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The E↵ect of Clone Template Parameters on the
Spreading Speeds in CNNs⇤

Jinfeng Gu1, Jingdan Fu1, Zhixian Yu1,⇤ and Qianfang Zhang1

Abstract The aim of this paper is to investigate the e↵ect of clone template
parameters on the spreading speeds in cellular neural networks(CNNs). Ac-
cording to the property analysis of spreading speeds of monotone semiflows
developed by Yu and Zhang [European Journal of Applied Mathematics, 31
(2020), 369-384], we investigate the sign of spreading speeds, continuity and
limit cases with no propagation phenomena for CNNs with general output
functions where each cell interacts with its 2-neighborhood cell.
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1. Introduction

The aim of this paper is to investigate the e↵ect of parameters on the spreading
speeds in CNNs. Cellular neural network is a large-scale nonlinear simulation pro-
cessor that is locally connected and capable of real-time signal processing, proposed
by Chua and Yang [2] in 1988. Each of its basic circuit units is a cell neuron, which
is regularly connected by the same cell neurons in space. These cell neurons only
contact and interact with neighboring cell neurons, and each neuron has internal
states related to input, output and dynamic rules. It has the characteristics of con-
tinuous real-time, high speed parallel computing and Very Large Scale Integration
(VLSI). Over the past 20 years, the research results of CNNs have been widely ap-
plied in many fields, such as biomedicine, image processing, automatic control and
pattern recognition. The circuit model of one-dimensional standard CNN without
input is

dxn(t)

dt
= �xn(t) + z +

X

k2Nr(n)

A(n, k)f(xk), n 2 Z. (1.1)

In the above expression, the node voltage xn at point n is called the state of the cell
neuron at point n. The quantity z is called the threshold term or the o↵set term
and is associated with an independent voltage source in the circuit. The output
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function f(a nonlinear function) is given by

f(x) =
1

2
(|x+ 1|� |x� 1|). (1.2)

For a positive integer r, the r-neighborhood Nr(n) of a cell at n is defined as

Nr(n) = {k 2 Z : |k � n|  r}.

For each n and k 2 Nr(n), A(n, k) constitutes the so-called clone template, which
measures the coupling weights of the cells at n from the cells at k and specifies
the interactions between each cell and all of its neighbors in terms of the state and
output variables. When the template is the space-invariant, each cell is described by
the simple identical cloning template, i.e. A(n, n+ k) ⌘ A(0, k) := ak (k 2 Nr(0))
or A(n, k) = A(n�k) (k 2 Nr(n)). If r = 1, letting ak := A(0, k) (k 2 N1(0)), then
these numbers can be arranged in a 1 ⇥ 3 matrix form A := [a�1, a0, a1] and (1.1)
can be written by

dxn(t)

dt
= �xn(t) + z + a�1f(xn�1) + a0f(xn) + a1f(xn+1), n 2 Z. (1.3)

In CNNs, several experimental studies have revealed the propagation of activity
in sections of excitable nerve tissue. The basic mechanism for the propagation of
these waves (i.e., traveling waves) is thought to originate at synapses, rather than
disperse like the propagation of action potentials. Since then,the study of the CNN
equation has been extended to more general equations, and the propagation of these
waves has also been widely investigated(see, e.g. [4–7,10,12,14–16,19,20]). Wu and
Hsu [14, 15] considered the existence of the entire solutions for CNNs. Yu and
Zhao [17] investigated the propagation phenomena of monotone and non-monotone
CNNs with asymmetric templates and distribution delays.

Recently, Yu and Zhang [18] have studied the properties of spreading speeds
and have obtained a general method for analyzing the sign, continuity, and limit
cases with no propagation phenomena for monotone semiflows. These results are
applied to CNNs (1.3) with z = 0 where each cell interacts with its 1-neighborhood
cell and the output function f satisfies (1.2). Moreover, three di↵erent propagation
phenomena are determined according to the clone template parameters from 1-
neighborhood cells. More recently, Bai and Yang [1] have studied the influence of
parameters on the spreading speeds of CNNs (r = 1) with time delay. Therefore,
motivated by the work of Yu and Zhang [18], we will further consider the influence
of interaction parameters on the spreading speeds for the CNNs with general output
functions where each cell interacts with its 2-neighborhood cells. More precisely,
we investigate the following CNNs with a general output function

dxi

dt
=� xi(t) + ↵2f(xi�2(t)) + ↵1f(xi�1(t)) + af(xi(t))

+ �1f(xi+1(t)) + �2f(xi+2(t)), (1.4)

where ↵2,↵1, a,�1,�2 are nonnegative and the output function f satisfies the fol-
lowing assumptions

(F1) There is K > 0 such that (↵2 + ↵1 + a + �1 + �2)f(K) = K and f(0) =
0; f 2 C([0, K], [0, K

↵2+↵1+a+�1+�2
]), (↵2 + ↵1 + a + �1 + �2)f 0(0) > 1,

|f(u)� f(v)|  f 0(0)|u� v| for u, v 2 [0,K].
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(F2) f(u) is nondecreasing for u 2 (0,K] and (↵2 + ↵1 + a+ �1 + �2)f(u) > u for
u 2 (0,K).

