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Abstract For the Gerdjikov-Ivanov equation, by using the method of dy-

namical system, this paper investigates the exact explicit solutions with the

form q(x, t) = �(⇠) exp [i(x� !t+ ✓(⇠))], ⇠ = x � ct. In the given parameter

regions, more than 14 explicit exact parametric representations are presented.
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1. Introduction

In [8], Fang stated that “The nonlinear Schrödinger (NLS) equation is one of the
most generic soliton equations, and arises from a wide variety of fields such as quan-
tum field theory, weakly nonlinear dispersive water waves and nonlinear optics. To
study the e↵ect of higher-order perturbations, various modifications and general-
izations of the NLS equations have been proposed and studied. Among them, there
are three celebrated equations with derivative-type nonlinearities, which are called
the derivative nonlinear Schrödinger (DNLS) equations. One is the Kaup-Newell
equation [17]:

iqt + qxx + i(|q|2q)x = 0, (1.1)

which is usually called DNLSI. The second type is the Chen-Lee-Liu equation [4]:

iqt + qxx + i|q|2qx = 0, (1.2)

which is called DNLSII. The last one takes the form [13]:

iqt + qxx � iq2q⇤x +
1

2
q3(q⇤)2 = 0, (1.3)

which is called the Gerjikov–Ivanov (GI) equation or DNLSIII. In equation (1.3),
q⇤ denotes the complex conjugation of q.
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Equation (1.3) has been studied by many authors (see [1, 2, 5–7, 9–12, 14–16,
18, 21–32]). The purpose of this paper is to study some new exact traveling wave
solutions in explicit form of the GI equation by using the bifurcation theory of
dynamical system. We assume that the exact solutions of equation (1.3) take the
form:

q(x, t) = �(⇠) exp [i(x� !t+ ✓(⇠))], ⇠ = x� ct, (1.4)

where c is the wave velocity, and �(⇠), ✓(⇠) are two functions with variable ⇠,  and !
are two constant parameters. Substituting (1.4) into equation (1.3) and separating
the real and imaginary parts respectively, we have

�00 + (c� 2)✓0�� (+ ✓0)�3 + (! � 2)�� (✓0)2� = 0, (1.5)

�0�2 � ✓00�� 2�0✓0 + (c� 2)�0 = 0, (1.6)

where “0” is the derivative with respect to ⇠. Integrating (1.6), it follows that
(c � 2)� + 1

3�
3 = C1 + ✓0� +

R
✓0d�, where C1 is an integral constant. Thus, we

obtain C1 = 0 and

✓0 =
1

2
(c� 2) +

1

4
�2, ✓(⇠) =

1

2
(c� 2)⇠ +

1

4

Z
�2(⇠)d⇠. (1.7)

Substituting (1.7) into (1.5), we obtain the following planar dynamical system:

d�

d⇠
= y,

dy

d⇠
= �

✓✓
1

4
c2 � c+ !

◆
�� 1

2
c�3 +

3

16
�5
◆
. (1.8)

System (1.8) has the first integral:

H(�, y) =
1

2
y2 +

1

2
↵�2 � c

8
�4 +

1

32
�6 = h, (1.9)

where ↵ = 1
4c

2 � c+ !.
System (1.8) is a three-parameter planar dynamical system depending on the

parameter group (c,,!). Since the parametric representations of the phase orbits
defined by the vector fields of system (1.8) give rise to all exact solutions with
the form (1.4) of equation (1.3), we need to investigate the bifurcations of phase
portraits for system (1.8) in the (�, y)�phase plane as the parameters are changed
(see [19, 20,33]).

The main result in the present paper is summarized as follows.

Theorem 1.1. Assume that the parameter c > 0 of system (1.8) is fixed. Consider
the solutions of equation (1.3) with the form q(x, t) = �(⇠) exp [i(x� !t+ ✓(⇠))].
Then, the following conclusions hold.

(i) For any (,!) 2 R2 in Figure 1 (a), corresponding to the families of the
periodic orbits of system (1.8), equation (1.1) always has the exact explicit solutions
with the parametric representations given by (4.1) or (4.2).

(ii) When (,!) 2 (II), (III), (IV ) and (L2), (L3) in Figure 1 (a), correspond-
ing to the families of the periodic orbits of system (1.8), equation (1.1) has the
exact explicit solutions with the parametric representations given by (4.3), (4.4),
(4.5), (4.6) and (4.7).

