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Soliton and Periodic Wave Solutions of the
Nonlinear Loaded (3+1)-Dimensional Version of

the Benjamin-Ono Equation by Functional
Variable Method*
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Abstract In this article, we establish new travelling wave solutions for the
nonlinear loaded (3+1)-dimensional version of the Benjamin-Ono equation by
the functional variable method. The performance of this method is reliable
and effective and the method provides the exact solitary wave solutions and
periodic wave solutions. The solution procedure is very simple and the trav-
eling wave solutions are expressed by hyperbolic functions and trigonomet-
ric functions. After visualizing the graphs of the soliton solutions and the
periodic wave solutions, the use of distinct values of random parameters is
demonstrated to better understand their physical features. It has been shown
that the method provides a very effective and powerful mathematical tool for
solving nonlinear equations in mathematical physics.
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1. Introduction

Nonlinear partial differential equations are important equations used in modeling
many phenomena in science and engineering applications. One of the most impor-
tant nonlinear evolution equations is the Benjamin-Ono(BO) equation

utt + α
(
u2
)
xx

+ βuxxxx = 0, (1.1)

where the constant coefficient α controls the nonlinearity and the characteristic
speed of the long waves, the other constant β is the fluid depth, α, β are non-zero
parameters and u(x, t) is the elevation of the free surface of the fluid. In 1967, Ben-
jamin examined a general theoretical treatment of a new class of long stationary
waves with finite amplitude. Ono extended Benjamin’s theory to obtain a class of
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nonlinear evolution equations in 1975. The BO equation describes internal waves
between two stratified homogenous fluids with different densities, where one of the
layers is infinitely deep [1–4]. The literature is rich in different studies aimed at
discovering special solutions to the nonlinear BO equation, such as the existence of
multi-soliton solution by [1, 5] and certain discrete solutions by Tutiya [6]. Many
powerful and direct methods have been developed to find special solutions to non-
linear BO equations such as analytically method [7], exp-function method [8], nu-
merical method [9, 10], Hirota bilinear method [11], extended truncated expansion
method [12], generalization of the homoclinic breather method [13], tanh expansion
method [14] and constructive method [15], which are used for searching the exact
solutions.

In [16], (2+1)-dimensional extension of the BO equation is given as:

utt + α
(
u2
)
xx

+ βuxxxx + γuyyyy = 0, (1.2)

where α, β and γ are non zero constants and u(x, y, t) is the elevation of the free
surface of the fluid. The multiple soliton solutions and multiple complex solitons
solutions to (1.2) were taken using the simplified form of the Hirota’s method [16].
The exact solutions have great importance in revealing the internal mechanism of
the physical phenomena.

In this paper, we consider the following nonlinear loaded (3+1)-dimensional
version of the BO equation with variable coefficient

utt − α
(
u2
)
xx

− βuxxxx − γuyyyy − λuzzzz + φ(t)u(0, 0, 0, t)uxx = 0, (1.3)

where φ(t) is the given real continuous function, x ∈ R, y ∈ R, z ∈ R, t ≥ 0, α, β, γ
and λ are arbitrary constants, and u(x, y, z, t) is the elevation of the free surface of
the fluid. Equation (1.3) is an extension form of (1.2), which contains an additional
term with a variable coefficient. As in equation (1.2), equation (1.3) can be used to
describe long internal gravity waves in deeply stratified fluids.

Nowadays due to intensive research on optimal management of the agroecosys-
tem, there has been a significant increase in interest in loaded equations. For
example, one area of focus is long-term forecasting and regulation of groundwater
and soil moisture levels. Among the works devoted to loaded equations, one should
especially note the works of A. Kneser [17], L. Lichtenstein [18], A. M. Nakhu-
shev [19,20], and others. It is known that the loaded differential equations contain
some of the traces of an unknown function. In [19,20], the term of loaded equation
was used for the first time, the most general definitions of the loaded differential
equation were given and also a detailed classification of the differential loaded equa-
tions as well as their numerous applications was presented. A complete description
of solutions to the nonlinear loaded equations and their applications can be found
in papers [21–29].

In this study we construct exact travelling wave solutions of the nonlinear loaded
(3+1)-dimensional version of the BO equation (1.3). The functional variable method
is used to obtain exact solutions for these equations, including solitary wave solu-
tions and periodic wave solutions. The performance of this method is reliable and
effective and gives the exact solitary wave solutions and periodic wave solutions. The
solution procedure is very simple and the traveling wave solutions are expressed by
hyperbolic functions and trigonometric functions. The graphical representations of
some obtained solutions are demonstrated to better understand their physical fea-
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tures. It has been shown that the method provides a very effective and powerful
mathematical tool for solving nonlinear equations in mathematical physics.

