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Abstract In this paper, we investigate a class of the fractional (p, q)-di↵erence
initial value problem with the fractional (p, q)-integral boundary conditions
with the aid of the method of successive approximations(Picard method) and
fractional (p, q)-Gronwall inequality, obtaining su�cient conditions for the ex-
istence, uniqueness and continuous dependence results of solutions.

Keywords Well-posedness, fractional (p, q)-di↵erence equation, initial value
problem, fractional (p, q)-Gronwall inequality

MSC(2010) 26A33, 34A12, 39A70.

1. Introduction

Fractional calculus is an interesting and old subject that is a generalization of or-
dinary di↵erentiation and integration. The study of the q-di↵erence equation ap-
peared at the beginning of the 21st century and was initially developed by Jack-
son [8]and Carmichael [3]. So far, q-di↵erence equations have been infiltrated into
various subjects (see [1, 6, 7]). Some basic definitions and properties of q-di↵erence
calculus can be found in [9]. In addition, fractional calculus has proved to be
a valuable tool in many fields of science and engineering such as control, fluid
flow, mechanics and electrical networks (see the papers [2,17–19] and the references
therein).

In recent years, with the development of science and technology and the ad-
vancement of fractional order theory, many researchers have developed the theory
of quantum calculus based on the two parameters p and q. The fractional-order
(p, q)-di↵erence equations have been widely used in physical sciences, Lie groups,
special functions, hypergeometric series, Bezier curves and approximations. Some
basic results of (p, q)-di↵erence calculus can be found in [4, 10, 11,13,20,21].

In particular, there are few works that have considered the fractional (p, q)-
di↵erence equations. In 2020, Soontharanonl and Sitthiwirattham [22] studied the
existence of a class of fractional (p, q)-di↵erence equation. A class of fractional (p, q)-
integrodi↵erence equation with periodic fractional (p, q)-integral boundary condi-
tions was considered with Banach and Schauder’s fixed point theorems [25]. In
2021, Qin and Sun [15] proved the existence and uniqueness of positive solutions
for fractional (p, q)-di↵erence equation using some standard fixed point theorems.
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In this year, Qin and Sun [16] studied the solvability and stability for a class of
singular fractional (p, q)-di↵erence equation using Arzela’s lemma and fractional
(p, q)-Gronwall inequality. In the same year, the boundary value problem of a
class of fractional (p, q)-di↵erence Schrödinger equations was studied by Qin and
Sun [14]. In 2022, Neang, Nonlaopon and Tariboon [12] investigated the separate
local boundary value conditions of fractional (p, q)-di↵erence equation and obtained
the existence and uniqueness of solutions based on some standard fixed point theo-
rems. For some developments concerning the existence(and uniqueness) in fractional
(p, q)-di↵erence equations, we refer to [5, 23, 24] and references therein.

Inspired by the works mentioned above, we investigate the existence, uniqueness
and continuous dependence of the solution to the fractional (p, q)-di↵erence initial
value problem(IVP)

(
D↵

p,qu(t) = f(p↵t, u(p↵t)), t 2 (0, 1],

I1�↵
p,q u(t)|t=0 = ⌘,

(1.1)

where 0 < ↵ < 1, 0 < q < p  1, and D↵
p,q is an Riemann-Liouville type fractional

(p, q)-di↵erence operator.

Few papers have investigated the fractional (p, q)-di↵erence equations, since frac-
tional (p, q)-operator was defined lately. Compared with the papers [12, 14–16]
and [5,22–25], the main novelty of this paper is as follows. We apply the method of
successive approximations(Picard method) and fractional (p, q)-Gronwall inequality
to study the existence, uniqueness and continuous dependence results of the solution
for problem (1.1), which is the first and probably the only work in this direction.
To the author’s knowledge, there is no result on the continuous dependence of the
solution for fractional (p, q)-di↵erence equation. In this paper, we aim to fill this
margin to some extent. Thus, our works are new and meaningful.

The organization of our paper is as follows. In Section 2, we present some basic
definitions and preliminaries results. In Section 3, we prove the main results of this
paper, which include the existence, uniqueness and continuous dependence of the
solution to problem (1.1).