The rest of the paper is organized as follows. In Section 2, we mainly discuss the
existence, sign, continuity of the spreading speeds and the limit case of no propaga-
tion phenomenon for CNNs. In Section 3, we present some numerical simulations.

2. Properties of spreading speeds

2.1. Existence of spreading speeds

In this subsection, we discuss the existence of spreading speeds for CNNs.
Let Qt be the solution map at time t � 0 of system (1.4). That is,

Qt(x
0) = x(t, x0), 8 x0 = {x0

i }i2Z 2 XK ,

where XK = {' = {'i}i2Z |'i 2 [0,K], i 2 Z}. We can easily check that Q := Q1

satisfies all hypotheses (A1)–(A6) in [9]. Thus, there exist c⇤+ and c⇤� which are the
rightward and leftward spreading speeds of Q, respectively.

Firstly, we estimate the rightward spreading speed. For this purpose, we consider
the linearized equation of (1.4) at the zero solution, i.e.,

dxi(t)

dt
=� xi(t) + ↵2f

0(0)xi�2(t) + ↵1f
0(0)xi�1(t) + af 0(0)xi(t)

+ �1f
0(0)xi+1(t) + �2f

0(0)xi+2(t), i 2 Z. (2.1)

Let {Mt}t�0 be the solution semiflow associated with (2.1). Thus, for each t > 0, the
map Mt satisfies the assumptions (C1)–(C5) in [9]. By the comparison theorem, we
have Qt(x0)  Mt(x0), 8x0 2 XK , t � 0. On the other hand, for any ✏ > 0, there
exists � > 0 such that, for x0 2 XK with x0 < �, we can obtain Qt(x0) � M ✏

t (x
0)

for all t 2 [0, 1], where M ✏
t is the solution semiflow of

dxi(t)

dt
=� xi(t) + (1� ✏)↵2f

0(0)xi�2(t) + (1� ✏)↵1f
0(0)xi�1(t)

+ (1� ✏)af 0(0)xi(t) + (1� ✏)�1f
0(0)xi+1(t)

+ (1� ✏)�2f
0(0)xi+2(t), i 2 Z. (2.2)

Let xi(t) = e�µiv(t) be a solution of equation (2.1), then we can find that v(t)
satisfies the following di↵erential equation:

dv(t)

dt
= (af 0(0)� 1 + ↵2f

0(0)e2µ + ↵1f
0(0)eµ + �1f

0(0)e�µ + �2f
0(0)e�2µ)v(t).

(2.3)

Letting

Bt
µ(v0) := Mt[v0e

�µi](0) = v(t, v0), 8 v(0) = v0 2 [0,1),

it follows that Bt
µ is the solution map at time t of equation (2.3) and

Bt
µ(v0) = e(af

0(0)�1+↵2f
0(0)e2µ+↵1f

0(0)eµ+�1f
0(0)e�µ+�2f

0(0)e�2µ)tv0, 8 v0 2 [0,1).
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Thus, for any µ � 0, Bµ := B1
µ is a compact and strongly positive linear operator

on [0,1), i.e., (C6) in [9] holds.
It is obvious to see that

�(µ) = e(af
0(0)�1+↵2f

0(0)e2µ+↵1f
0(0)eµ+�1f

0(0)e�µ+�2f
0(0)e�2µ)

is the principal eigenvalue of Bµ for any µ � 0 and

�(0) = e(af
0(0)�1+↵2f

0(0)+↵1f
0(0)+�1f

0(0)+�2f
0(0)) > 1.

Let

�(µ) =
ln�(µ)

µ
=

h(µ)

µ
, µ 6= 0 and  (µ) =

�0(µ)

�(µ)
, µ 2 (�1,+1),

where

h(µ) = af 0(0)� 1 + ↵2f
0(0)e2µ + ↵1f

0(0)eµ + �1f
0(0)e�µ + �2f

0(0)e�2µ.