The article is organized as follows. In Section 2, we present some basic informa-
tion about the description of the functional variable method. Section 3 is devoted
to solutions of equation (1.3). In Section 4, we present the graphical representation
to equation (1.3). Finally, conclusions are presented in Section 5.

2. Description of the functional variable method

We consider NPDE of the form

P (u, ux, uy, ut, uxx, utt, uyy, uxy, uxt, uyt, ...) = 0, (2.1)

where P is a polynomial in u = u(x, y, t) and its partial derivatives.
Step 1. The following transformation is used for a travelling wave solution of

(2.1):

u(x, y, t) = u(ξ), ξ = px+ qy − kt, p = const, q = const, k = const, (2.2)

with
∂u

∂x
= p

du

dξ
,
∂u

∂y
= q

du

dξ
,
∂u

∂t
= −k

du

dξ
, ..., (2.3)

where k is the speed of the traveling wave.
Substituting Eq.(2.2) and (2.3) into NPDE (2.1) we get the following ODE of

the form

F (u, u′, u′′, u′′′, ...) = 0, u′ =
du

dξ
, (2.4)

where F is a polynomial in u(ξ), u′(ξ), u′′(ξ), u′′′(ξ), ....
Step 2. Let

u′ = F (u). (2.5)

It follows that ∫
du

F (u)
= ξ + ξ0. (2.6)

We suppose that ξ0 = 0 for convenience. Now we can calculate higher order deriva-
tives of u:

u′′ = dF (u)
du

du
dξ = dF (u)

du F (u) = 1
2

d(F 2(u))
du ,

u′′′ = 1
2

d2(F 2(u))
du2

√
F 2(u),

u(IV ) = 1
2

[
d3(F 2(u))

du3 F 2(u) +
d2(F 2(u))

du2

d(F 2(u))
du

]
,

... .

(2.7)

Step 3. Putting Eq.(2.7) into Eq.(2.4), we obtain

H(u,
dF (u)

du
,
d2F (u)

du2
,
d3F (u)

du3
, ...) = 0. (2.8)

The key idea of this particular form Eq.(2.8) is of special interest because it
admits analytical solutions for a large class of nonlinear wave type equations. After
integration, Eq.(2.8) provides the expression of F and this, together with Eq.(2.5),
gives solutions to the original problem.
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3. Solutions of the nonlinear loaded Benjamin-Ono
equation

We will find the exact solution to the equation (1.3) by the functional variable
method. For doing this, in equation (1.3), let’s use the following transformation.

u(x, y, z, t) = u(ξ), ξ = px+ qy +mz − kt, (3.1)

where p = const, q = const, m = const, and k is the speed of the traveling wave.
It is easy to show that after transformation (3.1), the nonlinear partial differen-

tial Eq.(1.3) can be transformed into an ordinary differential equation of the form

u′′ =
k2 + φ(t)u(0, 0, 0, t)p2

βp4 + γq4 + λm4
u− αp2

βp4 + γq4 + λm4
u2. (3.2)

According to (2.7) Eq.(3.2) can be written as follows

1

2

d
(
F 2(u)

)
du

=
k2 + φ(t)u(0, 0, 0, t)p2

βp4 + γq4 + λm4
u− αp2

βp4 + γq4 + λm4
u2. (3.3)

Integrating Eq.(3.3) and by simplifying, we get

F (u) = u
√
µ(t)− ηu, (3.4)

where µ(t) = k2+φ(t)u(0,0,0,t)p2

βp4+γq4+λm4 and η = 2αp2

3(βp4+γq4+λm4) .

From Eq.(2.5) and Eq.(3.4) we deduce that

du

u
√
µ(t)− ηu

= dξ, (3.5)

√
µ(t)− ηu = z, dz = − ηdu

2
√

µ(t)− ηu
= −ηdu

2z
, (3.6)

du

u
√
µ(t)− ηu

=
2zdz

(z2 − µ(t))z
=

2dz

z2 − µ(t)
, (3.7)

2dz

z2 − µ(t)
= dξ. (3.8)

After integrating Eq.(3.8), we have

1√
µ(t)

ln
z −

√
µ(t)

z +
√
µ(t)

= ξ. (3.9)

Finally, we get the following expression

u(x, y, z, t) = −
6
(
k2 + φ(t)u(0, 0, 0, t)p2

)
αp2

e

√
k2+φ(t)u(0,0,0,t)p2

βp4+γq4+λm4 (px+qy+mz−kt)(
1− e

√
k2+φ(t)u(0,0,0,t)p2

βp4+γq4+λm4 (px+qy+mz−kt)

)2 .