2. Preliminaries

In this section, we present some concepts of fractional (p, q)-di↵erence calculus and
some necessary basic preliminaries. Let 0 < q < p  1. Define

[k]q :=

8
><

>:

1� qk

1� q
, k 2 N,

1, k = 0,

[k]p,q :=

8
><

>:

pk � qk

p� q
= pk�1[k] q

p
, k 2 N,

0, k = 0,
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and the (p, q)-analogue factorial is defined as

[k]p,q! :=

8
>><

>>:

[k]p,q[k � 1]p,q · · · [1]p,q =
kY

i=1

pi � qi

p� q
, k 2 N,

1, k = 0.

The (p, q)-analogue of the power function (a � b)(n)p,q with n 2 N0 := {0, 1, 2, ...} is
given by

(a� b)(0)p,q := 1, (a� b)(n)p,q :=
n�1Y

k=0

(apk � bqk), a, b 2 R.

If ↵ 2 R, the general form is given by

(a� b)(↵)p,q = p(
↵
2)(a� b)(↵)q

p
= a↵p(

↵
2)

1Y

i=0

a� b( qp )
i

a� b( qp )
↵+i

, 0 < b < a,

where
�↵
2

�
= ↵(↵�1)

2 . Notice that

(a� b)(↵)p,q = a↵(1� b

a
)(↵)p,q and a(↵)p,q = p(

↵
2)a↵, a > 0.

When a = 0, we define a(↵)p,q = 0. For 0 < q < p  1, the (p, q)-gamma and
(p, q)-beta functions are defined by

�p,q(x) =

8
><

>:

(p� q)(x�1)
p,q

(p� q)x�1
=

(1� q/p)(x�1)
p,q

(1� q/p)x�1
, x 2 R \ {0,�1,�2....},

[x� 1]p,q!, x 2 Z,

Bp,q(x, y) :=

Z 1

0
tx�1(1� qt)(y�1)

p,q dp,qt = p
1
2 (y�1)(2x+y�2)�p,q(x)�p,q(y)

�p,q(x+ y)

respectively.

Definition 2.1. (see [21]) Let 0 < q < p  1. The (p, q)-derivative of the function
f is defined as

Dp,qf(t) :=
f(pt)� f(qt)

(p� q)t
, t 6= 0

and (Dp,qf)(0) = limt!0(Dp,qf)(t), provided that f is di↵erentiable at 0. Mean-
while, the high-order (p, q)�derivative Dn

p,qf(t) is defined by

Dn
p,qf(t) =

(
f(t), n = 0,

Dp,qD
n�1
p,q f(t), n 2 N.

Definition 2.2. (see [21]) Let 0 < q < p  1, f be an arbitrary function, and let
x be a real number. The (p, q)�integral of the function f is defined as

Z x

0
f(t)dp,qdt = (p� q)x

1X

k=0

qk

pk+1
f
� qk

pk+1
x
�
, (2.1)
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provided that the series of the right side in (2.1) converges. In this case, f is called
(p, q)-integrable on [0, x], and denote

Ip,qf(x) =

Z x

0
f(t)dp,qt.

Definition 2.3. (see [21]) Let 0 < q < p  1, f be an arbitrary function, and let
a and b be two real numbers. Then, we define

Z b

a
f(t)dp,qt =

Z b

0
f(t)dp,qt�

Z a

0
f(t)dp,qt.

Lemma 2.1. (see [21]) Let 0 < q < p  1, and let a and b be two real numbers.
Then, the following formulas hold.

(a)
R a
a f(t)dp,qt = 0;

(b)
R b
a ↵f(t)dp,qt = ↵

R b
a f(t)dp,qt, ↵ 2 R;

(c)
R b
a f(t)dp,qt = �

R a
b f(t)dp,qt;

(d)
R b
a f(t)dp,qt =

R c
b f(t)dp,qt+

R b
c f(t)dp,qt, c 2 R;

(e)
R b
a [f(t) + g(t)]dp,qt =

R b
a f(t)dp,qt+

R b
a g(t)dp,qt.

Definition 2.4. (see [22]) Let ↵ > 0, 0 < q < p  1, and let f be an arbitrary
function on [0,+1). The fractional (p, q)-integral is defined by

I↵p,qf(t) =
1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f

✓
s

p↵�1

◆
dp,qs

and I0p,qf(t) = f(t).

