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On the Analytical Approach of Codimension-Three
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Abstract In this paper, we have conducted parametric analysis on the dy-
namics of satellite complex system using bifurcation theory. At first, five
equilibrium points E0,1,2,3,4 are symbolically computed in which E1,3 and E2,4

are symmetric. Then, several theorems are stated and proved for the existence
of B-T bifurcation on all equilibrium points with the aid of generalized eigen-
vectors and practical formulae instead of linearizations. Moreover, a special
case α2 = 0 is observed, which confirms all the discussed cases belong to a
codimension-three bifurcation along with degeneracy conditions.
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1. Introduction

A system of ordinary differential equations obeying the changes in its topology
with the variation in involved parameters can lead to the concept of bifurcation.
This term is further categorized into local and global bifurcations such as in the
study of Alle effect in predator prey models by Deeptajyoti et al., [39, 40] and
Prahlad et al., [34]. However, if all parameters except one are set to be fixed, it is
considered as a codimension (codim) one bifurcation including Hopf [16, 17, 32, 36,
38], zero-Hopf [18, 31, 37], saddle [3, 42] and Homoclinic/Hetroclinic [14, 15, 19, 28].
The variation in more than one parameter at a time can lead to bifurcations with
a higher codimension. It is difficult to determine such bifurcations by using hit and
trial methods, and that is why several analytical techniques have been discovered
for achieving such a type of bifurcations, in which critical normal form on the
center manifold has gained much attention. Bogdanov-Takens is one of the higher
codimension bifurcations initiated with the work of Takens [11] and Bogdanov [12],
but Arnold [6] and Guckenheimer [21] in 1983 derived the following normal form

η̇0 = η1,

η̇1 =
∑
k≥2

(
αkη

k
0 + βkη

k−1
0 η1

)
, (1.1)
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on the center manifold and discussed the exact qualitative attitude of trajectories
near B-T critical point. This technique created a new way and attracted researchers
by presenting the obtained normal form in a more simplified way [2, 4, 20].

In equation (1.1), if α2 × β2 6= 0, then codim-2 bifurcation occurs and its bifur-
cation diagram can be seen in [29]. Cusp [33], Bogdanov-Takens [25, 26] , Double
Hopf [23] and Bautin [22] are the main types in codim-2 bifurcation, which include
tedious computer based calculations. But when α2 or β2 equals to zero in equati-
ion (1.1), a complex situation termed as codim-3 bifurcation can occur. In 2011,
Kuznetsov [30] introduced a new way of getting the normal form by using general-
ized eigenvectors and practical formulae instead of linearization. This methodology
is not limited to numerical computation, but also useful in the analytic of symbolic
computation. In 2021, Darabsah [24] used B-T bifurcation from medical point of
view in the excitably class of neurons. Mondal et al., [9] used it in ecology for
predator-prey system, and the same analytical formulae for B-T bifurcation are
used by Mondal et al., [10] in the food chain model with two species. In 2022,
Xiang, Lu and Huang [41] explored the B-T bifurcation in host-parasitoid model
for the special case that the carrying capacity K equals to r1

η . Due to the advance-
ment in technology and craze of exploring cosmic dynamics, systems in mechanical
engineering can never lose its importance. In 2000, Sui et al., [1] considered six-
dimensional satellite system and reported its failure analysis in controlling chaos. A
negligible torque term was added into satellite system as a perturbed parameter and
analyzed its transversal line between stable and unstable manifolds by Kuang [27].
Similarly, Aslanov and Yudintsev [7] discussed dynamics of gyrostat in satellite by
bringing modification into Melnikov’s function. Whereas, for more information re-
lating dynamics and control in spacecraft, one can follow the results given by Liu
in his book [43]. In 2018, Chegini, Sadati and Salarieh [13] worked analytically
and numerically as well on tri-axial rigid body moving in elliptical orbit. Whereas,
Khan et al., [8] modified satellite double wing model in the following form

ẋ = yz
3 − ax+ z√

6
,

ẏ = −xz + by,

ż = xy − cz −
√

6x.

(1.2)

Dynamics of system (1.2) shows chaos for parameter values a = 4, b = 0.17 and
c = 4 with initial conditions (0.1, 0.1, 0.1).
In our case, while analyzing dynamics of the satellite system, we have observed that

1. Khan et al., [8] fixed all involved parameters for finding its equilibrium points
and dynamical analysis;

2. recently, Anam et al., [5] have obtained their multi-scrolls;

3. the above cited literature shows that satellite system is enriched with a qual-
itative aspect and some research can be found on its stability.

