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Uniqueness of Limit Cycles in a Predator-Prey
Model with Sigmoid Functional Response∗
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Abstract In this paper, we prove that a predator-prey model with sigmoid
functional response and logistic growth for the prey has a unique stable limit
cycle, if the equilibrium point is locally unstable. This extends the results of
the literature where it was proved that the equilibrium point is globally asymp-
totically stable, if it is locally stable. For the proof, we use a combination of
three versions of Zhang Zhifen’s uniqueness theorem for limit cycles in Liénard
systems to cover all possible limit cycle configurations. This technique can be
applied to a wide range of differential equations where at most one limit cycle
occurs.
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1. Introduction

In [15] a predator-prey system was discussed with a sigmoid functional response
p(x)

dx(t)

dt
= h(x)− p(x)y,

dy(t)

dt
= −µy + βp(x)y

(1.1)

with h(x) = rx(1− x
K ) and p(x) = x2

a+bx+cx2 .

The parameters are real and positive. The growth of the prey population is
chosen to be logistic with r, the intrinsic growth rate and K, the carrying capacity.
The parameter µ is the predator death rate, and β is the constant conversion rate
of the predator after eating the prey. The parameters a, b and c in the functional
response do not have an obvious biological meaning and are considered to be fit
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through a phenomenological approach based on observed data, a method followed
by Holling in [8].

This type of functional response for a predator-prey model was first introduced
by Holling in his ground-breaking paper [8]. The typical approach in predator-
prey systems is to take a functional response which is monotonically increasing as a
function of the prey density, bounded and without inflection points, e.g., the Holling
II functional response function.

However, recently, more research has been done on the case where the functional
response has a sigmoid shape with one inflection point. The functional response in
this paper can be seen as a generalization of the Holling III functional response.
Other variations of this response function similar to the one in this paper can be
found in [1–7,9, 10,13].

It is assumed that system (1.1) has a positive equilibrium point A with x∗ > 0
and y∗ > 0 such that h(x∗)− p(x∗)y∗ = 0, −µ+βp(x∗) = 0 (here, positive refers to
the fact that the prey and predator density have a positive value). It is not difficult
to see that A is unique when it exists. In the following, we will always assume that
the parameters of the system are such that there is exactly one positive equilibrium
point A, because the dynamics of the system become trivial without it.

The main result of [15] was the proof that the system is globally asymptotically
stable, when A is locally stable. Effectively, this follows from the fact that the sys-
tem does not have limit cycles, is bounded and does not have attracting equilibrium
points on the coordinate axes in the phase plane.

The aim of this paper is to show that system (1.1) has exactly one limit cycle,
if A is locally unstable. In the process, we will give a simplified proof of the result
in [15] for the non-existence of the limit cycle, when A is locally stable. The methods
we use are a combination of three flavours of Zhang Zhifen’s theorem. The reason
three different versions are needed is that the divergence of the associated Liénard
system is zero on two vertical lines in the phase plane. Since it is not known a
priori which of these lines will be crossed by a limit cycle, different configurations
need to be considered. In each case, a different version of Zhang Zhifen’s theorem
is needed.

From a mathematical point of view, the choice of a sigmoidal functional response
function is related to a question discussed in a few papers [11, 12, 16], where the
influence of the convexity of the functional response function on the number of
limit cycles was explored. For example, it was shown in [16] that a functional
response function with a change in convexity, similar to a sigmoidal function, leads
to more limit cycles than the case where it is just concave down. On the other hand,
in [12], the cases were observed with more than one limit cycle in the concave down
case. This paper shows that even in a class with a sigmoidal functional response
function that is more general than the traditional Holling III function, not more
than one limit cycle will occur. This suggests that it is not necessarily the convexity
of the function that is driving the number of limit cycles in a Gause predator-prey
system.