It is obvious that Lemma 2.1 in [18] holds. We denote

�(+1) := lim
µ!+1

�(µ) �+(µ) = �(µ), ��(µ) = ��(�µ),

 (+1) := lim
µ!+1

 (µ)  +(µ) =  (µ),  �(µ) = � (�µ),

where �+(µ) = �(µ), ��(µ) = �(�µ).
According to Proposition 3.9 and Theorem 3.10 in [8] and Lemma 4.6 in [3]

(including that infµ>0 �±(µ) = �±(+1) ), we have

c⇤+ = inf
µ>0

�+(µ) = inf
µ>0

ln�(µ)

µ

= inf
µ>0

f 0(0)(a+ ↵2e2µ + ↵1eµ + �1e�µ + �2e�2µ)� 1

µ
. (2.4)

Similarly, it follows that the left spreading speed

c⇤� = inf
µ>0

��(µ) = inf
µ>0

ln�(�µ)

µ

= inf
µ>0

f 0(0)(a+ ↵2e�2µ + ↵1e�µ + �1eµ + �2e2µ)� 1

µ
. (2.5)

According to Lemma 2.1 and Proposition 2.1 in [18], there exist µ⇤
+ 2 (0,+1]

and µ⇤
� 2 (0,+1] such that c⇤+ = �+(µ⇤

+) and c⇤� = ��(µ⇤
�). Therefore, it follows

from the monotonicity of  (µ) that

c⇤+ + c⇤� = �+(µ⇤
+) + �

�(µ⇤
�)

=  +(µ⇤
+) + 

�(µ⇤
�)

=  (µ⇤
+)� (�µ⇤

�) > 0. (2.6)

As a direct result of Theorem 2.12 in [3], Theorem 3.4 in [9] and Theorem 2.1
in [17], we have the following result.
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Theorem 2.1. Assume that (F1)-(F2) hold. Let x(t) be a solution of (1.4) with
the initial condition x0 2 XK . Then c⇤+ and c⇤� defined by (2.4) and (2.5) are the
rightward and leftward spreading speeds of Q1, respectively, such that the following
statements are valid:

(i) For any c > c⇤+ and c0 > c⇤�, if x
0 2 XK with x0

i = 0 for i outside of a bounded
interval, then lim

t!1,i�ct
xi(t) = 0 and lim

t!1,i�c0t
xi(t) = 0.

(ii) For �c⇤� < �c0 < c < c⇤+, if x
0 2 XK\{0}, then lim

t!1,�c0tict
xi(t) = K.

2.2. The sign of spreading speeds

In this subsection, we begin to investigate the sign of spreading speeds for CNNs.

Proposition 2.1. Assume that (F1)-(F2) hold. Then the following statements
hold.

(i) If ↵2 < �2,↵1 < �1, then c⇤+ < c⇤� and c⇤� > 0.

(ii) If ↵2 = �2,↵1 = �1, then c⇤+ = c⇤� > 0.

(iii) If ↵2 > �2,↵1 > �1, then c⇤+ > c⇤� and c⇤+ > 0.

Proof. (i) If ↵2 < �2,↵1 < �1, then

c⇤� � c⇤+ = inf
µ>0

��(µ)� inf
µ>0

�+(µ)

� inf
µ>0

[��(µ)� �+(µ)]

= inf
µ>0

f 0(0)
(�2 � ↵2)(e2µ � e�2µ) + (�1 � ↵1)(eµ � e�µ)

µ
> 0.

It follows from (2.6) that c⇤� > 0.
In the similar way, we can prove the case where ↵2 > �2,↵1 > �1. If ↵2 =

�2,↵1 = �1, it is obvious that �+(µ) = ��(µ), which implies that c⇤+ = c⇤�. This
completes the proof.

In order to discuss the sign of c⇤+ (c⇤�), we only consider the sign of h0 :=
inf
µ>0

h(µ) = min
µ�0

h(µ) by using Corollary A in the Appendix.

Lemma 2.1. If 0 < 2↵2+↵1 < 2�2+�1, then the equation 2↵2e2µ+↵1eµ��1e�µ�
2�2e�2µ = 0 has a uniquely positive root µ0.

Proof. Let p(µ) = 2↵2e2µ+↵1eµ��1e�µ�2�2e�2µ. It is easily checked that p(µ)
is increasing with respect to µ. And p(0) = 2↵2+↵1��1�2�2 < 0, p(+1) = +1.
Thus there is a unique constant µ0 > 0, s.t. p(µ0) = 0. This completes the proof.

Theorem 2.2. Assume that (F1)-(F2) hold. Let 0 < 2↵2 + ↵1 < 2�2 + �1 and µ0

be given in Lemma 2.1. Then h(µ0) has the same sign as c⇤+.

Proof. Since µ0 is given by Lemma 2.1, we can have

h0(µ0) = f 0(0)(2↵2e
2µ0 + ↵1e

µ0 � �1e
�µ0 � 2�2e

�2µ0) = 0.