Definition 2.5. (see [22]) Let ↵ > 0, 0 < q < p  1, and let f : (0,1) ! R be an
arbitrary function. The fractional (p, q)-di↵erence operator of Riemann-Liouville
type of order ↵ is defined by

D↵
p,qf(t) = DN

p,qI
N�↵
p,q f(t)

and D0
p,qf(t) = f(t), where N is the smallest integer greater than or equal to ↵.

Lemma 2.2. (see [22]) For ↵ > 0, 0 < q < p  1, and f : (0,1) ! R, we get

D↵
p,qI

↵
p,qf(t) = f(t).

Lemma 2.3. (see [22]) For ↵ 2 (N � 1, N ], N 2 N, 0 < q < p  1, and f :
(0,1) ! R, we get

I↵p,qD
↵
p,qf(t) = f(t) + c1t

↵�1 + c2t
↵�2 + ...+ cN t↵�N ,

for some ci 2 R, i = 1, 2, ...., N .

Lemma 2.4. (see [22]) For ↵, � > 0, and 0 < q < p  1, (p, q)�integral and
(p, q)�di↵erence operator have the following properties.

(a) I↵p,q[I
�
p,qf(x)] = I�p,q[I

↵
p,qf(x)] = I↵+�

p,q f(x);

(b) Dp,qIp,qf(x) = f(x), and Ip,qDp,qf(x) = f(x)� f(0).
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Lemma 2.5. Let 0 < ↵ < 1 and 0 < q < p  1. Then,
Z t

0
(t� qs)(↵�1)

p,q dp,qs = t↵
Z 1

0
(1� q⌧)(↵�1)

p,q dp,q⌧ = t↵B(1,↵) (2.2)

and
Z t

0
(t� qs)(↵�1)

p,q s�↵dp,qs =

Z 1

0
(1� q⌧)(↵�1)

p,q ⌧�↵dp,q⌧ = Bp,q(↵, 1� ↵). (2.3)

Proof. By Definition 2.4 and the definition of (p, q)-beta function, we can obtain

Z t

0
(t� qs)(↵�1)

p,q dp,qs =(p� q)t
1X

k=0

qk

pk+1

✓
t� q

qk

pk+1
t

◆(↵�1)

p,q

=(p� q)t
1X

k=0

qk

pk+1
t↵�1

✓
1� q

qk

pk+1

◆(↵�1)

p,q

=t↵(p� q)
1X

k=0

qk

pk+1

✓
1� q

qk

pk+1

◆(↵�1)

p,q

=t↵
Z 1

0
(1� q⌧)(↵�1)

p,q dp,q⌧ = t↵B(1,↵).

Thus, equality (2.2) holds. Furthermore, from Definition 2.4 and the definition of
(p, q)-beta function, we can obtain

Z t

0
(t� qs)(↵�1)

p,q s�↵dp,qs =(p� q)t
1X

k=0

qk

pk+1

✓
t� q

qk

pk+1
t

◆(↵�1)

p,q

✓
qk

pk+1
t

◆�↵

=(p� q)t
1X

k=0

qk

pk+1
t↵�1

✓
1� q

qk

pk+1

◆(↵�1)

p,q

t�↵

✓
qk

pk+1

◆�↵

=(p� q)
1X

k=0

qk

pk+1

✓
1� q

qk

pk+1

◆(↵�1)

p,q

✓
qk

pk+1

◆�↵

=

Z 1

0
(1� q⌧)(↵�1)

p,q t�↵dp,q⌧ = B(↵, 1� ↵).

Thus, equality (2.3) holds.

3. Main results

In this section, we establish some su�cient conditions for the existence, uniqueness
and continuous dependence of the solution to initial value problem (1.1). Denote
R+ = [0,+1).

Lemma 3.1. Assume that 0 < ↵ < 1. Then,

I1�↵
p,q t↵�1 = �p,q, t 2 R,

where

�p,q =
p�(↵�1)( 3

2↵�1)

p(
1�↵
2 )

�p,q(↵).