System (1.2) has complex dynamics due to the nonlinearity in each equation
and involved parameters. However, relevant literature on its bifurcation analysis
has not been identified. This gap has motivated us to work on the occurrence of
higher codimension bifurcation in satellite system (1.2) for all equilibrium points.
This parametric study leads us to the existence of degeneracy in B-T bifurcation as
well, where Hopf, Saddle and Homoclinic orbits meet. Moreover, these analytical
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results and theorems will not only be helpful from a mathematical perspective, but
also be of great interest for engineers.

This work is organized as follows. In Section 2, basic formulae are given for
achieving B-T bifurcation. Computation of generalized eigenvectors, normal forms
and multilinear functions for the satellite dynamical model on all equilibrium points
is discussed in Section 3, while Section 4 contains our concluding remarks.

2. Basic concepts for Bogdanov-Takens bifurcation

This section includes fundamentals for achieving B-T bifurcation in the system of
ordinary differential equations with order n ≥ 2. We start with the expansion of
system including ordinary differential equations

ẋ = Ax+ F(x) : x ∈ Rn (2.1)

through Taylor series near equilibria E as

ẋ = Ax+
1

2!
B(x, x) +

1

3!
C(x, x, x), (2.2)

where B and C are multilinear functions and are helpful in getting a normal form of
several bifurcations. Analytical formulae for the calculation of multilinear functions
are

B(x, y) =

n∑
j,k=1

(
∂2F1(ξ)

∂ξj∂ξk

∣∣∣∣
ξ=0

,
∂2F2(ξ)

∂ξj∂ξk

∣∣∣∣
ξ=0

,
∂2F3(ξ)

∂ξj∂ξk

∣∣∣∣
ξ=0

)T
xjyk,

C(x, y, z) =
n∑

j,k,l=1

(
∂3F1(ξ)

∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

,
∂3F2(ξ)

∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

,
∂3F3(ξ)

∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

)T
xjykzl.

(2.3)

Lemma 2.1 ( [35]). A dynamical system (2.1) has two zero eigenvalues if the
characteristic equation

λ3 + σ1λ
2 + σ2λ+ σ3

of its linearized matrix satisfies the following condition

σ1 6= 0, σ2 = 0, σ3 = 0. (2.4)

Lemma 2.2 ( [35]). If system (2.1) fulfills the condition (2.4) given in Lemma 2.1,
then there exist four generalized eigenvectors s̄0,1, r̄0,1 such that

< s̄0, r̄0 >= 1, < s̄1, r̄1 >= 1,

< s̄0, r̄1 >= 0, < s̄1, r̄0 >= 0.
(2.5)

Lemma 2.3 ( [35]). Suppose that system (2.1) has double zero eigenvalues with
generalized eigenvectors. Then such a system can be converted into the normal
form

η̇0 = η1,

η̇1 = α2η
2
0 + β2η0η1 + α3η

3
0 + β3η

2
0η1 + α4η

4
0 + β4η

3
0η1. (2.6)



670 M. Marwan & M. Z. Abidin

In Lemma 2.3, α2, β2 are quadratic, α3, β3 show cubic and α4, β4 present fourth-
order terms. In our case, tri-linear and quad-linear terms are zero. Therefore, αi,
βi for i = 2, 3, 4 can be reduced to

α2 =
1

2

〈
s̄1,B(r̄0, r̄0)

〉
,

β2 =

〈
s̄1,B(r̄0, r̄1)− h̄20

〉
,

(2.7)

and h̄20 can be obtained by solving singular linearized system

Ah̄20 = 2α2r̄1 −B(r̄0, r̄0). (2.8)

As the determinant of matrix A is zero in each case, the linearized matrices are
singular and cannot be solved using an inverse of A. Coefficients of cubic terms in
the normal form can be computed as

α3 =
1

2

〈
s̄1,B(h̄20, r̄0)− α2h̄11

〉
,

β3 =
1

2

〈
s̄1, 2B(h̄11, r̄0) + B(h̄20, r̄1)− h̄30 − 2α2h̄02 − 2β2h̄11

〉
,

(2.9)

where h̄02, h̄11 and h̄30 can be obtained by solving the following set of linearized
systems 

Ah̄11 = 2β2r̄1 + h̄20 −B(r̄0, r̄1),

Ah̄02 = 2h̄11 −B(r̄1, r̄1),

Ah̄30 = 6r̄1α3 + 6h̄11α2 − 3B(h̄20, r̄0).

