∈ L is very far away from the
origin, ϕ(t,pl) will tend to infinity as t → ∞. By using the bisection method,
the point pl ∈ L that is approximately on the boundary of the attraction basin of
the origin can be found. If ϕ(t,pl) tends to a periodic orbit as t → ∞, a saddle
periodic orbit Γs is discovered. According to the results of numerical calculation,
the period T̄s and a initial value p̄2 of Γs can be estimated. Then, proceed to Step 4.

Step 4. (Obtain a high-precision location of the saddle periodic or-
bit) It is exactly the same as Step 2. The high-precision initial value p2 and the
high-precision period Ts of Γs can be obtained by numerical calculation. The fact
that Γs is indeed saddle can be verified by calculating the corresponding Floquet
multipliers [7] or Lyapunov exponents [24]. Then, proceed to Step 5.

Step 5. (Compute a two-dimensional stable manifold of the saddle
periodic orbit) Take points evenly on the saddle periodic orbit Γs (To be more
precise, curvature should be considered. More points need to be taken in the posi-
tion where the curvature is large.) and denote the set of the points by Q. Suppose
p2 ∈ Q. Construct a cross-section to the vector field at p2 and consider the Poincaré
map Ps. By numerical calculation, the derivative of Ps at p2 and the eigenvector
corresponding to the eigenvalue whose modulus is less than 1 can be obtained. Com-
plete the calculation for every point in Q. Next, the orientations of the eigenvectors
are adjusted to ensure that the inner product of the eigenvectors of the adjacent two
points is positive. According to these vectors, the two-dimensional stable manifold
of Γs can be computed approximately. Then, proceed to Step 6.

Step 6. (Find the boundary of attraction basin of the origin) If the
system has no repelling periodic orbit, then the boundary of attraction basin of
the origin may only consist of the two-dimensional stable manifold of Γs and the
two repelling equilibrium points. If the system has a repelling periodic orbit Γr,
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then there exist another saddle periodic orbits Γ−
s . Γs and Γ−

s which are symmetric
about the origin. In this situation, the boundary of the attraction basin of the
origin may only consist of the two-dimensional stable manifolds of Γs and Γ−

s , the
repelling periodic orbit Γr and the two repelling equilibrium points.

7. Conclusions

In this paper, we have studied a class of piecewise linear systems and obtained
several results on the boundary of the attraction basin. We have proved that the
equilibrium points except for the origin of the three-dimensional anti-stable linear
system with saturated stabilizing linear state feedback lie on the boundary of the
attraction basin of the origin. This supports the conjecture that the boundary of
the attraction basin is homeomorphic to a sphere.
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