(iii) When (,!) 2 (II), (III) and (L1), (L2) in Figure 1 (a), corresponding to
the heteroclinic orbits of system (1.8), equation (1.1) has the exact explicit solutions
with the parametric representations given by (4.8), (4.9) and (4.10).
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(iv) When (,!) 2 (II), (III), (IV ) and (L2), (L3) in Figure 1 (a), correspond-
ing to the homoclinic orbits of system (1.8), equation (1.1) has the exact explicit
solutions with the parametric representations given by (4.11), (4.12), (4.13) and
(4.14).

The proof of this theorem is given in the following Sections 2, 3 and 4.

The rest of this paper is organized as follows: in Section 2, the bifurcations
of the phase portraits of system (1.8) are studied. In Section 3, all exact explicit
parameter representations of bounded phase orbits of system (1.8) are given in given
parameter regions. In Section 4, corresponding to the solutions of system (1.8), all
exact explicit parameter representations of equation (1.3) are derived.

2. Bifurcations of phase portraits of system (1.8)

To find the equilibrium points of system (1.8), write that f(�) = ↵� 1
2c�

2 + 3
16�

4.

Clearly, if � = c2 + 12(c� !) > 0, then when �2 = 2
3 (2c⌥

p
�), f(�) = 0. Thus,

for a fixed c > 0, we have the following conclusions.

(i) When ! > c+ 1
12c

2,� < 0, system (1.8) has only one singular point O(0, 0).

(ii) When ! = c + 1
12c

2,� = 0, system (1.8) has one simple singular point

O(0, 0) and two double equilibrium points E1,2

�
⌥ 2

3

p
3c, 0

�
.

(iii) When c� 1
4c

2 < ! < c+ 1
12c

2, we have � > 0, 2c�
p
� > 0. Hence, on the

�-axis, there exist five equilibrium points of system (1.8) at E1(��2, 0), E2(��1, 0),

O(0, 0), E3(�1, 0) and E4(�2, 0), where �1,2 =
⇣

2
3 (2c⌥

p
�)
⌘ 1

2
.

(iv) When ! = c � 1
4c

2, we have 2c �
p
� = 0. system (1.8) has a high-

order equilibrium point O(0, 0) and two simple equilibrium points E1(��2, 0) and
E2(�2, 0).

(v) When ! < c � 1
4c

2, system (1.8) has three simple equilibrium points at
O(0, 0), E1(��2, 0) and E2(�2, 0).

Let M(�j , 0) be the coe�cient matrix of the linearized system of system (1.8)
at the equilibrium point Ej . Let J(�j , 0) be its Jacobin determinant. Then, one
has

J(0, 0) = ↵, J(�j , 0) = �jf
0(�j).

By the theory of planar dynamical system, for an equilibrium point of a planar
Hamiltonian system, if J < 0, then the equilibrium point is a saddle point; if J > 0,
then it is a center point; if J = 0 and the Poincaré index of the equilibrium point
is 0, then this equilibrium point is a cusp.

Now, write that hj = H(�j , 0), h0 = H(0, 0) = 0. We have that h1 = �
54 (c +p

�), h2 = �
54 (c�

p
�). Obviously, when ! = c, we have h2 = 0.

Based on the above results, for a fixed parameter c > 0, in the (,!)�parameter
plane, there exist three bifurcation straight lines (L1) : ! = c + 1

12c
2; (L2) : ! =

c; and(L3) : ! = c� 1
4c

2. These straight lines divide the (,!)�parameter plane
into the four regions: (I), (II), (III), (IV) (see Figure 1 (a)). As ! is varied, we
obtain the bifurcations of the phase portraits of system (1.8), as shown in Figure
1(b)-(h).
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(a) (,!)�plane (b) ! > c+ c2

12 (c) ! = c+ c2

12 (d) c < ! < c+ c2

12

(e) ! = c (f) c� c2

4 ! < c (g) ! = c� c2

4 (h) ! < c� c2

4

Figure 1. Bifurcations of phase portraits of system (1.8) for a fixed c > 0

3. Exact parametric representations of the solutions
defined by all bounded orbits of system (1.8)

We see from (1.9) that

y2 = 2h� ↵�2 +
c

4
�4 � 1

16
�6. (3.1)

By using the first equation of (1.8), we obtain

⇠ =

Z �

�0

4d�p
16h� 8↵�2 + 4c�4 � �6

=

Z  

 0

2d p
 (16h� 8↵ + 4c 2 �  3)

. (3.2)

Thus, we can calculate the exact parametric representations defined by the bounded
orbits of system (1.8).