In Section 2, we introduce the theorems for limit cycles in Liénard systems
which we will use. Section 3 contains the relation between system (1.1) and Liénard
systems. In Section 4, we show the non-existence of limit cycles in the case of the
stable equilibrium point A. Then, the main result will be given in Section 5, where
we show the uniqueness of limit cycles when A is unstable.
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2. Liénard systems

One of the most successful approaches in studying the uniqueness of limit cycles
in two-dimensional autonomous ordinary differential equations has been the appli-
cation of Zhang Zhifen’s theorem (see [17]). There are different versions of this
theorem, and in this section, the versions needed for our proof are summarized.

Definition 2.1. A generalized Liénard system takes the form

dx(t)

dt
= F (x)− ψ(y),

dy(t)

dt
= g(x),

(2.1)

defined in a region x ∈ (x−, x+), y ∈ (y−, y+). The divergence of the system F ′(x)
is traditionally denoted by f(x).

In this section, we summarize the theorems needed to prove the non-existence
or uniqueness of limit cycles for system (1.1), after it has been transformed to the
Liénard form of (2.1). The first Lemma 2.1 concerns the application of a Dulac-
function to prove non-existence in certain cases. The next three theorems 2.1, 2.2,
2.3 are uniqueness theorems which apply to different configurations of the limit
cycle. The first theorem 2.1 is a classical result originally due to Zhang Zhifen
concerning a limit cycle crossing two vertical lines corresponding to the two zeroes
of f(x). The second theorem 2.2 is a stronger theorem which applies to the case,
when the limit cycle crosses exactly one vertical line corresponding to a zero of f(x).
The third theorem 2.3 is a special case of Theorem 2.2 which can be applied to our
system in some situations simplifying the proof.

For the cases where no limit cycles appear, we use the following simple lemma.

Lemma 2.1. If the functions in (2.1) satisfy the following conditions:
(i) (x− xg)g(x) > 0, for x 6= xg;
(ii) ∃λ ∈ R such that f(x)− λg(x) has a fixed sign for x− < x < x+,

then system (2.1) has no limit cycles surrounding the singularity at x = xg in the
strip x− < x < x+.

This lemma follows from the application of a Dulac-function in the formB(x, y)=

e−λy to (2.1). Essentially, the lemma says that if y = f(x)
g(x) has a “gap” (a horizontal

line y = λ which does not have intersections with the graph of the function), then
there are no limit cycles.

Note that for the special case λ = 0, the lemma states that in order to have
limit cycles, the function f(x) needs to have at least one zero and f(x) needs to
change sign.

A generalization of Zhang Zhifen’s theorem (by Cherkas and Zhilevich) which
we will use for proving uniqueness of limit cycles in one case is Theorem 4.9 in [17].

Theorem 2.1 ( [17]). If the functions in (2.1) satisfy the following conditions in
the strip x ∈ (x−, x+):

(i) (x− xg)g(x) > 0, for x 6= xg;

(ii)(x− x(1)
f )(x− x(2)

f )f(x) < 0, for x 6= x
(1)
f , x 6= x

(2)
f , x

(1)
f < xg < x

(2)
f ;

(iii) dψ(y)
dy > 0;

(iv) f(x)
g(x) is non-increasing for x− < x < x

(1)
f and x

(2)
f < x < x+,
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then the system has at most one limit cycle for x ∈ (x−, x+) enclosing the interval

x
(1)
f < x < x

(2)
f , which is stable and hyperbolic, if it exists.

Note that this theorem makes a statement about the uniqueness of limit cycles

crossing both vertical lines x = x
(1)
f and x = x

(2)
f , where the function f(x) is equal

to zero.
To cover the case where a limit cycle crosses only one vertical line x = xf , where

f(xf ) = 0, we will use the theorem from [18] (Theorem 3, Page 485).

Theorem 2.2 ( [18]). If the functions in (2.1) satisfy the following conditions in
the strip x ∈ (x−, x+):

(i) (x− xg)g(x) > 0, for x 6= xg;
(ii) (x− xf )f(x) > 0, for x 6= xf , xf < xg;

(iii) dψ(y)
dy > 0;

(iv) The system of equations

F (x1) = F (x2),

f(x1)

g(x1)
=
f(x2)

g(x2)
,

has at most one solution x− < x1 < xf , xg < x2 < x+;

(v) f(x)
g(x) is decreasing for x− < x < xf ,

then the system has at most one limit cycle for x ∈ (x−, x+), which is stable and
hyperbolic, if it exists.