570 M. Zhou

Proof. Since 0 < ↵ < 1, �1 < (1 � ↵) � 1 < 0, �1 < ↵ � 1 < 0. Thus, from
Definition 2.4, Lemma 2.5(2.3) and the definition of (p, q)�beta function, we have

I1�↵
p,q t↵�1 =

1

p(
1�↵
2 )�p,q(1� ↵)

Z t

0
(t� qs)(�↵)

p,q

✓
s

p↵�1

◆↵�1

dp,qs

=
p�(↵�1)2

p(
1�↵
2 )�p,q(1� ↵)

Z t

0
(t� qs)((1�↵)�1)

p,q s↵�1dp,qs

=
p�(↵�1)2

p(
1�↵
2 )�p,q(1� ↵)

Z 1

0
(1� q⌧)((1�↵)�1)

p,q ⌧↵�1dp,q⌧

=
p�(↵�1)2

p(
1�↵
2 )�p,q(1� ↵)

Bp,q(↵, 1� ↵)

=
p�(↵�1)( 3

2↵�1)

p(
1�↵
2 )

�p,q(↵) = �p,q.

Lemma 3.2. Let 0 < ↵ < 1. Then, D↵
p,qt

↵�1 = 0, for t 2 R.

Proof. From Definition 2.5, we have

D↵
p,qt

↵�1 = Dp,qI
1�↵
p,q t↵�1.

According to Definition 2.1 and Lemma 3.1, we get

D↵
p,qt

↵�1 = Dp,q�p,q = 0.

Lemma 3.3. Let 0 < q < p  1, 0 < ↵ < 1, and let f 2 C([0, 1] ⇥ R+) be a
given nonnegative function. Then, x(t) is a solution to (1.1), if and only if it is the
solution of the following integral equation

u(t) =
⌘

�p,q
t↵�1 +

1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f(ps, u(ps))dp,qs. (3.1)

Proof. Assume that u(t) is a solution to (1.1). Taking the operator I↵p,q on both
sides of the equation of problem (1.1), by Definition (2.4) and Lemma 2.3, we have

u(t) = c1t
↵�1 + I↵p,qf(p

↵t, u(p↵t)), (3.2)

for some constants c1 2 R. Taking the operator I1�↵
p,q on both sides of the equation

of problem (3.2), from the boundary condition I1�↵
p,q u(t)|t=0 = ⌘ and Lemma 3.1,

we have
c1 =

⌘

�p,q
.

Hence,

u(t) =
⌘

�p,q
t↵�1 + I↵p,qf(p

↵t, u(p↵t))

=
⌘

�p,q
t↵�1 +

1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f(ps, u(ps))dp,qs.
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Next, we prove the su�ciency of this lemma. Assume that u(t) satisfies (3.1).
Applying the operator D↵

p,q to both sides of (3.1), by Lemmas 2.2 and 3.2, we have

D↵
p,qu(t) = D↵

p,qI
↵
p,qf(p

↵t, u(p↵t)) = f(p↵t, u(p↵t)).

3.1. Existence and uniqueness

In this part, we will obtain the existence and uniqueness of the solution to (1.1) by
Picard method.

Theorem 3.1. Let 0 < q < p  1, 0 < ↵ < 1, and let f 2 C([0, 1]⇥R+) be a given
nonnegative function satisfying the following conditions.

(H1) There exists a constant M > 0 such that

M = sup
(t,u)2[0,1]⇥R+

|f(t, u)|.

(H2) f satisfies Lipschitz condition with Lipschitz constant L such that

|f(t, u)� f(t, v)|  L|u� v|.

(H3)
L < �p,q(↵+ 1).

Then, there exists a unique solution u(t) for problem (1.1).

Proof. Set Picards’s sequence functions

u0(t) =
⌘

�p,q
t↵�1,

un(t) = u0(t) +
1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f(ps, un�1(ps))dp,qs,
(3.3)

where n = 1, 2, · · · .
The function un(n = 1, 2, · · · ) are continuous, and un can be written as a sum

of successive di↵erences

un = u0 +
nX

i=1

(ui � ui�1).

It means that the convergence of the sequence un is equivalent to the convergence
of the infinite series

Pn
i=1(ui � ui�1), and the solution will be

u(t) = lim
n!1

un(t),

i.e., if the infinite series
Pn

i=1(ui � ui�1) converges, then the sequence un(t) will
converge to u(t). To prove the uniform convergence of {un(t)}, we consider the
associated series

1X

n=1

(un(t)� un�1(t)).
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When n = 1, from (3.3), we have

|u1(t)� u0(t)| =
����

1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f(ps, u0(ps))dp,qs

����

=
1

p(
↵
2)�p,q(↵)

����
Z t

0
(t� qs)(↵�1)

p,q f(ps, u0(ps))dp,qs

����.