3.1. Exact periodic solutions of system (1.8) when (,!) 2 (I)
in Figure 1(a)

In this case, corresponding to the level curves defined by H(�, y) = h, h 2 (0,1),
there exists a family of periodic orbits of system (1.8) (see Figure 1(b)). Now, (3.2)

can be written as 1
2⇠ =

R  
0

d p
( 1� ) ( + 3)( + 4)

or 1
2⇠ =

R  
0

d p
( 1� ) [( �b1)2+a2

1]
.

Hence, we have the following two exact parametric representations of the periodic
family of system (1.8):

�(⇠) =

p
 3↵̂1sn(⌦1⇠, k)

(1� ↵̂2
1sn

2(⌦1⇠, k))
1
2

, (3.3)
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where ↵̂2
1 =  1

 1+ 3
, k2 = ↵̂2

1( 4� 3)
 4

,⌦1 = 1
4

p
( 1 +  3) 4, sn(u, k), cn(u, k), dn(u, k)

are the Jacobian elliptic functions (see Byrd and Fridman [3]).

�(⇠) =

✓
↵1 +

�1
1 + ↵̂2cn(⌦2⇠, k)

◆ 1
2

, (3.4)

where A2
1 = ( 1 � b1)2 + a21, B

2
1 = b21 + a21, k

2 = ( 2
1�(A1�B1)

2

4A1B1
,↵1 = � 1B1

A1�B1
,�1 =

2A1B1

A2
1�B2

1
, ↵̂2 = A1�B1

A1+B1
,⌦2 = 1

2

p
A1B1.

3.2. Exact periodic solutions of system (1.8) when (,!) 2 (L1)
in Figure 1(a).

(i) Corresponding to the level curves defined by H(�, y) = h, h 2 (0, h1) , (h1,1) ,

h1 = h2 = 2c3

27 , there exist two families of periodic orbits of system (1.8) (see Figure
1(c)). These periodic orbits have the same exact parametric representations as
(3.4).

(ii) Corresponding to the level curves defined by H(�, y) = 2c3

27 , there exist

two heteroclinic orbits connecting two double equilibrium points E1,2

�
⌥ 2

3

p
3c, 0

�

of system (1.8) (see Figure 1(c)). Now, (3.2) can be written as ⇠ =
R �
0

12
p
3d�

(4c�3�2)
3
2
=

3
p
3�

c
p

4c�3�2
. Thus, it follows the exact parametric representations:

�(⇠) = ⌥ 4c
3
2 ⇠p

3(9 + c2⇠2)
. (3.5)

3.3. Exact periodic solutions and homoclinic, heteroclinic so-
lutions of system (1.8) when (,!) 2 (II) in Figure 1(a).

In this case, we have 0 < h2 < h1.
(i) Corresponding to the level curves defined by H(�, y) = h, h 2 (0, h2], there

exists a family of periodic orbits of system (1.8), enclosing the origin O(0, 0) (see
Figure 1(d)). When 0 < h < h2, these periodic orbits have the same exact para-
metric representations as (3.4).

(ii) Corresponding to the level curves defined by H(�, y) = h, h 2 [h2, h1),
there exist three families of periodic orbits of system (1.8), enclosing the origin
O(0, 0), E1(��2, 0) and E4(�2, 0) respectively (see Figure 1(d)). Now, (3.2) can

be written as 1
2⇠ =

R  
0

d p
( a� )( b� )( c� ) 

and 1
2⇠ =

R  
 b

d p
( a� )( � b)( � c) 

.

These periodic orbits have the exact parametric representations as follows:

�(⇠) =

p
 a|↵̂3|sn(⌦3⇠, k)

(1� ↵̂2
3sn

2(⌦3⇠, k))
1
2

, (3.6)

where ↵̂2
3 = � c

 a� c
, k2 = �↵̂2

3( a� b)
 b

,⌦3 = 1
4

p
( a �  c) b and

�(⇠) = ⌥
✓
 c +

 b �  c

1� ↵̂2
4sn

2(⌦3⇠, k)

◆ 1
2

, (3.7)

where ↵̂2
4 =  a� b

 a� c
, k2 = ↵̂2

4 c

 b
.
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Notice that the level curve defined by H(�, y) = h2 contain a periodic orbit
enclosing the origin O(0, 0) and two singular points E1(��2, 0), E4(�2, 0). In this
case, in (3.6),  a =  b = �22, k