The statement of the theorem remains true, if the zero of f(x) lies to the right
of the zero of g(x), i.e., (x − xf )f(x) < 0, for x 6= xf , xf > xg. In that case, the

function f(x)
g(x) should be decreasing on the interval xf < x < x+. In other words, the

uniqueness of limit cycle will follow, if the function f(x)
g(x) is decreasing on the interval

outside the zero of f(x) not containing xg, and if the system of the equations in
(iv) of the theorem has a unique solution.

A special case of this theorem arises when the function f(x)
g(x) is monotonic.

Theorem 2.3. If the functions in (2.1) satisfy the following conditions in the strip
x− < x < x+,

(i) (x− xg)g(x) > 0, for x 6= xg;
(ii) (x− xf )f(x) < 0, x 6= xf , xf > xg;

(iii) dψ(y)
dy > 0;

(iv) f(x)
g(x) is nonincreasing in x− < x < xg and xf < x < x+,

then the system has at most one limit cycle for x ∈ (x−, x+), which is stable and
hyperbolic, if it exists.

This follows from the fact that if f(x)
g(x) is decreasing, then the system in (iv) in

Theorem 2.2 has a unique non-trivial solution.

3. The predator-prey system as a Liénard system

In order to apply the theorems for Liénard systems from the previous section, we
need to write (1.1) in the form of a generalized Liénard system.
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This is accomplished by performing a simple change of variables t→ t
p(x) , y = ev.

System (1.1) takes the form

dx(t)

dt
=
h(x)

p(x)
− ev =

r(1− x
K )(a+ bx+ cx2)

x
− ev,

dy(t)

dt
= −µ(a+ bx+ cx2)

x2
+ β,

(3.1)

i.e., we get a generalized Liénard system (2.1) with (here we restored the variable
v → y):

ψ(y) = ey,

F (x) =
r(1− x

K )(a+ bx+ cx2)

x
,

g(x) =
−µa− µbx+ (β − µc)x2)

x2
,

f(x) = F ′(x) = r(− b

K
+ c− 2cx

K
− a

x2
).

(3.2)

In system (1.1), limit cycles are restricted to the strip 0 < x < K, because
dx
dt = −p(K)y < 0 for x = K , and limit cycles cannot cross it.

Therefore, in the application of the theorems of the previous sections, we can
take x− < x < x+ as 0 < x < K. However, it turns out that x = K does not play
a significant role in the proofs, so for notational convenience, we will take x+ =∞.

Using (3.2) we define the function Zλ:

Zλ(x)=f(x)−λg(x)=
1

x2
[r((− b

K
+c)x2−2cx3

K
−a)−λ(−µa−µbx−σx2)] ≡ 1

x2
Uλ(x),

(3.3)
where σ = µc − β. The important factor in Zλ(x) is Uλ(x). Each choice of λ

corresponds to scanning the graph of y = f(x)
g(x) with horizontal lines y = λ: the

number of zeroes of Uλ(x) indicates the number of intersections.
If there exists a λ such that Uλ(x) does not have a zero on the relevant interval

for x, then no limit cycles will exist according to Lemma (2.1).

If for all λ, Uλ(x) only has simple zeroes, then the function f(x)
g(x) is monotonic

which is one of the critical conditions of Theorems (2.1), (2.2), (2.3). This lat-
ter property was used in [11] to prove the uniqueness of limit cycles in a different
predator-prey system. Moreover, the location of the zeroes of Uλ(x) will give in-
formation about the possible solutions to the system of equations (iv) in Theorem
(2.2).

The function Uλ(x) is cubic in x, which restricts the number of zeroes to be 3.
If there are three zeroes, then they are necessarily simple. This makes it possible to

draw conclusions about the function f(x)
g(x) quickly without doing long calculations.

First, we restrict the parameters of the system to the cases where limit cycles
could occur.

