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Positive Periodic Solutions of Functional
Di↵erence Equations and Applications in
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Abstract In this work, we discuss the existence of positive periodic solutions
for nonlinear functional di↵erence equations. We illustrate the applicability of
our main result by examining the Lasota–Wazewska, the Mackey–Glass and
the Nicholson’s Blowflies models.
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1. Introduction

In this article, we investigate the following first-order nonlinear functional di↵erence
equation

u(t+ 1) = �p(t)u(t) + q(t)f (u (⌧(t))) , t 2 Nt0 , (1.1)

where Nt0 = {t0, t0 + 1, t0 + 2, · · · }, p, q : Nt0 ! (0,1), ⌧ : Nt0 ! N1, f : R ! R
are continuous functions, f(v) > 0 for v > 0, ⌧(t) < t and ⌧(t) ! 1 as t ! 1. We
establish conditions under which (1.1) has a positive !–periodic solution.

We choose su�ciently large T 2 Nt0 such that ⌧(t) 2 Nt0 for t 2 NT . Denote
NT

t0 = {t0, t0 + 1, t0 + 2, · · · , T � 1, T}. Let  : NT
t0 ! R be an initial bounded

function. We say that u(t) = u(t, T, ) is a solution of (1.1), if u(t) =  (t) on NT
t0 ,

and satisfies (1.1) for t 2 NT . Without loss of generality, here we take  (t) ⌘ 1.
It is well-known that (1.1) includes many mathematical, ecological and biological

models such as:

1. The Lasota–Wazewska model:

u(t+ 1) = �au(t) + be�cu(t�d), t 2 Nt0 . (1.2)

Here, u(t) denotes the number of red blood cells at time t, a > 0 is the proba-
bility of the death of a red blood cell, b and c are positive constants related to
the production of red blood cells per unit time, and d > 0 is the time required
to produce a red blood cell.
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2. The Mackey–Glass model:

u(t+ 1) = �au(t) + b
1

1 + [u (t� d)]n
, n > 0, t 2 Nt0 . (1.3)

u(t+ 1) = �au(t) + b
u (t� d)

1 + [u (t� d)]n
, n > 0, t 2 Nt0 . (1.4)

These are appropriate models for the dynamics of hematopoiesis, which de-
scribe the process of the production of blood cells. Here, u(t) denotes the
density of mature cells in blood circulation at time t, and d > 0 is the time
delay between the production of immature cells in the bone marrow and their
maturation for the release in the circulating bloodstream. It is assumed that
the cells are lost from the circulation at a rate a > 0, b is a positive constant,
and the flux of the cells into the circulation from the stem cell compartment
depends on the density of mature cells at the previous time t� d.

3. The Nicholson’s Blowflies model:

u(t+ 1) = �au(t) + bu (t� d) e�cu(t�d), t 2 Nt0 . (1.5)

Here, u(t) denotes the size of the population of the Australian sheep blowfly
at time t, b > 0 is the maximum daily egg production per capita, 1

c > 0 is the
size at which the blowfly population reproduces at its maximum rate, a > 0
is the daily adult death rate per capita, and d > 0 is the generation time.

The problem of the existence of positive periodic solutions for functional di↵er-
ence equations has generated substantial curiosity in the past two decades. This
is due to the fact that such equations have been proposed as models for a variety
of real world problems. One important problem related to these models is whether
they can support positive periodic solutions. Such a problem has been studied ex-
tensively to a greater extent by a number of authors. For example, we refer the
readers to [1, 3, 5, 7–12] and the references therein.

In this article, we obtain su�cient conditions on the existence of positive !–
periodic solutions of (1.1). The existence results for these types of equations in
the literature are largely based on the assumption that the functions p, q are !–
periodic. An interesting problem which we discuss in this work is to know whether
there exists a positive periodic solution of (1.1), when the above conditions are not
met.

2. Preliminaries

We shall use the following notations, definitions, and the known results of discrete
calculus [2]. Throughout the article, the empty sums and products are taken to be
0 and 1 respectively.

Definition 2.1. [2] Let u : Na ! R. The first-order forward (delta) di↵erence of
u is defined by �

�u
�
(t) = u(t+ 1)� u(t), t 2 Na.
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Definition 2.2. [4] The space X is the set of real-valued functions defined on Nt0

where random individual function is bounded with respect to the usual supremum
norm

kuk = sup
t2Nt0

|u(t)|.

It is well-known that under the supremum norm X is a Banach space.

We use the following fixed point theorem to prove the main result in the next
section.

Theorem 2.1 ( [4] ). If ⌦ is a closed, bounded, and convex subset of a Banach

space X, and the mapping S : ⌦ ! ⌦ is completely continuous, then S has a fixed

point in ⌦.