Thus, we can obtain that

h0 = h(µ0) = af 0(0)� 1 + ↵2f
0(0)e2µ0 + ↵1f

0(0)eµ0 + �1f
0(0)e�µ0 + �2f

0(0)e�2µ0 .
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Since 2↵2 + ↵1 > 0, (L40) (�(+1) = lim
µ!+1

�(µ) = +1) is true. It follows from

the Corollary A in the Appendix that these conclusions hold.

(i) If h(µ0) > 0, then c⇤+ > 0.

(ii) If h(µ0) = 0, then c⇤+ = 0.

(iii) If h(µ0) < 0, then c⇤+ < 0.

On the other hand, when c⇤+ > 0, assuming that h(µ0)  0, we easily see that
c⇤+  0, which is in contradiction with c⇤+ > 0. Thus we can obtain the following
conclusions:

(i) If c⇤+ > 0, then h(µ0) > 0.

(ii) If c⇤+ = 0, then h(µ0) = 0.

(iii) If c⇤+ < 0, then h(µ0) < 0.

This completes the proof.

Theorem 2.3. Assume that (F1)-(F2) hold. Then the following conclusions hold:

(1) If 2↵2 + ↵1 � �1 + 2�2, then c⇤+ > 0.

(2) If �2

↵2
= ( �1

↵1
)2 = (↵1

↵2
)4 > 1, then

(i) af 0(0) + 4f 0(0)(↵1↵2�1�2)
1
4 > 1 , c⇤+ > 0.

(ii) af 0(0) + 4f 0(0)(↵1↵2�1�2)
1
4 = 1 , c⇤+ = 0.

(iii) af 0(0) + 4f 0(0)(↵1↵2�1�2)
1
4 < 1 , c⇤+ < 0.

Proof. (1) If 2↵2+↵1 � �1+2�2, we can easily obtain that h(µ) is nondecreasing
in µ � 0 and

h0 = min
µ�0

h(µ) = h(0) = af 0(0)� 1 + ↵2f
0(0) + ↵1f

0(0) + �1f
0(0) + �2f

0(0) > 0.

Then it follows from the Corollary A in the Appendix that c⇤+ > 0.

(2) If �2

↵2
= �2

1

↵2
1
> 1, it is easily known that 2�2 + �1 > 2↵2 + ↵1 > 0. According

to Lemma 2.1, there is a unique constant µ0, s.t. h0(µ0) = 0. Notice that

h(µ) =af 0(0)� 1 + ↵2f
0(0)e2µ + ↵1f

0(0)eµ + �1f
0(0)e�µ + �2f

0(0)e�2µ

�af 0(0)� 1 + 4f 0(0)(↵1↵2�1�2)
1
4 .

On the other hand, we can see that

h(µ0) = af 0(0)� 1 + 4f 0(0)(↵1↵2�1�2)
1
4 ,

where µ0 = ln ↵2
↵1

= 1
2 ln

�1

↵1
= 1

4 ln
�2

↵2
.

Thus, we can have

h0 = af 0(0)� 1 + 4f 0(0)(↵1↵2�1�2)
1
4 .

According to Theorem 2.2, conclusions (i)-(iii) are valid. This completes the proof.
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Theorem 2.4. Assume that (F1)-(F2) hold. In addition, af 0(0) + �1f 0(0) +
�2f 0(0) > 1 and �2,�1 > ↵2 = ↵1 = 0 hold. Then the following conclusions
hold.

(i) If 0  af 0(0) < 1, then c⇤+ < 0.

(ii) If af 0(0) � 1, then c⇤+ = 0.

Proof. It is obvious that (L1)–(L3) in the Appendix hold under the condition
that af 0(0) + �1f 0(0) + �2f 0(0) > 1 and �2,�1 > ↵2 = ↵1 = 0.

Since �+(1) = limµ!+1
af 0(0)�1+�1f

0(0)e�µ+�2f
0(0)e�2µ

µ = 0, (L4) also holds.

According to the definition of �+(µ) above, we have �+(+1) = ef
0(0)a�1. Thus,

when 0  af 0(0) < 1, it yields that �+(+1) < 1, which implies that c⇤+ < 0 by
Theorem A in the Appendix. When af 0(0) � 1, then �+(+1) � 1 and c⇤+ = 0.
This completes the proof.

Remark 2.1. For c⇤�, we can also give the assumptions and get some results similar
to Theorems 2.2-2.4.