Noticing by Definition 2.2, we know

����
Z t

0
(t� qs)(↵�1)

p,q f(ps, u0(ps))dp,qs

����

=

����(p� q)t
1X

k=0

qk

pk+1
(t� q

qk

pk+1
t)↵�1

p,q f(p
qk

pk+1
t, u0(p

qk

pk+1
t))

����

(p� q)t↵
1X

k=0

����
qk

pk+1
(1� (

q

p
)k+1)↵�1

p,q f(
qk

pk
t, u0(

qk

pk
t))

����.

(3.4)

Since M = sup(t,u)2[0,1]⇥R |f(t, u)|,
P1

k=0

����
qk

pk+1 (1� ( qp )
k+1)↵�1

p,q

���� is convergent.

Hence,
1X

k=0

����
qk

pk+1
(1� (

q

p
)k+1)↵�1

p,q f(
qk

pk
t, u0(

qk

pk
t))

����

is also convergent.

Thus,

����
Z t

0
(t� qs)(↵�1)

p,q f(ps, u0(ps))dp,qs

����

(p� q)t↵
1X

k=0

����
qk

pk+1
(1� (

q

p
)k+1)↵�1

p,q f(
qk

pk
t, u0(

qk

pk
t))

����

=

Z t

0

����(t� qs)(↵�1)
p,q f(ps, u0(ps))

����dp,qs.

(3.5)

Then, from (H1) and Lemma 2.5, we get

|u1(t)� u0(t)| 
1

p(
↵
2)�p,q(↵)

Z t

0

����(t� qs)(↵�1)
p,q f(ps, u0(ps))

����dp,qs

 M

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q dp,qs

=
Mt↵

p(
↵
2)�p,q(↵)

Z 1

0
(1� q⌧)(↵�1)

p,q dp,q⌧

=
MBp,q(1,↵)

p(
↵
2)�p,q(↵)

t↵  M

�p,q(↵+ 1)
.

(3.6)
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Now, we shall obtain an estimate for un(t)� un�1(t), n � 2,

|un(t)� un�1(t)| =
1

p(
↵
2)�p,q(↵)

����
Z t

0
(t� qs)(↵�1)

p,q f(ps, un�1(ps))dp,qs

�
Z t

0
(t� qs)(↵�1)

p,q f(ps, un�2(ps))dp,qs

����.

By the above analysis and condition (H2), we have

|un(t)� un�1(t)| 
L

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q |un�1(ps)� un�2(ps)|dp,qs.

Taking n = 2, then using (3.6) and Lemma 2.5, we have

|u2(t)� u1(t)| 
L

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q |u1(ps)� u0(ps)|dp,qs

 L

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q
M

�p,q(↵+ 1)
dp,qs

=
LMBp,q(1,↵)

p(
↵
2)�p,q(↵)�p,q(↵+ 1)

t↵

 LM

(�p,q(↵+ 1))2
.

Then,

|u2 � u1| 
LM

(�p,q(↵+ 1))2
. (3.7)

Taking n = 3, then using (3.7) and Lemma 2.5, we have

|u3 � u2| 
L

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q |u2(ps)� u1(ps)|dp,qs

 L

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q
LM

(�p,q(↵+ 1))2
dp,qs

=
L2MBp,q(1,↵)

p(
↵
2)�p,q(↵)(�p,q(↵+ 1))2

t↵

 L2M

(�p,q(↵+ 1))3
.

Repeating this technique, we obtain the general estimate for the terms of the series

|un � un�1| 
Ln�1M

(�p,q(↵+ 1))n
.

Taking into account
L < �p,q(↵+ 1),

we can choose an enough large n, such that

Ln�1M

(�p,q(↵+ 1))n
<

1

2
,
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which means that the uniform convergence of

1X

n=1

(un(t)� un�1(t))

is proved. Therefore, the sequence un(t) is uniformly convergent.
Since f 2 C([0, 1]⇥ R+), then

u(t) = lim
n!1

1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f(ps, un(ps))dp,qs

=
1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f(ps, u(ps))dp,qs.