(2.10)

In the similar way,

α4 =
1

2× 4!

〈
s̄1, 8B(h̄30, r̄0) + 6B(h̄20, h̄20)− α2h̄21

〉
(2.11)

and

β4 =
1

6

〈
s̄1, 3B

(
h̄21, r̄0

)
+ 3B

(
h̄11, h̄20

)
+ B

(
h̄30, r̄1

)〉
−
〈
s̄1,

h̄40
6

+
β2h̄21

2

〉
−
〈
s̄1, α2h̄12 + α3h̄02 + β3h̄11

〉
(2.12)

can be achieved by solving the corresponding singular linearized systems given in
Eq. (2.13)

Ah̄12 = 2h̄21 + 2β2h̄02 −B(h̄02, r̄0)− 2B(h̄11, r̄1),

Ah̄21 = h̄30 + 2β3r̄1 + 2α2h̄02 + 2β2h̄11 − 2B(h̄11, r̄0)−B(h̄20, r̄1),

Ah̄40 = 24α4r̄1 + 12α2h̄21 + 24α3h̄11 − 4B(h̄30, r̄0)− 3B(h̄20, h̄20).

(2.13)
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3. Existence of Bogdanov-Takens bifurcation in satel-
lite dynamical system (1.2)

In bifurcation theory, discussion mostly starts with the stationary point of dynam-
ical systems. Solving system (1.2) yields

E0 = (0, 0, 0),

E1,3 =
(
±
√
2bM2(M1+3)

8a
√
c

,
√
6(M1+1)

4 ,±
√
3bM2

2
√
c

)
,

E2,4 =
(
∓
√
2bM3(M1−3)

8a
√
c

,−
√
6(M1−1)

4 ,±
√
3bM3

2
√
c

)
,

(3.1)

in which M1 =
√

8ac+ 9, M2 =
√

4ac+ 3−M1 and M3 =
√

4ac+ 3 +M1.

Theorem 3.1. System (1.2) exhibits double zero eigenvalues at equilibria E0, for
a = 1, b 6= 0 and c = −1.

Proof. The Jacobian matrix of system (1.2) is

J =


−a z

3
y
3 + 1√

6

−z b −x

y −
√

6 x −c

 , (3.2)

and the Jacobian matrix (3.2) at E0 gives

J

∣∣∣∣
E0

=


−a 0 1√

6

0 b 0

−
√

6 0 −c

 . (3.3)

The characteristic equation of matrix (3.3) is

λ0
3 + σ01λ0

2 + σ02λ0 + σ03, (3.4)

where 
σ01 = a− b+ c,

σ02 = −ab+ ac− bc+ 1,

σ03 = − (abc+ b) .

(3.5)

According to Lemma 2.1, there exist double zero eigenvalues in system (1.2) for E0,
if σ01 6= 0, σ02 = 0 and σ03 = 0, which yields a = −1, b 6= 0 and c = 1. Substituting
these values back into equations (3.4)−(3.5) yields

λ01 = 0, λ02 = 0, λ03 = −b, (3.6)

which is our desired result. �

Theorem 3.2. There exist four generalized eigenvectors

ρ̄0 =

(√
7

7
, 0,−

√
42

7

)
, ρ̄1 =

(
√

7, 0,

√
42

6

)
,

ζ̄0 =

(√
7

7
, 0,−

√
42

7

)
, ζ̄1 =

(
6
√

7

49
, 0,

√
42

49

) (3.7)
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in system (1.2) at E0, for a = −1, b 6= 0 and c = 1.