2 = 0, ↵̂2
3 = � c

�2
2� c

and ⌦3 = 1
4

p
(�22 �  c)�22. The

periodic orbit has the exact parametric representation:

�(⇠) =
�2|↵̂3| sin(⌦3⇠)

(1� ↵̂2
3 sin

2(⌦3⇠)
1
2

. (3.8)

(iii) Corresponding to the level curves defined by H(�, y) = h1, there exist two
homoclinic orbits enclosing E1(��2, 0) and E4(�2, 0) respectively, and two hete-
roclinic orbits enclosing the origin O(0, 0) (see Figure 1 (d)). In this case, (3.2)

becomes that 1
2⇠ =

R  
0

d 

( 1� )
p

( M� ) 
and 1

2⇠ =
R  M

 
d 

( � 1)
p

( M� ) 
, where

 1 = �21 = 2
3

⇣
2c�

p
�
⌘
, M = 4

3

⇣
c+

p
�
⌘
. Thus, the two heteroclinic orbits

have the exact parametric representations:

�(⇠) = ⌥
p
 M 1 tanh(!1⇠)

�
( M �  1) +  1 tanh

2(!1⇠)
� 1

2

, (3.9)

where !1 = 1
2

p
( M �  1) 1. The two homoclinic orbits have the exact parametric

representations:

�(⇠) = ⌥
✓
 1 +

2( M �  1) 1

 M cosh(2!1⇠) + 2 1 �  M

◆ 1
2

. (3.10)

(iv) Corresponding to the level curves defined by H(�, y) = h, h 2 (h1,1),
there exists a family of periodic orbits of system (1.8), enclosing six equilibrium
points (see Figure 1(d)). These periodic orbits have the same exact parametric
representations as (3.4).

3.4. Exact periodic solutions and homoclinic, heteroclinic so-
lutions of system (1.8) when (,!) 2 (L2) in Figure 1(a).

In this case, we have �1 = 1
3

p
6c,�2 =

p
2c, h2 = 0 and h1 = c3

27 .
(i) Corresponding to the level curves defined by H(�, y) = h, h 2 (0, h1), there

exist three families of periodic orbits of system (1.8), enclosing the origin O(0, 0),
E1(��2, 0) and E4(�2, 0) respectively (see Figure 1(e)). These periodic orbits have
the same exact parametric representations as (3.6) and (3.7).

(ii) Corresponding to the level curves defined by H(�, y) = c3

27 , there exist two
homoclinic orbits enclosing E1(��2, 0) and E4(�2, 0) respectively, and two hetero-
clinic orbits enclosing the origin O(0, 0) (see Figure 1(d)). In this case, (3.2) becomes

that 1
2⇠ =

R  
0

d 

( 2
3 c� )

q
( 8

3 c� ) 
and 1

2⇠ =
R 8

3 c
 

d 

( � 2
3 c)

q
( 8

3 c� ) 
. Therefore, the two

heteroclinic orbits have the exact parametric representations:

�(⇠) = ⌥ 4
p
c tanh(!2⇠)

�
18 + 6 tanh2(!2⇠)

� 1
2

, (3.11)

where !2 = cp
3
. The two homoclinic orbits have the exact parametric representa-

tions:

�(⇠) = ⌥
✓
2

3
c+

2c

2 cosh(2!2⇠)� 1

◆ 1
2

. (3.12)
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(iii) Corresponding to the level curves defined by H(�, y) = h, h 2 (h1,1),
there exists a family of periodic orbits of system (1.8), enclosing six equilibrium
points (see Figure 1(e)). These periodic orbits have the same exact parametric
representations as (3.4).

3.5. Exact periodic solutions and homoclinic, heteroclinic so-
lutions of system (1.8) when (,!) 2 (III) in Figure 1(a).

In this case, we have h2 < 0 < h1.
(i) Corresponding to the level curves defined by H(�, y) = h, h 2 (h2, 0],

there exist two families of periodic orbits of system (1.8), enclosing E1(��2, 0)
and E4(�2, 0) respectively (see Figure 1(f)). (3.2) can be written as 1

2⇠ =R  
 b

d p
( a� )( � b) ( + d)

. It gives rise to the following exact parametric repre-

sentations:

�(⇠) = ⌥
p
 b

(1� ↵̂2
5sn

2(⌦5⇠, k))
1
2

, (3.13)

where ↵̂2
5 = 1�  b

 a
, k2 = ↵̂2

5 d

 b+ d
and ⌦5 = 1

4

p
 a( b +  d).