2.3. Continuity of spreading speeds

In this subsection, we investigate CNNs with the variable templates

[↵2, n,↵1, n, an,�1, n,�2, n]

as follows:

dxi(t)

dt
= �xi(t) + ↵2, nf(xi�2(t)) + ↵1, nf(xi�1(t)) + anf(xi(t))

+ �1, nf(xi+1(t)) + �2, nf(xi+2(t)), i 2 Z, (2.7)

where the nonnegative parameters ↵2, n,↵1, n, an,�1, n,�2, n (n 2 N) satisfy

(P) lim
n!+1

↵2, n = ↵2, lim
n!+1

↵1, n = ↵1, lim
n!+1

an = a,

lim
n!+1

�1, n = �1 and lim
n!+1

�2, n = �2, where ↵2,↵1, a,�1,�2 and f(u) satisfy

assumptions (F1)-(F2).

We mainly investigate the relation between the spreading speeds of CNNs with the
templates [↵2, n,↵1, n, an,�1, n,�2, n] and with the templates [↵2,↵1, a,�1,�2].

According to the assumption (P), there exists a su�ciently large number N0 2 N
such that ↵2, n,↵1, n, an,�1, n,�2, n (n 2 N) and f(u) also satisfies assumptions (F1)-
(F2) for n > N0. Thus it follows from Theorem 2.1 that, for any n > N0, (2.7)
admits the right and left spreading speeds

cn
⇤
+ = inf

µ>0

f 0(0)
⇥
an � 1 + ↵2, ne2µ + ↵1, neµ + �1, ne�µ + �2, ne�2µ

⇤

µ
(2.8)

and

cn
⇤
� = inf

µ>0

f 0(0)
⇥
an � 1 + ↵2, ne�2µ + ↵1, ne�µ + �1, neµ + �2, ne2µ

⇤

µ
. (2.9)

Theorem 2.5. Assume that (P) holds. Then lim
n!+1

cn⇤
± = c⇤±.
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Proof. We will verify lim
n!+1

cn⇤
+ = c⇤+ by using Theorem 2.3 in [18]. The other

case can be derived by the same method.
Define ↵̄2, n = max

k�n
{↵,↵2, k} and ↵2, n = min

k�n
{↵,↵2, k}. It is not hard to ver-

ify that {↵̄2, n}n2N and {↵2, n}n2N are nonincreasing and nondecreasing sequences,
respectively.

Moreover, ↵̄2, n � ↵ � ↵2, n, 8n � 1. According to the assumption (P), we can
obtain that

lim
n!+1

↵̄2, n = ↵2 and lim
n!+1

↵2, n = ↵2.

Similarly, for any n � 1, define

↵̄1, n = max
k�n

{↵,↵1, k}, ↵1, n = min
k�n

{↵,↵1, k}, ān = max
k�n

{a, ak}, an = min
k�n

{a, ak},

�̄1, n = max
k�n

{�,�1, k}, �
1, n

= min
k�n

{�,�1, k}, �̄2, n = max
k�n

{�,�2, k},

�
2, n

= min
k�n

{�,�2, k}

with

lim
n!+1

↵̄1, n = ↵1, lim
n!+1

↵1, n = ↵1, lim
n!+1

ān = a, lim
n!+1

an = a,

lim
n!+1

�̄1, n = �1, lim
n!+1

�
1, n

= �1, lim
n!+1

�̄2, n = �2, lim
n!+1

�
2, n

= �2,

and
↵̄1, n � ↵1 � ↵1, n, ān � a � an,

�̄1, n � �1 � �
1, n

, �̄2, n � �2 � �
1, n

.

According to (P), there exists a su�ciently large number N1 2 N such that

↵̄2, n + ↵̄1, n + ān + �̄1, n + �̄2, n > 1 and ↵2, n + ↵1, n + an + �
1, n

+ �
2, n

> 1

for any n � N1. Thus, for any n > N0, (2.7) with the templates

[↵̄2, n, ↵̄1, n, ān, �̄1, n, �̄2, n]

and [↵2, n,↵1, n, an,�1, n
,�

2, n
] admits the right spreading speed cn

⇤
+ and cn

⇤
+, re-

spectively. In view of Lemma 2.9 in [8], we have

cn
⇤
+  cn

⇤
+  cn

⇤
+ (2.10)

for all n > max{N0, N1}.
On the other hand, we can verify that �̄n(µ) and �n(µ) corresponding to the

definition of �n(µ) is nonincreasing and nondecreasing on n 2 N, respectively. More-
over, �n(µ)  �(µ)  �n(µ) for any n 2 N and lim

n!+1
�n(µ) = lim

n!+1
�n(µ) = �(µ)

for any closed set on (0,+1). According to Theorem C in the Appendix, we can
obtain that

lim
n!+1

cn
⇤
+ = lim

n!+1
cn

⇤
+ = c⇤+. (2.11)

Thus, it follows from (2.10) and (2.11) that

lim
n!+1

cn
⇤
+ = c⇤+.
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2.4. Discussion about the limiting cases

In this subsection, we estimate the spreading speed of the limiting cases for

dxi(t)

dt
= �xi(t) + ↵2(s)f(xi�2(t)) + ↵1(s)f(xi�1(t)) + a(s)f(xi(t))

+ �1(s)f(xi+1(t)) + �2(s)f(xi+2(t)), (2.12)

i 2 Z, where the nonnegative parameters ↵2(s),↵1(s), a(s) and �1(s),�2(s) satisfy
the following assumptions:

(S1) the continuous functions ↵2(s),↵1(s), a(s) and �1(s),�2(s) are strictly in-
creasing on s 2 [0,+1).