Lemma 3.1. Necessary conditions for the existence of limit cycles in system (3.1)
are

(i) f(x) has two simple zeroes x
(1)
f and x

(2)
f with 0 < x

(1)
f < x

(2)
f ;

(ii) g(x) has a unique simple zero xg, with xg > 0.
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Figure 1. The three cases of Definition 3.1 for the relative position of the zeroes of f(x) and g(x).

These conditions imply that the parameters in (3.3) should satisfy

b < cK and σ < 0.

Proof. The zeroes of f(x) are determined by the cubic function H(x) = (− b
K +

c)x2 − 2cx3

K − a. Therefore, H(0) = −a < 0, H ′(0) = 0, H ′′(0) = 2(− b
K + c). Since

limx→−∞H(x) = ∞, limx→∞H(x) = −∞, if the function has zeroes, then there
have to be two for x > 0 to ensure the possibility of a change of sign in the function
f(x). If the function does not have any zeroes, or a double zero for x > 0, then
according to Lemma (2.1) with λ = 0 there will not be any limit cycles for x > 0.
A necessary condition to have these two simple zeroes is − b

K + c > 0. Otherwise,
the function would be negative for all x > 0.

The equation determining the singularities of the system is given by g(x) = 0.
This leads to a quadratic equation in x: M(x) ≡ µa+µbx+σx2 = 0. This equation
can only have a positive zero if σ < 0, which will be unique.

We need to take the following three relative configurations of these zeroes into
consideration.

Definition 3.1. Distinguish the following three cases for system (3.1).

• Case (i). 0 < x
(1)
f < x

(2)
f < xg.

• Case (ii). 0 < x
(1)
f < xg < x

(2)
f .

• Case (iii). 0 < xg < x
(1)
f < x

(2)
f .

In principle, we should also impose x < K, but for our purposes, this condition
will not be needed, and we omit it to simplify the proof. In Figure 1, the three
relative positions of the zeroes of the functions f(x) and g(x) are shown. For Case
(i) and Case (iii), the singularity is stable for f(xg) > 0 in those configurations.
This is the case considered in [15], where it was proved that no limit cycles occur.
In the next section, we will give a simpler proof using Lemma 2.1.

For Case (ii), the singularity is unstable and because of the boundedness of the
system (see [15], where this was proved), at least one (stable) limit cycle will occur.
Proving the uniqueness of the limit cycles in this case is the focal point of this paper.

4. Non-existence of limit cycles: the case of a stable
singularity

For Case (i) 0 < x
(1)
f < x

(2)
f < xg and Case (iii) 0 < xg < x

(1)
f < x

(2)
f in Definition

3.1, we will show that condition (ii) of Lemma 2.1 is satisfied, i.e., we will show the
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existence of a constant λ such that Zλ(x) in (3.3) has a fixed sign for x > 0.

Proposition 4.1. System (1.1) has no limit cycles in Case (i) of Definition 3.1.

Proof. We construct the λ of condition (ii) in Lemma 2.1. First, we find a value

of λ1 such that Zλ1
(x) has a double zero x = x̄ in the interval x

(1)
f < x < x

(2)
f . Such

a λ1 should satisfy

f(x̄) = λ1g(x̄),

f ′(x̄) = λ1g
′(x̄).

(4.1)

Eliminating λ1 from the two equations gives the following condition on x̄:

W (x̄) ≡ f ′(x̄)

f(x̄)
− g′(x̄)

g(x̄)
= 0.

The function W (x) has the following properties

lim
x↓x(1)

f

W (x) < −∞,

lim
x↑x(2)

f

W (x) >∞.
(4.2)

Since W (x) is continuous on the interval x
(1)
f < x < x

(2)
f (the denominator g(x)

cannot be zero, because xg lies outside this interval), it follows that the function
has a zero x̄. For this zero, the system of equations (4.1) has a solution with

λ1 = f̃(x̄)
g̃(x̄) > 0.

The numerator of the function Zλ1
(x) is a cubic function in x, for which we

know Zλ1
(0) < 0, because f̃(0) < 0, g̃(0) > 0 and λ1 > 0. Moreover, for large

negative x the cubic term in f(x) will dominate, and we have

lim
x→−∞

Zλ1
(x) =∞.