Especially, the level curves defined by H(�, y) = 0 are two periodic orbits enclos-
ing the singular points E1(��2, 0) and E2(�2, 0) respectively. In this case, in (3.13),

we have  a = 2(c+2
p
c� !), b = 2(c� 2

p
c� !), d = 0, ↵̂2

5 = 4
p
c�!

c+2
p
c�! , k

2 =

0,⌦5 = 1
2

p
c2 � 4c+ 4!. Hence, the two periodic orbits have the following exact

parametric representations:

�(⇠) = ⌥
p
 b

�
1� ↵̂2

5 sin
2(⌦5⇠)

� 1
2

, (3.14)

(ii) Corresponding to the level curves defined by H(�, y) = h, h 2 (0, h1), there
exist three families of periodic orbits of system (1.8), enclosing the origin O(0, 0)
and E1(��2, 0), E4(�2, 0) respectively (see Figure 1(f)). These periodic orbits have
the same exact parametric representations as (3.6) and (3.7).

(iii) Corresponding to the level curves defined by H(�, y) = h1, there exist two
homoclinic orbits enclosing E1(��2, 0) and E4(�2, 0) respectively, and two hetero-
clinic orbits enclosing the origin O(0, 0) (see Figure 1(f)). These orbits have the
same exact parametric representations as (3.9) and (3.10).

(iv) Corresponding to the level curves defined by H(�, y) = h, h 2 (h1,1), there
exists a family of periodic orbits of system (1.8), enclosing six equilibrium points (see
Figure 1(f)). These periodic orbits have the same exact parametric representations
as (3.4).

3.6. Exact periodic solutions and homoclinic, heteroclinic so-
lutions of system (1.8) when (,!) 2 (L3) in Figure 1(a).

In this case, we have �1 = 0,�2 = 2
3

p
6c, h1 = 0 and h2 = � 8c3

27 .
(i) Corresponding to the level curves defined by H(�, y) = h, h 2 (h2, 0),

there exist two families of periodic orbits of system (1.8), enclosing E1(��2, 0)
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and E4(�2, 0) respectively (see Figure 1(g)). These periodic orbits have the same
exact parametric representations as (3.13).

(ii) Corresponding to the level curves defined by H(�, y) = 0, h 2 (h2, 0), there
exist two homoclinic orbits of system (1.8), enclosing E1(��2, 0) and E4(�2, 0)

respectively (see Figure 1(g)). In this case, (3.2) becomes that 1
4⇠ =

R 4c
 

d 

 
p

(4c� ) 
.

Thus, we have the following exact parametric representations:

�(⇠) = ⌥ 4
p
cp

4 + c2⇠2
. (3.15)

(iii) Corresponding to the level curves defined by H(�, y) = h, h 2 (0,1), there
exists a family of periodic orbits of system (1.8), enclosing three equilibrium points
(see Figure 1(g)). These periodic orbits have the same exact parametric represen-
tations as (3.4).

3.7. Exact periodic solutions and homoclinic solutions of sys-
tem (1.8) when (,!) 2 (IV ) in Figure 1(a).

In this case, we have h2 < 0.
(i) Corresponding to the level curves defined by H(�, y) = h, h 2 (h2, 0),

there exist two families of periodic orbits of system (1.8), enclosing E1(��2, 0)
and E4(�2, 0) respectively (see Figure 1(h)). These periodic orbits have the same
exact parametric representations as (3.13).

(ii) Corresponding to the level curves defined by H(�, y) = 0, h 2 (h2, 0), system
(1.8) has two homoclinic orbits, enclosing E1(��2, 0) and E4(�2, 0) respectively

(see Figure 1(h)). In this case, (3.2) becomes that 1
2⇠ =

R  M

 
d 

 
p

( M� )( + i)
,

where  M = 2(c+2
p
c� !), i = 2(�c+2

p
c� !). Hence, we obtain the exact

parametric representations of two homoclinic orbits:

�(⇠) = ⌥
✓

2 M i

( M +  i) cosh(!0⇠)� ( M �  i

◆ 1
2

= ⌥
✓

8(c� ! � 1
4c

2)

2
p
c� ! cosh(!0⇠)� c

◆ 1
2

,

(3.16)

where !0 = 1
2

p
 M i = 2

q
c� ! � 1

4c
2.