(S2) lim
s!0+

↵2(s) = ↵2, lim
s!0+

↵1(s)= ↵1, lim
s!0+

a(s)= a, lim
s!0+

�1(s) = �1, lim
s!0+

�2(s)=

�2, where ↵2,↵1, a,�1,�2 satisfy the following condition (P0):
↵2,↵1, a,�1,�2 � 0, f 0(0)(↵2+↵1+�1+�2) > 0 and f 0(0)(↵2+↵1+a+�1+
�2) = 1.

Notice that Theorem 2.1 does not hold for s = 0. According to (S1) and (S2),
it is easily seen that for all s > 0,

f 0(0)[↵2(s)+↵1(s)+a(s)+�1(s)+�2(s)] > 1 and f 0(0)[a(s)+�1(s)+�2(s)] > 0.

Therefore, it follows from Theorem 2.1 that for any s > 0, (2.12) admits the right
and left spreading speeds

c(s)⇤+ = inf
µ>0

�+(s, µ)

and

c(s)⇤� = inf
µ>0

��(s, µ),

where

�±(s, µ) =
ln⇤±(s, µ)

µ
,

⇤±
µ (s, µ) = e(a(s)f

0(0)�1+↵2(s)f
0(0)e±2µ+↵1(s)f

0(0)e±µ+�1(s)f
0(0)e⌥µ+�2(s)f

0(0)e⌥2µ)

and

 ±(s, µ) =
⇤±
µ (s, µ)

⇤±(s, µ)
= f 0(0)(±2↵2(s)e

±2µ ± ↵1(s)e
±µ ⌥ �1(s)e

⌥µ ⌥ 2�2(s)e
⌥2µ).

That is, we investigate where c⇤±(s) will go as s approaches 0. It is easily verified
that ⇤+(s, µ) and ⇤�(s, µ) satisfy (K1)–(K4) in [18]. The following conclusions
hold from Theorem 2.4 in [18].

Theorem 2.6. Assume that (S1) and (S2) hold. Then lim
s!0+

c(s)⇤+ = f 0(0)(2↵2 +

↵1 � �1 � 2�2) and lim
s!0+

c(s)⇤� = f 0(0)(�2↵2 � ↵1 + �1 + 2�2).
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3. Numerical analysis

In the above discussion, we investigated some properties of the spreading speeds in
CNNs when the output function f is general. Now we use a numerical analysis to
estimate some properties of spreading speeds when the output function in (1.4 )is
expressed in the special form f(x) = xe�0.5x.

According to the calculation method above, we can obtain

�(µ) = ea�1+↵2e
2µ+↵1e

µ+�1e
�µ+�2e

�2µ

for any µ � 0 and �(0) = ea�1+↵2+↵1+�1+�2 > 1.
And we can get

c⇤+ = inf
µ>0

a� 1 + ↵2e2µ + ↵1eµ + �1e�µ + �2e�2µ

µ
(3.1)

and

c⇤� = inf
µ>0

a� 1 + ↵2e�2µ + ↵1e�µ + �1eµ + �2e2µ

µ
. (3.2)

Next, we will approximate the spreading speeds of the di↵erential equation (1.4)
by investigating the di↵erence equation

�xi(t)

�t
=
xi(t)� xi(t��)

�t
=� xi(t) + ↵2f(xi�2(t)) + ↵1f(xi�1(t)) + af(xi(t))

+ �1f(xi+1(t)) + �2f(xi+2(t)). (3.3)

In the following table, we will present the simulation of these spreading speeds
under some parameters and the results calculated under the formula (3.1) and (3.2).