Therefore, Zλ1(x) has another zero x∗ < 0.
From this construction, we find that Zλ1

(x) has a double zero x̄ in the interval

x
(1)
f < x < x

(2)
f and a zero x∗ < 0. Since the cubic function cannot have any other

zeroes, we must have Zλ1
(x) < 0 for x 6= x̄ and x > 0. We change λ1 into λ = λ1+ε,

where ε > 0 is small enough such that the double zero at x = x̄ disappears, and
no other zeroes are introduced. For this λ, the function Zλ(x) < 0 for all x > 0.
According to Lemma 2.1 condition (ii) is satisfied and the system does not have
limit cycles. See Figure 2 for the geometrical interpretation of this proof.

The same procedure also works for Case (iii) of Definition 3.1:

Proposition 4.2. System (1.1) has no limit cycles in Case (iii) of Definition 3.1.

Proof. The proof exactly follows the same construction as in the proof of Propo-

sition 4.1. First, a double zero x = x̄ for Zλ1
(x) is created on the interval x

(1)
f < x <

x
(2)
f with in this case λ1 < 0. Due to the fact that Zλ1

(0) < 0 and limx→−∞ Zλ1
(x) =

∞, another zero needs to exist for x < 0. The cubic nature of the numerator of
Zλ1

(x) then ensures that for x > 0 it is always negative except at the double zero
x = x̄. Then, changing λ1 into λ = λ1 − ε with ε > 0 gives a function Zλ(x),
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Figure 2. Construction of a constant λ such that Zλ(x) has a fixed sign for Case (i) of Definition 3.1.

Figure 3. Construction of a constant λ such that Zλ(x) has a fixed sign for Case (iii) of Definition 3.1.

which is negative for all x > 0. According to Lemma 2.1, with condition (ii) satis-
fied, the system does not have limit cycles, completing the proof. The geometrical
interpretation of this case is shown in Figure 3.

The two propositions of this section are combined showing (see [15] for another
proof):

Theorem 4.1. System (1.1) has no limit cycles, when the singularity in the first
quadrant is locally stable.

5. Uniqueness of limit cycles: the case of an unsta-
ble singularity

For Case (ii) 0 < x
(1)
f < xg < x

(2)
f in Definition 3.1, we need to consider three

possible configurations for the limit cycle. Since there are two simple positive zeroes
of f(x), a limit cycle can either cross both vertical lines where f(x) = 0 or cross
only one vertical line.

Definition 5.1. There are three possible limit cycle configurations in system (1.1).

• Case I. The limit cycle crosses both lines x = x
(1)
f and x = x

(2)
f .

• Case II. The limit cycle only crosses x = x
(2)
f but not x = x

(1)
f .

• Case III. The limit cycle only crosses x = x
(1)
f but not x = x

(2)
f .
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Figure 4. The three possible configurations for a limit cycle in system (3.1) of Definition 5.1

The three cases are shown in Figure 4. For each case, we will apply a different
uniqueness theorem. The first question is on which intervals for x > 0 the function
f(x)
g(x) is monotonically decreasing, which is the critical condition in the application

of the uniqueness theorems.

Lemma 5.1. For Case (ii) 0 < x
(1)
f < xg < x

(2)
f in Definition 3.1, the function

f(x)
g(x) satisfies

d

dx

f(x)

g(x)
< 0 for 0 < x < xg and x > x

(2)
f .

Proof. The auxiliary function Uλ(x) = r(− 2cx3

K + (− b
K + c)x2 − a) − λ(−σx2 −

µbx−µa) ≡ f̃(x)−λg̃(x) as defined in (3.3) corresponds to the function determining

the intersections of the graph of y = f(x)
g(x) with horizontal lines y = λ. The result

of the lemma follows, if we prove that Uλ(x) only has simple zeroes for all λ ∈ R
on the intervals 0 < x < xg and x > x

(2)
f . The following properties follow from an

elementary calculation.
i) Uλ(0) = a(−1 + λµ).
ii) U ′λ(0) = λµb.

iii) Uλ(xg) = − 2cx3
g

K + (− b
K + c)x2

g − a > 0.
iv) limx→∞ Uλ(x) = −∞.
v) limx→−∞ Uλ(x) =∞.