3. Main result

In this section, we establish su�cient conditions on the existence of positive !–
periodic solutions of (1.1).

Lemma 3.1. Suppose that there exists a function r : NT ! R+
such that

t+!�1Y

s=t

[�p(s) + q(s)r(s)] = 1, t 2 NT , (3.1)

then the function

g(t) =
t�1Y

s=T

[�p(s) + q(s)r(s)] , t 2 NT

is !–periodic.

Proof. For t 2 NT , consider that

g(t+ !) =
t+!�1Y

s=T

[�p(s) + q(s)r(s)]

=

"
t�1Y

s=T

[�p(s) + q(s)r(s)]

#"
t+!�1Y

s=t

[�p(s) + q(s)r(s)]

#

=
t�1Y

s=T

[�p(s) + q(s)r(s)]

= g(t),

implying that g is !–periodic. The proof is completed.

Theorem 3.1. Suppose that there exists a function r : NT ! R+
such that (3.1)

holds and

f

 
⌧(t)�1Y

s=T

[�p(s) + q(s)r(s)]

!
t�1Y

s=T


1

�p(s) + q(s)r(s)

�
= r(t), ⌧(t) 2 NT . (3.2)

Then (1.1) has a positive !–periodic solution.
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Proof. With respect to Lemma 3.1, we define

M = sup
t2NT

g(t), m = inf
t2NT

g(t). (3.3)

We now define a closed, bounded and convex subset ⌦ of X as follows:

⌦ = {u 2 X : u(t+ !) = u(t), t 2 NT ; m  u(t)  M, t 2 NT ;

r(t)u(t) = f (u (⌧(t))) , t 2 NT ; u(t) = 1, t 2 NT
t0}.

(3.4)

Define the operator S : ⌦ ! X as follows:

(Su)(t) =

8
><

>:

t�1Y

s=T


�p(s) + q(s)

f (u (⌧(s)))

u(s)

�
, t 2 NT ,

1, t 2 NT
t0 .

(3.5)

Clearly, S is continuous. First, we show that S(⌦) is contained in ⌦. Take u 2 ⌦.
For t 2 NT , we have

(Su)(t) =
t�1Y

s=T


�p(s) + q(s)

f (u (⌧(s)))

u(s)

�

=
t�1Y

s=T

[�p(s) + q(s)r(s)]

 M

and

(Su)(t) =
t�1Y

s=T


�p(s) + q(s)

f (u (⌧(s)))

u(s)

�

=
t�1Y

s=T

[�p(s) + q(s)r(s)]

� m,

implying
m  (Su)(t)  M, t 2 NT . (3.6)

It follows from the definition of S that

(Su)(t) = 1, t 2 NT�1
t0 . (3.7)

Also, for t 2 NT , we have

f
⇣
(Su)(⌧(t))

⌘

=f

 
⌧(t)�1Y

s=T


�p(s) + q(s)

f (u (⌧(s)))

u(s)

�!

=f

 
⌧(t)�1Y

s=T

[�p(s) + q(s)r(s)]

!
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=f

 
⌧(t)�1Y

s=T

[�p(s) + q(s)r(s)]

!
t�1Y

s=T


1

�p(s) + q(s)r(s)

� t�1Y

s=T

[�p(s) + q(s)r(s)]

=r(t)
t�1Y

s=T


�p(s) + q(s)

f (u (⌧(s)))

u(s)

�

=r(t)(Su)(t). (3.8)

Further, for t 2 NT , we have

(Su)(t+ !) =
t+!�1Y

s=T

[�p(s) + q(s)r(s)]

=

"
t�1Y

s=T

[�p(s) + q(s)r(s)]

#"
t+!�1Y

s=t

[�p(s) + q(s)r(s)]

#

=
t�1Y

s=T

[�p(s) + q(s)r(s)]

=
t�1Y

s=T


�p(s) + q(s)

f (u (⌧(s)))

u(s)

�

= (Su)(t). (3.9)

Thus, from (3.6) - (3.9), we conclude that (Su) 2 ⌦ implying that S(⌦) is contained
in ⌦. Moreover, the functions belonging to S(⌦) are uniformly bounded on NT .
Finally, we show that the functions of S(⌦) are equicontinuous. Without loss of
generality, suppose that t1 < t2. With respect to (3.3), for t 2 NT , we have

(Su)(t1)� (Su)(t1 + 1)

=
t1�1Y

s=T


�p(s) + q(s)

f (u (⌧(s)))

u(s)

�
�

t1Y

s=T


�p(s) + q(s)

f (u (⌧(s)))

u(s)

�

=
t1�1Y

s=T

[�p(s) + q(s)r(s)]�
t1Y

s=T

[�p(s) + q(s)r(s)] ,

implying that

(Su)(t1)� (Su)(t2) =
t2�1X

s=t1

[(Su)(s)� (Su)(s+ 1)]

=
t2�1X

s=t1

2

4
s�1Y

⇠=T

[�p(⇠) + q(⇠)r(⇠)]�
sY

⇠=T

[�p(⇠) + q(⇠)r(⇠)]

3

5


t2�1X

s=t1

(M �m)

=(M �m)(t2 � t1).