Proof. In Theorem 3.1, it is proved that double zero eigenvalues exist in the
considered satellite system. Next, we need to find generalized eigenvectors which
satisfy orthogonal conditions (2.5) given in Lemma 2.2. However, these vectors are
not unique, but one can follow the technique given by Kuznetsov [30]. For this
purpose, let us suppose that A0 = J

∣∣
E0
. Then, ζ̄0 and ζ̄1 in equation (3.7) can be

achieved by solving
−a 0 1√

6

0 b 0

−
√

6 0 −c



ζ01

ζ02

ζ03

 =


0

0

0

 ,


−a 0 1√

6

0 b 0

−
√

6 0 −c



ζ11

ζ12

ζ13

 =


ζ01

ζ02

ζ03

 , (3.8)

where ζ̄0 = (ζ01, ζ02, ζ03)T and ζ̄1 = (ζ11, ζ12, ζ13)T . In a similar fashion for ρ̄0 =
(ρ01, ρ02, ρ03)T and ρ̄1 = (ρ11, ρ12, ρ13)T with the transpose of A0, the following
matrix equalities can be solved

−a 0 1√
6

0 b 0

−
√

6 0 −c


T 

ρ11

ρ12

ρ13

 =


0

0

0

 ,


−a 0 1√

6

0 b 0

−
√

6 0 −c


T 

ρ01

ρ02

ρ03

 =


ρ11

ρ12

ρ13

 . (3.9)

Vectors achieved from the solution of equations (3.8) and (3.9) are generalized
eigenvectors, and can satisfy the orthonormality condition given in Lemma 2.2.

Theorem 3.3. System (1.2) exhibits double zero eigenvalues at equilibria E1, for
a = − 9

8c , b = c and c = 3√
8
.

Proof. Jacobian matrix of system (1.2) at E1 gives

J
∣∣
E1

=


−a

√
3bM2

6
√
c

(M1+3)

2
√
6

−
√
3bM2

2
√
c

b −
√
2bM2(M1+3)

8a

3(M1−3)
2
√
6

√
2bM2(M1+3)

8a −c

 . (3.10)

The characteristic equation of matrix (3.10) is

λ1
3 + σ11λ1

2 + σ12λ1 + σ13, (3.11)

where 
σ11 = a− b+ c,

σ12 =
−32c(b−c)a3+((−32c2+8M2)b+(−4M2

1+36)c)a2+(M1+3)2bM2

32a2c ,

σ13 = −96
(
a2c2 − c(M2

1+2M2−9)a
8 − (3M2(M1+3)(M1+1))

32

)
ab.

(3.12)

According to Lemma 2.1, we have to solve σ12 and σ13 by equating zero. First, we
use b = c, M1 = 0 which implies a = − 9

8c , and M2 = 0 in equation (3.12) to obtain
σ11 = a,

σ12 = −c2 + 9
8 ,

σ13 = 0.

(3.13)
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Now, we only need to select an appropriate value for c such that σ12 becomes zero.
Therefore, we select c = 3√

8
. Hence, our desired result

λ11 = 0, λ12 = 0, λ13 = a (3.14)

of double zero eigenvalues in system (1.2) is achieved. �

Corollary 3.1. Equilibrium point E3 shows the symmetry with E1, and that is why
double zero eigenvalues condition can be fulfilled in satellite system (1.2) at a = − 9

8c ,
b = c and c = 3√

8
.

Theorem 3.4. There exist four generalized eigenvectors

%̄0 =

(
1

2
, 0,−

√
3

2

)
, %̄1 =

(
3√
2
, 0,

√
6

2

)
,

ϕ̄0 =

(
1

2
, 0,−

√
3

2

)
, ϕ̄1 =

(√
2

4
, 0,

√
6

12

) (3.15)

in system (1.2) at E1, for a = − 9
8c , b = c and c = 3√

8
.

Proof. In Theorem 3.3, it can be observed that there exist double zero eigenvalues
on equilibria E1. Now, we need to find its generalized eigenvectors which satisfy
orthogonal conditions (2.5) given in Lemma 2.2. For this purpose, let us consider
A1 = J

∣∣
E1
. Then, ϕ̄0 and ϕ̄1 in equation (3.15) can be achieved by solving

3
√
2

4 0
√
6
4

0 3
√
2

4 0

− 3
√
6

4 0 − 3
√
2

4



ϕ01

ϕ02

ϕ03

 =


0

0

0

 ,


3
√
2

4 0
√
6
4

0 3
√
2

4 0

− 3
√
6

4 0 − 3
√
2

4



ϕ11

ϕ12

ϕ13

 =


ϕ01

ϕ02

ϕ03

 ,

(3.16)

where ϕ̄0 = (ϕ01, ϕ02, ϕ03)T and ϕ̄1 = (ϕ11, ϕ12, ϕ13)T . In a similar fashion for
%̄0 = (%01, %02, %03)T and %̄1 = (%11, %12, %13)T with the transpose of A1, the following
matrix equalities can be solved

3
√
2

4 0
√
6
4

0 3
√
2

4 0

− 3
√
6

4 0 − 3
√
2

4


T 

%11

%12

%13

 =


0

0

0

 ,


3
√
2

4 0
√
6
4

0 3
√
2

4 0

− 3
√
6

4 0 − 3
√
2

4


T 

%01

%02

%03

 =


%11

%12

%13

 .