Thus, the existence of a solution is proved.
To prove the uniqueness, let v(t) be a continuous solution of (1.1). Then,

v(t) =
⌘

�p,q
t↵�1 +

1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f(ps, v(ps))dp,qs

and

|v(t)� un(t)| =
1

p(
↵
2)�p,q(↵)

����
Z t

0
(t� qs)(↵�1)

p,q f(ps, v(ps))dp,qs

�
Z t

0
(t� qs)(↵�1)

p,q f(ps, un�1(ps))dp,qs

����.

From (3.4)-(3.5) and (H2), we have

|v(t)� un(t)| 
1

p(
↵
2)�p,q(↵)

Z t

0

����(t� qs)(↵�1)
p,q f(ps, v(ps))dp,qs

�
Z t

0
(t� qs)(↵�1)

p,q f(ps, un�1(ps))

����dp,qs

 L

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q |v(ps)� un�1(ps)|dp,qs.

(3.8)

However,

|v(t)� u0(t)| 
M

�p,q(↵+ 1)
,

and using (3.8), we can obtain

|v(t)� un(t)| 
Ln�1M

(�p,q(↵+ 1))n
.

Therefore,
lim
n!1

un(t) = v(t) = u(t).
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3.2. Continuous dependence

In this part, first, we study the continuous dependence of the solution of Cauchy-
type problem for fractional (p, q)�di↵erence equation using (p, q)�Gronwall in-
equality as a handy tool. To present the dependence of the solution in its order,
let us consider solutions to two IVPs with the neighbouring orders. We need the
following lemma.

Lemma 3.4. (The (p, q)-Gronwall inequality) Suppose that a(t) � 0, and � � 0.
Assume that function u : [0,1) ! R+ is continuous and satisfies

u(t)  a(t) +
�

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q u(ps)dp,qs.

Then, the following inequality

u(t)  Ep,q(�, t) sup
0st

a(s), t 2 [0,1)

holds, where Ep,q(�, t) =
P1

k=0
�kt↵k

�p,q(k↵+1) .

Theorem 3.2. Let ↵ > 0, " > 0 such that 0 < ↵�" < ↵ < 1. Let f be a continuous
function satisfying condition (H2). For 0  t  h < 1, assume that u and v are the
solutions of the IVP (1.1) and

(
D↵�"

p,q v(t) = f(p↵t, v(p↵t)), t 2 (0, 1],

I1�↵+"
p,q v(t)|t=0 = ⌘̄,

(3.9)

respectively. Then, for 0 < t  h, the following inequality

|v(t)� u(t)|  Ep,q(L, t) sup
0sth

a(s)

holds, where

a(t) =

����
⌘̄

�̄p,q
t↵�"�1 � ⌘

�p,q
t↵�1

����+ kfk
����

t↵�"

�p,q(↵� "+ 1)
� t↵�"B(1,↵� ")

p(
↵
2)�p,q(↵)

����

+ kfk
����
t↵�"B(1,↵� ")

p(
↵
2)�p,q(↵)

� t↵

�p,q(↵+ 1)

����,

Ep,q(L, t) =
1X

k=0

Lkt(↵�")k

�p,q(k(↵� ") + 1)
.

(3.10)

Proof. The solutions to the IVPs (1.1) and (3.9) are

u(t) =
⌘

�p,q
t↵�1 +

1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f(ps, u(ps))dp,qs

and

v(t) =
⌘̄

�̄p,q
t↵�"�1 +

1

p(
↵�"
2 )�p,q(↵� ")

Z t

0
(t� qs)(↵�"�1)

p,q f(ps, v(ps))dp,qs
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respectively, where

�̄p,q =
p�(↵�"�1)2

p(
1�↵+"

2 )
�p,q(↵� ").

From (3.4)-(3.5) and (H2), we have

|v(t)� u(t)| =
����

⌘̄

�̄p,q
t↵�"�1 � ⌘

�p,q
t↵�1

+
1

p(
↵�"
2 )�p,q(↵� ")

Z t

0
(t� qs)(↵�"�1)

p,q f(ps, v(ps))dp,qs

� 1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f(ps, u(ps))dp,qs

����


����

⌘̄

�̄p,q
t↵�"�1 � ⌘

�p,q
t↵�1

����

+

����
Z t

0


(t� qs)(↵�"�1)

p,q

p(
↵�"
2 )�p,q(↵� ")