Property (iii) follows from the fact that in Case (ii), the singularity at x = xg lies
between the two zeroes of f(x).

Since 0 < x
(1)
f < xg < x

(2)
f , it is easy to see that f(x) < 0 (> 0), for x < x

(1)
f

and x > x
(2)
f (x

(1)
f < x < x > x

(2)
f ). Moreover, g(x) < 0 (> 0), for 0 < x < xg

(x > xg).

It follows that Uλ(x) does not have zeroes for λ ≤ 0, 0 < x < x
(1)
f and xg < x <

x
(2)
f (λ ≥ 0, x

(1)
f < x < xg and x > x

(2)
f ).

First, we consider the case λ < 0. For the cubic function Uλ(x), it holds true

that Uλ(x
(1)
f ) = −λ(−σ(x

(1)
f )2 − µbx(1)

f − µa) < 0 and Uλ(x
(2)
f ) = −λ((−σ(x

(2)
f )2 −

µbx
(2)
f − µa)) > 0, for 0 < x

(1)
f < xg < x

(2)
f . These results lead to sign changes in

the function Uλ(x) for each λ < 0.
Property (v). Uλ(−∞) =∞,
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Property (i). Uλ(0) < 0, Uλ(x
(1)
f ) < 0, Uλ(xg) > 0, Uλ(x

(2)
f ) > 0,

Property (iv). Uλ(∞) = −∞.
This shows that Uλ(x) has a simple zero for x < 0, x

(1)
f < x < xg, x > x

(2)
f , for all

λ < 0. Since Uλ(x) does not have a zero for λ ≥ 0, in this case, we have proved

that Uλ(x) only has simple zeroes for all λ ∈ R on the intervals x
(1)
f < x < xg and

x > x
(2)
f . Therefore, d

dx
f(x)
g(x) < 0 on those intervals. The minus sign follows from

property (ii) above and the behaviour of the function for large x.

Next, to complete the proof, we consider the interval 0 < x < x
(1)
f . Here, Uλ(x)

can only have zeroes for λ > 0. For 0 < λ < 1
µ , property (i) says Uλ(0) > 0, while

Uλ(x
(1)
f ) < 0. Therefore, there is a zero on this interval. Since Uλ(−∞) = ∞ and

Uλ(−∞) = ∞, there are two additional zeroes outside this interval, which implies

that the zero in the interval 0 < x < x
(1)
f is simple due to the cubic nature of

Uλ(x). For λ ≥ 1
µ , the function Uλ(x) cannot have a zero ∈ 0 < x < x

(1)
f . The

case of λ = 1
µ is a limiting case of 0 < λ < 1

µ , where the unique zero in the

interval 0 < x < x
(1)
f has been moved to x = 0. Therefore, for λ = 1

µ , it is true

that Uλ(x) > 0, for all 0 < x < x
(1)
f . Since g̃(x) < 0 on this interval, we get

Uλ(x) = U 1
µ

(x)− (λ− 1
µ )g̃(x) > 0 for λ ≥ 1

µ , which completes the proof.

A consequence of this lemma is that f(x)
g(x) <

f(0)
g(0) = 1

µ on the interval 0 < x < xg.

Corollary 5.1. The system of equations

F (x1) = F (x2),

f(x1)

g(x1)
=
f(x2)

g(x2)
,

in condition (iv) of theorem 2.2 can only have solutions for those x2 > xg such that
f(x2)
g(x2) <

1
µ .

This observation is crucial, because it will imply that the system has at most
one non-trivial solution as we will prove below.

With this lemma two of the three cases for the limit cycle configurations in
Definition 5.1 can be resolved.

Proposition 5.1. System (3.1) has at most one limit cycle in Case (i) of Defini-
tion 5.1 intersecting both zeroes of f(x) of (3.2). When it exists, it is stable and
hyperbolic.

Proof. The first three conditions of Theorem 2.1 are trivially satisfied according
to (3.2) and Lemma 3.1, taking x− = 0 and x+ = ∞. Condition (iv) is satisfied
according to Lemma 5.1.