(3.17)

Vectors achieved from the solution of equations (3.16) and (3.17) are generalized
eigenvectors and can satisfy the orthonormality condition given in Lemma 2.2.

Theorem 3.5. System (1.2) has double zero eigenvalues at equilibria E2, for a =
− 9

8c , b = c and c = 3√
8
.

Proof. The Jacobian matrix of system (1.2) at E2 gives

J
∣∣
E2

=


−a

√
3bM3

6
√
c

− (M1−3)
2
√
6

−
√
3bM3

2
√
c

b
√
2bM3(M1−3)

8a
√
c

−3(M1+3)

2
√
6

−
√
2bM3(M1−3)

8a
√
c

−c

 . (3.18)
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The characteristic equation of matrix (3.18) is

λ2
3 + σ21λ2

2 + σ22λ2 + σ23, (3.19)

where 
σ21 = a− b+ c,

σ22 =
−32c(b−c)a3+((−32c2+8M3)b+(−4M2

1+36)c)a2+(M1−3)2bM3

32a2c ,

σ23 = −b
(
ac− (M2

1+2M3−9)
8 − (3M3(M1−3)(M1−1))

32ac

)
ab.

(3.20)

According to Lemma 2.1, we have to solve σ22 and σ23 for achieving suitable pa-
rameter values. First, we use b = c, M1 = 0 which implies a = − 9

8c , and M3 = 0 in
equation (3.20) to obtain 

σ21 = a,

σ22 = −c2 + 9
8 ,

σ23 = 0.

(3.21)

Then, we need to select an appropriate value for c such that σ22 become zero.
Therefore, we select c = 3√

8
. Hence, our desired result

λ21 = 0, λ22 = 0, λ23 = a (3.22)

is obtained that system (1.2) exhibits double zero eigenvalues at equilibria E2 for
suitable values of a, b and c. �

Corollary 3.2. Equilibrium point E2 shows the symmetry with E4, and that is why
double zero eigenvalues condition can be fulfilled in satellite system (1.2) at E4 for
a = − 9

8c , b = c and c = 3√
8
.

Remark 3.1. The generalized eigenvectors for system (1.2) at equilibria E2 are
the same as those given in equation (3.15), because the Jacobian matrix at E2, for
specific values of a, b and c, yields A2 = A1 as well.

3.1. Normal form for B-T bifurcation
Theorem 3.6. Let us suppose that there exist generalized eigenvectors ρ̄0, ρ̄1, ζ̄0
and ζ̄1 in system (1.2). Then the normal form for B-T bifurcation is{

η̇0 = η1,

η̇1 = β2η0η1 + α3η
3
0 + β3η

2
0η1 + α4η

4
0 + β4η

3
0η1,

(3.23)

where 

β2 = −
√

7 + 60
343b ,

α3 = 1
7b ,

β3 = 102900
√
7b+823543b2+352947b+213698

823543b2 ,

α4 = 0.000011244(−45619b+1905)
b2 ,

β4 =
1.3229(−9.9252b4+3.2048b3−0.038148b2−0.54120b+0.037782)

b4 .
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Proof. Jacobian matrix of system (1.2) at E0 can be found in equation (3.3),
whereas, its generalized eigenvectors are calculated in Theorem 3.2. Using analytical
formula of multilinear functions (2.3) for satellite dynamical system (1.2) gives

B(x, y) =

(
x2y3 + x3y2

3
,− (x1y3 + x3y1) , x1y2 + x2y1

)T
, (3.24)

C = (0, 0, 0)T and D = (0, 0, 0)T . (3.25)

After that, we need coefficients of quadratic, cubic and fourth-order terms. Hence,
for α2, we need to substitute ζ̄0 and ζ̄1 into equation (3.24)