� (t� qs)(↵�"�1)
p,q

p(
↵
2)�p,q(↵)

�
f(ps, v(ps))dp,qs

����

+

����
Z t

0

(t� qs)(↵�"�1)
p,q

p(
↵
2)�p,q(↵)

|f(ps, v(ps))� f(ps, u(ps))|dp,qs
����

+

����
Z t

0

(t� qs)(↵�"�1)
p,q � (t� qs)(↵�1)

p,q

p(
↵
2)�p,q(↵)

f(ps, u(ps))dp,qs

����


����

⌘̄

�̄p,q
t↵�"�1 � ⌘

�p,q
t↵�1

����

+ kfk
����
Z t

0


(t� qs)(↵�"�1)

p,q

p(
↵�"
2 )�p,q(↵� ")

� (t� qs)(↵�"�1)
p,q

p(
↵
2)�p,q(↵)

�
dp,qs

����

+

Z t

0

(t� qs)(↵�"�1)
p,q

p(
↵
2)�p,q(↵)

|f(ps, v(ps))� f(ps, u(ps))|dp,qs

+ kfk
����
Z t

0

(t� qs)(↵�"�1)
p,q � (t� qs)(↵�1)

p,q

p(
↵
2)�p,q(↵)

dp,qs

����

a(t) +
L

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�"�1)

p,q |v(ps)� u(ps)|dp,qs,

where

a(t) =

����
⌘̄

�̄p,q
t↵�"�1 � ⌘

�p,q
t↵�1

����+ kfk
����

t↵�"

�p,q(↵� "+ 1)
� t↵�"B(1,↵� ")

p(
↵
2)�p,q(↵)

����

+ kfk
����
t↵�"B(1,↵� ")

p(
↵
2)�p,q(↵)

� t↵

�p,q(↵+ 1)

����.

An application of Lemma 3.4 yields

|v(t)� u(t)|  Ep,q(L, t) sup
0sth

a(s),
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where a(t) and Ep,q(L, t) are defined by (3.10).
Next, we discuss the fractional (p, q)�di↵erence equation (1.1) with the small

change in the initial condition, i.e.,

I1�↵
p,q u(t)|t=0 = ⌘ + ", (3.11)

where " is an arbitrary constant. Now, we state and prove the result as follows.

Theorem 3.3. Assume that 0 < ↵ < 1 and " is an arbitrary constant. Let f be a
continuous function satisfying condition (H2). Suppose that u(t) and v(t) are the
solutions of the IVP (1.1) and

(
D↵

p,qv(t) = f(p↵t, v(p↵t)), t 2 (0, 1],

I1�↵
p,q v(t)|t=0 = ⌘ + ",

(3.12)

respectively. Then,

|v(t)� u(t)|  |"|
�p,q

Ep,q(L, t). (3.13)

Proof. The solutions of the IVPs (1.1) and (3.12) are

u(t) =
⌘

�p,q
t↵�1 +

1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f(ps, u(ps))dp,qs (3.14)

and

v(t) =
⌘ + "

�p,q
t↵�1 +

1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q f(ps, v(ps))dp,qs (3.15)

respectively. Then, (3.14) minus (3.15),

|v(t)� u(t)|

=

����
"

�p,q
t↵�1 +

1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q (f(ps, v(ps))� f(ps, u(ps)))dp,qs

����

 |"|
�p,q

t↵�1 +
1

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q

����(f(ps, v(ps))� f(ps, u(ps)))

����dp,qs.

Notice that the above inequality can be easily proved by a similar method to (3.4)-
(3.5). Thus, by condition (H2) and Lemma 3.4, we have

|v(t)� u(t)|  |"|
�p,q

t↵�1 +
L

p(
↵
2)�p,q(↵)

Z t

0
(t� qs)(↵�1)

p,q

����v(ps)� u(ps)

����dp,qs

 |"|
�p,q

Ep,q(L, t).

Remark 3.1. From (3.13), we know u(⌧) = v(⌧) = 0, as " ! 0. Thus, we can see
that the solution of (1.1) is unique with respect to the initial value under condition
(H2).

Remark 3.2. We can acquire from Theorem 3.2 and Theorem 3.3 that a small
change in order the and initial condition (3.11) will cause a change in the solution
on [k, 1] for the k between 0 to 1, which does not contain initial point 0.
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