Also, for t 2 NT
t0 , we have (Su)(t1) � (Su)(t2) = 0. This shows that the functions

of S(⌦) are equicontinuous. Hence, S is completely continuous. Therefore, by
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Theorem 2.1, there exists a u0 2 ⌦ such that Su0 = u0. That is, (1.1) has a
positive !–periodic solution. The proof is completed.

Now, consider the following first-order functional di↵erence equation

u(t+ 1) = �p(t)u(t) + q(t)u (⌧(t)) , t 2 Nt0 , (3.10)

where Nt0 = {t0, t0 + 1, t0 + 2, · · · }, p, q : Nt0 ! (0,1), ⌧ : Nt0 ! N1, ⌧(t) < t and
⌧(t) ! 1 as t ! 1. We establish conditions under which (3.10) has a positive
!–periodic solution.

We choose su�ciently large T 2 Nt0 such that ⌧(t) 2 Nt0 for t 2 NT . Denote
NT

t0 = {t0, t0 + 1, t0 + 2, · · · , T � 1, T}. Let  : NT
t0 ! R be an initial bounded

function. We say that u(t) = u(t, T, ) is a solution of (3.10), if u(t) =  (t) on NT
t0 ,

and satisfies (3.10) for t 2 NT . Without loss of generality, here we take  (t) ⌘ 1.

Theorem 3.2. Suppose that there exists a function r : NT ! R+
such that (3.1)

holds and
t�1Y

s=⌧(t)


1

�p(s) + q(s)r(s)

�
= r(t), ⌧(t) 2 NT . (3.11)

Then (3.10) has a positive !–periodic solution.

Proof. The proof is similar to the proof of Theorem 3.1. So, we omit it.

4. Examples

In this section, we provide two examples to demonstrate the applicability of our
main results.

Example 4.1. Consider the first order functional di↵erence equation

u(t+ 1) = �(1.5)u(t) + (cos⇡t+ 1.5)u (t� 4) , t 2 N0. (4.1)

Here p(t) = (1.5), q(t) = (cos⇡t+1.5) and ⌧(t) = t�4 for t 2 N0. We choose T = 4
such that ⌧(t) 2 N0 for t 2 NT . Take r(t) = 1 for t 2 NT . For t 2 NT and ! = 4,
we have

t+!�1Y

s=t

[�p(s) + q(s)r(s)] =
t+4�1Y

s=t

[�(1.5) + (cos⇡s+ 1.5)]

=
t+3Y

s=t

cos⇡s

= [cos⇡t] [cos⇡(t+ 1)] [cos⇡(t+ 2)] [cos⇡(t+ 3)]

= (�1)t(�1)t+1(�1)t+2(�1)t+3 = 1,

implying that (3.1) holds. For ⌧(t) 2 NT and ! = 4, we have

t�1Y

s=⌧(t)


1

�p(s) + q(s)r(s)

�
=

t�1Y

s=t�4

1

[�(1.5) + (cos⇡s+ 1.5)]

=
t�1Y

s=t�4

1

cos⇡s
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=
1

[cos⇡(t� 4)] [cos⇡(t� 3)] [cos⇡(t� 2)] [cos⇡(t� 1)]

=
1

(�1)t�4(�1)t�3(�1)t�2(�1)t�1
= 1 = r(t),

implying that (3.11) holds. All conditions of Theorem 3.2 are satisfied. Thus, (4.1)
has a positive 4–periodic solution

u(t) =

(Qt�1
s=T cos⇡s, t 2 NT ,

1, t 2 NT
0 .