B(ζ̄0, ζ̄0) =

(
0,

2
√

6

7
, 0

)T
, B(ζ̄0, ζ̄1) =

(
0,

5
√

6

49
, 0

)T
, (3.26)

and its dot product with ρ̄1 yields orthogonality such that

α2 = 0. (3.27)

Substituting α2 and equation (3.26) into equation (2.8), we get

h̄20 =

(
1,−2

√
6

7b
,−
√

6

)T
. (3.28)

Whereas, substituting h̄20, α2 and B(ζ̄0, ζ̄1) into equation (2.7) gives

β2 = −
√

7 +
60

343b
. (3.29)

Since α2 ∗β2 = 0, this case refers to the existence of codim-3 bifurcation in satellite
system. Hence, we need cubic and fourth-order terms to check non-degeneracy
as well. For cubic and fourth-order terms, we find B(h̄20, ζ̄0), B(h̄20, ζ̄1) and
B(h̄11, ζ̄0):

B(h̄20, ζ̄0) =
(

4
√
7

49b ,
2
√
42
7 ,− 2

√
42

49b

)T
,

B(h̄20, ζ̄1) =
(
− 4
√
7

343b ,
5
√
42

49 ,− 12
√
42

343b

)T
,

B(h̄11, ζ̄0) =
(

2(5b+14)
√
7

343b2 ,−
√
42(−31213b+360

√
7)

117649b ,− (5b+14)
√
42

343b2

)T
.

(3.30)

Substituting equation (3.30) back into equation (2.9), we get{
α3 = 1

7b ,

β3 = 102900
√
7b+823543b2+352947b+213698

823543b2 .
(3.31)

Vectors h̄11, h̄30 and h̄02
h̄02 =

(
1, 2
√
6(6b2−35b−98)

343b3 ,
√

6
)T

,

h̄11 =
(

1,−
√
6(5b+14)
49b2 , 6(−2401b+60

√
7)
√
6

16807b

)T
,

h̄30 =
(

1,− 6
√
42

7b ,− (48
√
7+343b)

√
6

343b

)T (3.32)
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are involved in finding equation (3.31), which are calculated by solving a set of
linearized systems given in equation (2.10). Similarly, using equations (2.11) and
(2.12), one can get{

α4 = 0.000011244(−45619b+1905)
b2 ,

β4 =
1.3229(−9.9252b4+3.2048b3−0.038148b2−0.54120b+0.037782)

b4

(3.33)

with

h̄12 =


1

− 58(b(b3+ 229
29b2

+ 154
29b−

392
29 )
√
7−

2160(b−2)( 7
3
+b)2

9947 )
√
6

343b5

(−4802b3+44b2−84b−392)
√
42+2401b2(b+ 120

343 )
√
6

2401b3

 ,

h̄21 =


1

−10633b
√
6(b2+ 32

31b−
28
31 )
√
7+720(b−2)(b+ 7

6 )
√
6

16807b4

(−70824698b2+2352980b−4023968)
√
42+22761480b

√
6

40353607b2

 , (3.34)

h̄40 =


1

− 2
√
6(196

√
7b3+1029b3+96b2+60b+168)

343b4

− (823543b2+51840
√
7+2362584b)

√
6

823543b2


as resultant vectors by solving equation (2.13). Finally, we get our desired result
by substituting equations (3.27)−(3.34) into normal form (1.1).

Corollary 3.3. System (1.2) exhibits degenerate Bogdanov-Takens bifurcation at
equilibria E0 for b 6= 60

343
√
7
and solution of 41160

√
7b−823543b2−151263b−3600 6= 0.

Proof. A case arises for non-degenerate Bogdanov-Takens bifurcation, when α2 =
0 but β2(β2

2 + 9α3) 6= 0. In Theorem 3.6, it is observed that α2 = 0 which confirms
the existence of non-degeneracy in codim-3 bifurcation. Hence,

β2(β2
2 + 9α3) =

(343
√

7b− 60)(41160
√

7b− 823543b2 − 151263b− 3600)

40353607b3
(3.35)

is non-zero, when b 6= 60
343
√
7
and 41160

√
7b− 823543b2 − 151263b− 3600 6= 0.

Theorem 3.7. Let us suppose that there exist generalized eigenvectors %̄0, %̄1, ζ̄0
and ζ̄1 in system (1.2). Then the normal form for B-T bifurcation isη̇0 = η1,

η̇1 = (− 3
√
2

2 + 1
6 )η0η1 +

(
77
√

(2)

72 + 1
6

)
η20η1 +

(
35
√

(2)

8 − 2021
216

)
η30η1.