(3.10)
The function u(0, 0, 0, t) can be easily obtained based on expression (3.10).
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We get two types of solutions to the equation (1.3) as follows:

1) When k2+φ(t)u(0,0,0,t)p2

βp4+γq4+λm4 > 0, we get the solitary solution

u(x, y, z, t) = −
6
(
k2 + φ(t)u(0, 0, 0, t)p2

)
αp2

(
cth2 (w(t))− 1

)
, (3.11)

where w(t) =
√

k2+φ(t)u(0,0,0,t)p2

βp4+γq4+λm4
px+qy+mz−kt

2 , cthz = ez+e−z

ez−e−z .

2) When k2+φ(t)u(0,0,0,t)p2

βp4+γq4+λm4 < 0, we get the periodic solution

u(x, y, z, t) =
6
(
k2 + φ(t)u(0, 0, 0, t)p2

)
αp2

(
ctg2 (w(t)) + 1

)
, (3.12)

where w(t) =
√

k2+φ(t)u(0,0,0,t)p2

βp4+γq4+λm4
px+qy+mz−kt

2 , ctgz = cosz
sinz .

The graphs of solutions to the equation (1.3) by using distinct values of random
parameter will be demonstrated.

If k = −1, α = 6, β = 1, γ = 1, φ(t) = −t2, p = 1, q = 1, λ = −1, and
m = 1, then we have

u(x, y, z, t) = − 5

t2 + 1

(
cth2

(√
5

t2 + 1

x+ y + z + t

2

)
− 1

)
. (3.13)

If k = −1, α = 6, β = −1, γ = 1, φ(t) = −t2, p = 1, q = 1, λ = −1, and
m = 1, then we have

u(x, y, z, t) = − 3

t2 + 1

(
ctg2

(√
3

t2 + 1

x+ y + z + t

2

)
+ 1

)
. (3.14)

4. Graphical representation of the nonlinear loaded
Benjamin-Ono equation

We have presented some graphs of solitary and periodic waves of equation (1.3) con-
structed by taking suitable values of the unknown parameters involved, in order to
visualize the underlying mechanism to the original physical phenomena. Graphical
representation is an effective tool for communication and it exemplifies evidently
the solutions of the problems. The graphical illustrations of the solutions are de-
picted in Figure 1 and Figure 2. Solitary and periodic wave solutions represent an
important type of solutions for nonlinear partial differential equations as many non-
linear partial differential equations have been found to possess a variety of solitary
wave solutions. Solitons are solutions to a common class of nonlinearly partially
differential equations with weak linearity describing physical systems. The exis-
tence of periodic travelling waves usually depends on the parameter values in a
mathematical equation. The amplitude and velocities are controlled by parameters
of various kind. The soliton is a self-reinforcing wave packet maintaining its shape
while propagating at a constant velocity.
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Figure 1. Solitary wave solution to the equation (1.3) for k = −1, α = 6, β = 1, γ = 1, φ(t) = −t2,
p = 1, q = 1, λ = −1, m = 1, x ∈ [1, 5], t ∈ [1, 2].

Figure 2. Periodic wave solution to the equation (1.3) for k = −1, α = 6, β = −1, γ = 1, φ(t) = −t2,
p = 1, q = 1, λ = −1, m = 1, x ∈ [1, 5], t ∈ [2, 3].

5. Conclusion

The functional variable method has been successfully used to obtain several trav-
eling wave solutions of the nonlinear loaded (3+1)-dimensional version of the BO
equation. We have shown that, this method can provide a useful way to efficiently
find the exact structures of solutions to a variety of nonlinear wave equations. After
visualizing the graphs of the soliton solutions and the periodic solutions, distinct
values of random parameter are demonstrated to better understand their physi-
cal features. The advantage of the method is giving more solution functions such
as periodic solutions and hyperbolic solutions than other popular analytical meth-
ods. We conclude that the exact solutions are of great importance in revealing the
internal mechanism of the physical phenomena.
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