(iii) Corresponding to the level curves defined by H(�, y) = h, h 2 (0,1), there
exists a family of periodic orbits of system (1.8), enclosing three equilibrium points
(see Figure 1(g)). These periodic orbits have the same exact parametric represen-
tations as (3.4).

4. Exact parametric representations of the solutions
of equation (1.3) with the form (1.4)

In this section, we use the exact solutions of system (1.8) derived in Section 3 to
give the exact parametric representations of the solutions of equation (1.3) with the
form (1.4). Notice that the function ✓(⇠) = 1

2 (c� 2)⇠+ 1
4

R
�2(⇠)d⇠. Therefore, we

first need to calculate the integral
R
�2(⇠)d⇠, where �(⇠) is given by (3.3)-(3.16).
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4.1. Exact solutions of equation (1.3) given by the periodic
solutions of system (1.8).

(i) Corresponding to the family of the periodic orbits of system (1.8) enclosing
the origin O(0, 0) or the global family of periodic orbits enclosing five or three
equilibrium points, given by (3.3) or (3.4), we have

R
�2(⇠)d⇠ =

R  3↵̂
2
1sn

2(⌦1⇠,k)d⇠
1�↵̂2

1sn
2(⌦1⇠,k)

=  3

⌦̂1

⇥
⇧
�
arcsin(sn(⌦1⇠, k)), ↵̂2

1, k
�
� F (arcsin(sn(⌦1⇠, k)), k)

⇤
,

where F and ⇧ are normal elliptic integrals of the first kind and the third kind
respectively, and

R
�2(⇠)d⇠ =

R ⇣
↵1 +

�1

1+↵̂2cn(⌦2⇠,k)

⌘
d⇠

= ↵1⇠ +
�1

1�↵̂2
2

h
⇧
⇣
arccos(sn(⌦1⇠, k)),

↵̂2
2

↵̂2
2�1

, k
⌘
� ↵̂2f1

i
,

where the function f1 can be seen in (Byrd and Fridman [3], pp.215).
Similarly, corresponding to the family of the periodic orbits of system (1.8)

enclosing the origin O(0, 0) given by (3.6), we have

R
�2(⇠)d⇠ =

R  a↵̂
2
3sn

2(⌦3⇠,k)d⇠
1�↵̂2

3sn
2(⌦3⇠,k)

=  a

⌦̂3

⇥
⇧
�
arcsin(sn(⌦3⇠, k)), ↵̂2

3, k
�
� F (arcsin(sn(⌦3⇠, k)), k)

⇤
.

Especially, corresponding to the periodic orbits of system (1.8) enclosing the
origin O(0, 0) given by (14a), we have

R
�2(⇠)d⇠ =

R  2|↵̂3| sin(⌦3⇠)d⇠
(1�↵̂2

3 sin2(⌦3⇠)

= � 2⇠ + 2arctan

✓
(2�↵̂2

3) tan(!3⇠)+↵̂
2
3)

2
p

1�↵̂2
3

◆
.

Write that

✓1(⇠) =
1

2
(c� 2)⇠+

 3

4⌦1

⇥
⇧
�
arcsin(sn(⌦1⇠, k)), ↵̂

2
1, k
�
� F (arcsin(sn(⌦1⇠, k)), k)

⇤
;

✓2(⇠) =
1

2
(c�2)⇠+

1

4
↵1⇠+

�1
4(1� ↵̂2

2)


⇧

✓
arccos(sn(⌦1⇠, k)),

↵̂2
2

↵̂2
2 � 1

, k

◆
� ↵̂2f1

�
;

✓3(⇠) =
1

2
(c� 2)⇠+

 a

4⌦3

⇥
⇧
�
arcsin(sn(⌦3⇠, k)), ↵̂

2
3, k
�
� F (arcsin(sn(⌦3⇠, k)), k)

⇤
;

✓4(⇠) =
1

2
(c� 2)⇠ � 1

4
 2⇠ +

1

2
arctan

 
(2� ↵̂2

3) tan(!3⇠) + ↵̂2
3)

2
p
1� ↵̂2

3

!
.