Example 4.2. Consider the functional di↵erence equation

u(t+ 1) = �(t2 + 1)u(t) +
�
e�2 cos⇡t + t2 + 1

�
u (t� 2) , t 2 N0. (4.2)

Here p(t) = t2 + 1, q(t) = e�2 cos⇡t + t2 + 1 and ⌧(t) = t� 2 for t 2 N0. We choose
T = 2 such that ⌧(t) 2 N0 for t 2 NT . Take r(t) = 1 for t 2 NT . For t 2 NT and
! = 2, we have

t+!�1Y

s=t

[�p(s) + q(s)r(s)] =
t+2�1Y

s=t

⇥
�(s2 + 1) +

�
e�2 cos⇡s + s2 + 1

�⇤

=
t+1Y

s=t

e�2 cos⇡s

=
�
e�2 cos⇡t

� ⇣
e�2 cos⇡(t+1)

⌘

=
�
e�2 cos⇡t

� �
e2 cos⇡t

�
= 1,

implying that (3.1) holds. For ⌧(t) 2 NT and ! = 2, we have

t�1Y

s=⌧(t)


1

�p(s) + q(s)r(s)

�
=

t�1Y

s=t�2

1

[�(s2 + 1) + (e�2 cos⇡s + s2 + 1)]

=
t�1Y

s=t�2

e2 cos⇡s

= e2 cos⇡(t�2)e2 cos⇡(t�1)

= e2 cos⇡te�2 cos⇡t

= 1 = r(t),

implying that (3.11) holds. All conditions of Theorem 3.2 are satisfied. Thus, (4.2)
has a positive 2–periodic solution

u(t) =

(Qt�1
s=T e�2 cos⇡s, t 2 NT ,

1, t 2 NT
0 .

5. Applications

In this section, we illustrate the applicability of our main results by examining the
population growth models (1.2)-(1.5).
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Corollary 5.1. Suppose that there exists a function r : NT ! R+
such that (3.1)

and (3.2) hold. Then, (1.2) has a positive !–periodic solution.

Proof. Here p(t) = a > 0, q(t) = b > 0 and ⌧(t) = t � d < t for all t 2 Nt0 .
We choose su�ciently large T 2 Nt0 such that ⌧(t) 2 Nt0 for t 2 NT . Also,
f(v) = e�cv > 0 for all v > 0 and ⌧(t) ! 1 as t ! 1. Then, by Theorem 3.1,
(1.2) has a positive !–periodic solution

u(t) =

8
><

>:

t�1Y

s=T

[�a+ br(s)], t 2 NT ,

1, t 2 NT
t0 .

(5.1)

The proof is completed.

Corollary 5.2. Suppose that there exists a function r : NT ! R+
such that (3.1)

and (3.2) hold. Then, (1.3) has a positive !–periodic solution.

Proof. Here p(t) = a > 0, q(t) = b > 0 and ⌧(t) = t � d < t for all t 2 Nt0 .
We choose su�ciently large T 2 Nt0 such that ⌧(t) 2 Nt0 for t 2 NT . Also,
f(v) = 1

1+vn > 0 for all v > 0 and ⌧(t) ! 1 as t ! 1. Then, by Theorem 3.1,
(1.3) has a positive !–periodic solution

u(t) =

8
><

>:

t�1Y

s=T

[�a+ br(s)], t 2 NT ,

1, t 2 NT
t0 .

(5.2)

The proof is completed.

Corollary 5.3. Suppose that there exists a function r : NT ! R+
such that (3.1)

and (3.2) hold. Then, (1.4) has a positive !–periodic solution.

Proof. Here p(t) = a > 0, q(t) = b > 0 and ⌧(t) = t � d < t for all t 2 Nt0 .
We choose su�ciently large T 2 Nt0 such that ⌧(t) 2 Nt0 for t 2 NT . Also,
f(v) = v

1+vn > 0 for all v > 0 and ⌧(t) ! 1 as t ! 1. Then, by Theorem 3.1,
(1.4) has a positive !–periodic solution

u(t) =

8
><

>:

t�1Y

s=T

[�a+ br(s)], t 2 NT ,

1, t 2 NT
t0 .

(5.3)

The proof is completed.

Corollary 5.4. Suppose that there exists a function r : NT ! R+
such that (3.1)

and (3.2) hold. Then, (1.5) has a positive !–periodic solution.

Proof. Here p(t) = a > 0, q(t) = b > 0 and ⌧(t) = t � d < t for all t 2 Nt0 .
We choose su�ciently large T 2 Nt0 such that ⌧(t) 2 Nt0 for t 2 NT . Also,
f(v) = ve�cv > 0 for all v > 0 and ⌧(t) ! 1 as t ! 1. Then, by Theorem 3.1,
(1.5) has a positive !–periodic solution

u(t) =

8
><

>:

t�1Y

s=T

[�a+ br(s)], t 2 NT ,

1, t 2 NT
t0 .

(5.4)
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The proof is completed.

Acknowledgements

The author is grateful to the reviewers and the editors for their helpful comments
and suggestions that have helped improve our paper.

References

[1] R. P. Agarwal and J. Popenda, Periodic Solutions of First Order Linear Dif-

ference Equations, Mathematical and Computer Modelling, 1995, 22(1), 11–19.

[2] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Intro-

duction with Applications, Birkhäuser, Boston, 2001.
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