Parameters c⇤�(S) c⇤+(S) c⇤�(�) c⇤+(�) Sign of c⇤� Sign of c⇤+

↵2 = 0.05,↵1 = 0.1,

a = 0.5,�1 = 0.4,

�2 = 0.8

4.70 0.36 4.83 0.38 positive positive

↵2 = 0.05,↵1 = 0.1,

a = 0.2,�1 = 0.4,

�2 = 0.8

4.07 -0.01 4.16 0.00 positive zero

↵2 = 0.05,↵1 = 0.1,

a = 0.1,�1 = 0.4,

�2 = 0.8

3.83 -0.16 3.91 -0.15 positive negative

↵2 = ↵1 = 0,

a = 1,�1 = 0.1,

�2 = 0.2

1.36 0.00 1.41 0.00 positive zero

↵2 = ↵1 = 0,

a = 0.5,�1 = 0.2,

�2 = 0.8

3.86 -0.32 3.95 -0.32 positive negative

Table 1. c⇤±(S) and c⇤±(�) represent the spreading speeds calculated by simulation(see, e.g., [11, Section
4.2]) and the spreading speeds calculated by the formula (3.1) and (3.2), respectively.
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We now give more analyses for these cases.
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Figure 1. The three sets of parameters in the first row are ↵2 = 0.05,↵1 = 0.1, a =
0.5,�1 = 0.4,�2 = 0.8, ↵2 = 0.05,↵1 = 0.1, a = 0.2,�1 = 0.4,�2 = 0.8 and ↵2 = 0.05,↵1 =
0.1, a = 0.1,�1 = 0.4,�2 = 0.8. The simulation results on the left show that the signal
will transfer to both sides, the middle results show that the signal will transfer to the left
side and stop on the right, and the results on the right show that the signal will transfer
to the left and disappear on the right. The parameter to the left of the second row is
↵2 = ↵1 = 0, a = 1,�1 = 0.1,�2 = 0.2 and the simulation results indicate that the signal
will transfer to the left side and stop on the right. The parameter to the right of the second
row is ↵2 = ↵1 = 0, a = 0.1,�1 = 0.1,�2 = 0.9 and the simulation results imply that the
signal will transfer to the left side and diminish on the right.
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Figure 2. ↵2 = 0.05,↵1 = 0.1, a = 0.5,�1 = 0.4,�2 = 0.8 and both of the infimum of
��(µ) and �+(µ) are positive and can be got at some finite value.
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Figure 3. ↵2 = 0.05,↵1 = 0.1, a = 0.2,�1 = 0.4,�2 = 0.8 and the infimum of ��(µ) is
a positive number taken at some finite value, while the infimum of �+(µ) is zero at some
finite value.
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Figure 4. ↵2 = 0.05,↵1 = 0.1, a = 0.1,�1 = 0.4,�2 = 0.8 and the infimum of ��(µ) is the
positive number taken at some finite value, while the infimum of �+(µ) is the negative
number taken at a finite value.
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Figure 5. ↵2 = ↵1 = 0, a = 1,�1 = 0.1,�2 = 0.2 and the infimum of ��(µ) is positive at
some finite value, while the infimum of �+(µ) is zero at infinity.
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Figure 6. ↵2 = ↵1 = 0, a = 0.1,�1 = 0.1,�2 = 0.2 and the infimum of ��(µ) is positive at
some finite value, while the infimum of �+(µ) is a negative number at some finite value.

Appendix

In this appendix, we will introduce some necessary notations, assumptions and
theorems that will be used in the above research process. As mentioned in [18], we
give the following hypotheses.

Let �(µ) be a function in C2([0,+1)) with the following properties.

(L1) �(µ) > 0 for any µ 2 [0,+1).

(L2) �(0) > 1.

(L3) ln�(µ) is convex with respect to µ 2 [0,+1).

Then we can define �(µ) and  (µ) as follows:

�(µ) :=
ln�(µ)

µ
, µ 2 (0,+1)  (µ) :=

�0(µ)

�(µ)
, µ 2 [0,+1)
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Let
c⇤ := inf

µ>0
�(µ).

For the convenience, we denote

�(+1) := lim
µ!+1

�(µ) and  (+1) := lim
µ!+1

 (µ).

Without loss of generality, if �(+1) is a finite constant, we can assume that

(L4) �(+1) = 0.

If lim
µ!+1

�(µ) is infinite, it follows from Lemma 2.1 in [18] that lim
µ!+1

�(µ)= +1
and we set

(L40) �(+1) = +1.

Theorem A (Theorem 2.1 [18]). Assume that (L1)–(L3) and (L4) hold. Then the
following assertions hold:

(i) If �(+1) � 1, then c⇤ = 0.

(ii) If �(+1) < 1, then c⇤ < 0.

For any µ 2 [0,+1), let

h(µ) = ln�(µ), g(µ) = h0(µ)µ� h(µ).

Theorem B (Theorem 2.2 [18]). Assume that (L1)–(L3) and (L4) hold. Then there
is µ⇤ 2 (0,+1) such that g(µ⇤) = 0. Moreover,

(i) if h(µ⇤) > 0, then c⇤ > 0.

(ii) if h(µ⇤) = 0, then c⇤ = 0.