Thus, we obtain the following exact solutions of equation (1.3):

q(x, t) = q1(x, t) =

p
 3↵̂1sn(⌦1⇠, k)

(1� ↵̂2
1sn

2(⌦1⇠, k))
1
2

exp (i [x� !t+ ✓1(⇠)]); (4.1)
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q(x, t) = q2(x, t) =

✓
↵1 +

�1
1 + ↵̂2cn(⌦2⇠, k)

◆ 1
2

exp (i [x� !t+ ✓2(⇠)]); (4.2)

q(x, t) = q3(x, t) =

p
 a|↵̂3|sn(⌦3⇠, k)

(1� ↵̂2
3sn

2(⌦3⇠, k))
1
2

exp (i [x� !t+ ✓3(⇠)]); (4.3)

q(x, t) = q4(x, t) =
�2|↵̂3| sin(⌦3⇠)

(1� ↵̂2
3 sin

2(⌦3⇠)
1
2

exp (i [x� !t+ ✓4(⇠)]). (4.4)

(ii) Corresponding to the family of the periodic orbits of system (1.8) enclosing
the equilibrium points E1(��2, 0) and E4(�2, 0) given by (3.7), (3.13) and (3.14),
we have R

�2(⇠)d⇠ =
R ⇣

 c +
 b� c

1�↵̂2
4sn

2(⌦3⇠,k)

⌘
d⇠

=  c⇠ + ( b �  c)⇧
�
arcsin(sn(⌦3⇠, k)), ↵̂2

4, k
�
;

Z
�2(⇠)d⇠ =

Z ✓
 b

1� ↵̂2
5sn

2(⌦5⇠, k)

◆
d⇠ =  b⇧

�
arcsin(sn(⌦5⇠, k)), ↵̂

2
5, k
�
;

and R
�2(⇠)d⇠ =

R ⇣  b

1�↵̂2
5 sin2(⌦5⇠,k)

⌘
d⇠

=  b

⌦5

p
1�↵̂2

5

arctan

✓p
2�↵̂2

5 tan(⌦5⇠)+↵̂
2
5

2
p

1�↵̂2
5

◆
.

Write that

✓5(⇠) =
1

2
(c� 2+ 2 c)⇠ +

1

4
( b �  c)⇧

�
arcsin(sn(⌦3⇠, k)), ↵̂

2
4, k
�

and

✓6(⇠) =
1

2
(c� 2)⇠ +

1

4
 b⇧

�
arcsin(sn(⌦5⇠, k)), ↵̂

2
5, k
�
,

✓7(⇠) =
1

2
(c� 2)⇠ +

 b

4⌦5

p
1� ↵̂2

5

arctan

 p
2� ↵̂2

5 tan(⌦5⇠) + ↵̂2
5

2
p
1� ↵̂2

5

!
.

Therefore, we obtain the following exact solutions of equation (1.3):

q(x, t) = q5(x, t) =

✓
 c +

 b �  c

1� ↵̂2
4sn

2(⌦3⇠, k)

◆ 1
2

exp (i [x� !t+ ✓5(⇠)]); (4.5)

q(x, t) = q6(x, t) =

p
 b

(1� ↵̂2
5sn

2(⌦5⇠, k))
1
2

exp (i [x� !t+ ✓6(⇠)]); (4.6)

q(x, t) = q7(x, t) =

✓
 b

1� ↵̂2
5 sin

2(⌦5⇠, k)

◆ 1
2

exp (i [x� !t+ ✓7(⇠)]). (4.7)

(iii) Corresponding to the two heteroclinic orbits of system (1.8) enclosing the
equilibrium points O(0, 0) given by (3.5), (3.9) and (3.11), we have

Z
�2(⇠)d⇠ =

16c3

3

Z
⇠2

9 + c2⇠2
= 16


1

3
c⇠ � arctan

✓
1

3
c⇠

◆�
;
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R
�2(⇠)d⇠ =

R  M 1 tanh2(!1⇠)d⇠
( M� 1)+ 1 tanh2(!1⇠)

=  1⇠ � 2arctan
⇣q

 1

 M� 1
tanh

�
1
2⇠
�⌘

and specially, for (3.11),
Z
�2(⇠)d⇠ =

Z
16c tanh2(!2⇠)d⇠

18 + 6 tanh2(!2⇠)
=

2

3
c⇠ � 2 arctan

✓
1p
3
tanh

✓
1

2
⇠

◆◆
.