(3.36)

Proof. Jacobian matrix of system (1.2) at E1 can be found in equation (3.10).
Whereas, its generalized eigenvectors and multilinear functions are calculated in
Theorem 3.4 and equation (2.3) respectively. After that, we need coefficients of
quadratic, cubic and fourth-order terms. Hence, for α2, we need to substitute ϕ̄0
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and ϕ̄1 into a bilinear function obtained in equation (3.24)

B(ϕ̄0, ϕ̄0) =

(
0,

√
3

2
, 0

)T
, B(ϕ̄0, ϕ̄1) =

(
0,

√
6

12
, 0

)T
, (3.37)

and its dot product with %̄1 yields orthogonality such that

α2 = 0. (3.38)

Substituting α2 and equation (3.37) into equation (2.8), we obtain

h̄20 =

(
1,−

√
2

3
,−
√

3

)T
. (3.39)

Whereas, substituting h̄20, α2 and B(ϕ̄0, ϕ̄1) into equation (2.7) yields

β2 = −3
√

2

2
+

1

6
= −1.9546. (3.40)

Since α2 ∗ β2 = 0, this case refers to the existence of codim-3 bifurcation in satel-
lite system for E1. Further, we need cubic and fourth order terms to check non-
degeneracy as well. For cubic and fourth-order terms, we findB(h̄20, ϕ̄0),B(h̄20, ϕ̄1)
and B(h̄11, ϕ̄0): 

B(h̄20, ϕ̄0) =
(√

2
6 ,
√

3,− 1√
6

)T
,

B(h̄20, ϕ̄1) =
(
− 1

18 ,
1√
6
,−
√
3
6

)T
,

B(h̄11, ϕ̄0) =
(

5
18 ,
√
3(35−3

√
2)

36 ,− 5
√
3

18

)T
.

(3.41)

Substituting equation (3.41) back into equation (2.9), we get{
α3 = 0,

β3 = 77
√
2

72 + 1
6 = 1.6790.

(3.42)

Vectors h̄11, h̄30 and h̄02
h̄02 = (1,−1.6784, 1.5340)

T
,

h̄11 = (1,−0.96229,−1.2276)
T
,

h̄30 =
(

1,−2
√

(6),− 5√
3

)T (3.43)

are involved in finding equation (3.42), which are calculated by solving the set of
linearized systems given in equation (2.10). Similarly, using equations (2.11) and
(2.12), one can get {

α4 = 0,

β4 = 35
√
2

8 − 2021
216 = −3.1694

(3.44)
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with 
h̄12 = (1,−2.3502,−5.4271)

T
,

h̄21 = (1,−4.2478,−5.3607)
T
,

h̄40 = (1,−18.507,−15.589)
T

(3.45)

as resultant vectors by solving equation (2.13). Finally, we get our desired result
by substituting equations (3.38)−(3.45) into normal form (1.1).

Corollary 3.4. System (1.2) exhibits degenerate Bogdanov-Takens bifurcation at
equilibria E1 with the case α2 = 0 and β2(β2

2 + 9α3) = −7.4675 6= 0.

Corollary 3.5. Degenerate Bogdanov-Takens bifurcation for equilibria E3 is the
same as that in Theorem 3.7 for obeying the symmetric property in equilibrium
points E1 and E3.

Corollary 3.6. Theorem 3.1 reveals that generalized eigenvectors of equilibria E2
are the same as those obtained for E1. Therefore, all conditions related to Bogdanov-
Takens bifurcation will also be the same.

4. Conclusion
In this study, satellite system was considered for bifurcation analysis. A special
case, α2 = 0 was raised, which confirmed the existence of codim-3 bifurcation for
all equilibrium points in system (1.2) for the first time. These symbolic computa-
tions were carried out through generalized eigenvectors and multilinear functions,
for which several theorems and remarks were stated and proved. A symmetry in
nonzero equilibrium points was observed, which made it more feasible and helpful
in the analytical results obtained for such a type of bifurcation. Finally, several
conditions were obtained for non-degeneracy in the existence of Bogdanov-Takens
bifurcation. In the future, our aim is to work on other codim-2 bifurcations such as
Bautin and Cusp. We have also targeted its numerical approach by using Matcont
to apply such analytical work in engineering-based applications.
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