(iii) if h(µ⇤) < 0, then c⇤ < 0.

Let �n 2 C2([0,+1)) satisfies (L1)–(L3) and �n(µ) converges to �(µ) as n !
+1 for any µ 2 [0,+1) from above or below. So we have the following theorem.

Theorem C (Theorem 2.3 [18]). Assume that �n(µ) � �n+1(µ) � �(µ) or �n(µ) 
�n+1(µ)  �(µ) for all n � 1 and µ 2 [0,+1). In addition, assume that �0

n(µ)
converges to �0(µ) as n ! +1 for all µ 2 [0,+1). Then lim

n!+1
c⇤n = c⇤.

Corollary A (Corollary 2.1 [18]). Assume that (L1)–(L3) and (L4) hold, and let
h0 := inf

µ>0
h(µ)(= min

µ�0
h(µ)). The following conclusions hold.

(i) If h0 > 0 then c⇤ > 0.

(ii) If h0 = 0 then c⇤ = 0.

(iii) If h0 < 0 then c⇤ < 0.

Acknowledgements

Thanks to the referee and editors for valuable suggestions and comments, which
have improved our original manuscript.



The E↵ect of Clone Template Parameters on the Spreading Speeds in CNNs 665

References

[1] Z. Bai and T. Yang, Spreading speeds of cellular neural networks model with
time delay, Chaos, Solitons and Fractals, 160 (2022), 112096.

[2] L. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits
Systems I Fund. Theory Appl., 35 (1988), 1257–1272.

[3] W. Ding and X. Liang, Principal eigenvalues of generalized convolution oper-
ators on the circle and spreading speeds of noncompact evolution systems in
periodic media, SIAM J. Math. Anal., 47 (2015), 855-896.

[4] C. Hsu, S. Lin and W. Shen, Traveling waves in cellular neural networks, In-
ternat. J. Bifur. Chaos, 9 (1999), 1307-1319.

[5] C. Hsu, C. Li and S. Yang, Diversity of traveling wave solutions in delayed
cellular neural networks, Internat. J. Bifur. Chaos, 18 (2008), 3515-3550.

[6] C. Hsu and S. Yang, Structure of a class of traveling waves in delayed cellular
neural networks, Discrete Contin. Dynam. Systems, 13 (2005), 339-359.

[7] C. Hsu and S. Yang, Traveling wave solutions in cellular neural networks with
multiple time delays, Discrete Contin. Dynam. Systems Suppl., (2005), 410-
419.

[8] X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for
monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007),
1-40.

[9] X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monos-
table evolution systems, J. Funct. Anal., 259 (2010), 857-903.

[10] X. Liu, P. Weng and Z. Xu, Existence of traveling wave solutions in nonlinear
delayed cellular neural networks, Nonlinear Anal. RWA, 10 (2009), 277-286.

[11] F. Lutscher, Density-dependent dispersal in integrodi↵erence equations, J.
Math. Biol., 56 (2008), 499-524.

[12] P. Weng and J. Wu, Deformation of traveling waves in delayed cellular neural
networks, Internat. J. Bifur. Chaos, 13 (2003), 797-813.

[13] S. Wu and C. Hsu, Spatial dynamics of multilayer cellular neural networks,
J. Nonlinear. Sci., 28(2018), 3-41.

[14] S. Wu and C. Hsu, Entire solutions of nonlinear cellular neural networks with
distributed time delays, Nonlinearity, 25 (2012), 2785-2801.

[15] S. Wu and C. Hsu, Entire solutions of non-quasi-monotone delayed reaction-
di↵usion equations with applications, Proc. Royal Soc. Edinb., 144 (2014),
1085-1112.

[16] Z.Yu and M. Mei, Uniqueness and stability of traveling waves for cellular neural
networks with multiple delays, J. Di↵erential Equations, 260 (2016), 241-267.

[17] Z. Yu and X. Zhao, Propagation phenomena for CNNs with asymmetric tem-
plates and distributed delays, Discrete Contin. Dyn. Syst., 38 (2018), 905-939.

[18] Z. Yu and L. Zhang, Analysis of Spreading Speeds for monotone semiflows
with an application to CNNs, European Journal of Applied Mathematics, 31
(2020), 369-384.



666 J. Gu, J. Fu, Z. Yu & Q. Zhang

[19] Z. Yu, R. Yuan, C. Hsu and Q. Jiang, Traveling waves for nonlinear cellular
neural networks with distributed delays, J. Di↵erential Equations, 251 (2011),
630-650.

[20] Z. Yu, R. Yuan, C. Hsu and M. Peng, Traveling waves for delayed cellular
neural networks with nonmonotonic output functions, Abstract and Applied
Analysis, 2014 (2014), ID 490161.