Write that

✓8(x, t) =

✓
11

6
c� 

◆
⇠ � 4 arctan

✓
1

3
c⇠

◆
;

✓9(x, t) =
1

2

✓
c� 2+

1

2
 1

◆
⇠ � 1

2
arctan

 s
 1

 M �  1
tanh

✓
1

2
⇠

◆!
;

✓10(x, t) =
1

2

✓
4

3
c� 2

◆
⇠ � 1

2
arctan

✓
1p
3
tanh

✓
1

2
⇠

◆◆
.

These give rise to the following exact solutions of equation (1.3):

q(x, t) = q8(x, t) =
4c

3
2 ⇠p

3(9 + c2⇠2)
exp (i [x� !t+ ✓8(⇠)]); (4.8)

(a) (b)

Figure 2. The graphs of the real part and imaginary part of solution q8 (x, t)

q(x, t) = q9(x, t) =

p
 M 1 tanh(!1⇠)

�
( M �  1) +  1 tanh

2(!1⇠)
� 1

2

exp (i [x� !t+ ✓9(⇠)]); (4.9)

q(x, t) = q10(x, t) =
4
p
c tanh(!2⇠)

�
18 + 6 tanh2(!2⇠)

� 1
2

exp (i [x� !t+ ✓10(⇠)]). (4.10)

(iv) Corresponding to the two homoclinic orbits of system (1.8) enclosing the
equilibrium points E1(��2, 0) and E4(�2, 0) given by (3.10), (3.12), (3.15) and
(3.16), we have

R
�2(⇠)d⇠ =

R ⇣
 1 +

2( M� 1) 1

 M cosh(2!1⇠)+2 1� M

⌘
d⇠

= 2arctan
⇣q

 M� 1

 1
tanh

�
1
2!1⇠

�⌘
;
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(a) (b)

Figure 3. The graphs of the real part and imaginary part of solution q10 (x, t)

Z
�2(⇠)d⇠ =

Z ✓
2

3
c+

2c

2 cosh(2!2⇠)� 1

◆
d⇠ =

2

3
c⇠+2arctan

✓p
3 tanh

✓
c

2
p
3
⇠

◆◆
;

Z
�2(⇠)d⇠ = 16c

Z
d⇠

4 + c2⇠2
= 8arctan

✓
1

2
c⇠

◆
;

R
�2(⇠)d⇠ =

R ⇣ 8(c�!� 1
4 c

2)

2
p
c�! cosh(!0⇠)�c

⌘
d⇠

= 4arctan

✓⇣
2
p
c�!+c

2
p
c�!�c

⌘ 1
2
tanh

⇣q
c� ! � 1

4c
2⇠
⌘◆

.

Write that

✓11(⇠) =
1

2
(c� 2)⇠ +

1

2
arctan

 s
 M �  1

 1
tanh

✓
1

2
!1⇠

◆!
;

✓12(⇠) =
1

2

✓
4

3
c� 2

◆
⇠ +

1

2
arctan

✓p
3 tanh

✓
c

2
p
3
⇠

◆◆
;

✓13(⇠) =
1

2
(c� 2)⇠ + 4arctan

✓
1

2
c⇠

◆
;

✓14(⇠) =
1

2
(c� 2)⇠ + arctan

 ✓
2
p
c� ! + c

2
p
c� ! � c

◆ 1
2

tanh

 r
c� ! � 1

4
c2⇠

!!
.

Hence, we obtain the exact solutions of equation (1.3) as follows:

q(x, t) = q11(x, t) =

✓
 1 +

2( M �  1) 1

 M cosh(2!1⇠) + 2 1 �  M

◆ 1
2

exp (i [x� !t+ ✓8(⇠)]);

(4.11)

q(x, t) = q12(x, t) =

✓
2

3
c+

2c

2 cosh(2!2⇠)� 1

◆ 1
2

exp (i [x� !t+ ✓9(⇠)]); (4.12)

q(x, t) = q13(x, t) =
4
p
cp

4 + c2⇠2
exp (i [x� !t+ ✓10(⇠)]); (4.13)

q(x, t) = q14(x, t) =

✓
8(c� ! � 1

4c
2)

2
p
c� ! cosh(!0⇠)� c

◆ 1
2

exp (i [x� !t+ ✓11(⇠)]). (4.14)
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(a) (b)

Figure 4. The graphs of the real part and imaginary part of solution q12 (x, t)

(a) (b)

Figure 5. The graphs of the real part and imaginary part of solution q13 (x, t)
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