Proposition 5.2. System (3.1) has at most one limit cycle in Case (ii) of Defi-

nition 5.1 intersecting only the zero x
(2)
f > xg of f(x) of (3.2) (and not the zero

x
(1)
f < xg). When it exists, it is stable and hyperbolic.

Proof. Again, the first three conditions of Theorem 2.3 are trivially satisfied ac-
cording to (3.2) and Lemma 3.1 taking x− = 0 and x+ = ∞. Condition (iv) is
satisfied as well according to Lemma 5.1.
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The remaining Case (iii) in Definition 5.1 where the limit cycle only intersects

the zero x
(1)
f < xg requires more attention, because it is not clear whether the

function f(x)
g(x) is monotonically decreasing on the interval xg < x < x

(2)
f , which

would be necessary for applying Theorem 2.3. Therefore, we resort to the stronger

Theorem 2.2 which only requires the function to be monotonic on 0 < x < x
(1)
f .

This is true according to Lemma 5.1.

Proposition 5.3. System (3.1) has at most one limit cycle in Case (iii) of Def-

inition 3.1 intersecting only the zero x
(1)
f < xg of f(x) of (3.2) (and not the zero

x
(2)
f > xg). When it exists, it is stable and hyperbolic.

Proof. Again, the first three conditions of Theorem 2.2 are trivially satisfied ac-
cording to (3.2) and Lemma 3.1 taking x− = 0, x+ =∞. Condition (v) is satisfied
as well according to Lemma 5.1. It remains to prove that the system of equations
in condition (iv) has at most one non-trivial solution.

Since Corollary 5.1 states that only those x2 need to be considered for which
f(x2)
g(x2) <

1
µ , because only in that case, there exists a 0 < x1 < xf such that f(x1)

g(x1) =
f(x2)
g(x2) . In the case 0 < x1 < x

(1)
f , according to Lemma 5.1, the function f(x1)

g(x1) is

monotonically decreasing, i.e., f(x1)
g(x1) = C has exactly one solution and 0 < C < 1

µ .

The horizontal line y = C intersects the graph of y = f(x)
g(x) in the two points x = x1

and x = x2 by construction, where xg < x2 < x
(2)
f . It means that the function

Uλ(x) as defined in the proof of Lemma 5.1, for λ = C has at least two zeroes, x1

and x2. On the interval xg < x2 < x
(2)
f , it is easy to see that the number of zeroes

of UC(x) is odd (counting multiplicities). This is for UC(xg) > 0 (property (ii) in

the proof of Lemma 5.1) and UC(x
(2)
f ) = −Cg(x

(2)
f ) < 0. Therefore, the zero at

x = x2 is a unique simple zero on this interval, because the cubic function UC(x)
cannot have more than 3 zeroes.

It follows that for those x2 such that f(x1)
g(x1) = f(x2)

g(x2) , d
dx2

f(x2)
g(x2) < 0. The curve

x2 = γf/g(x1) is a monotonically increasing function, for dx2

dx1
=

d
dx1

f(x1)

g(x1)

d
dx2

f(x2)

g(x2)

> 0.

The other equation F (x1) = F (x2) defines a curve x2 = γF (x1), for which dx2

dx1
=

d
dx1

F (x1)
d
dx2

F (x2)
= f(x1)

f(x2) < 0. The two curves x2 = γf/g(x1) and x2 = γF (x1) have

opposite slopes, and they can have at most one intersection proving that the system
of equations has at most one non-trivial solution. Condition (iv) of Theorem 2.2 is
satisfied, which shows that at most one limit cycle can occur.

The three results of this section are combined to show the following.

Theorem 5.1. System (1.1) has exactly one limit cycle, which is stable and hyper-
bolic, when the singularity in the first quadrant is locally unstable.

Proof. The three propositions 5.1, 5.2 and 5.3 state that the limit cycle of each
type is unique and stable. However, since adjacent limit cycles cannot have the
same stability, only one limit cycle can exist which is stable. It is not a priori clear,
which of the three types will occur. The existence of the limit cycle follows from the
fact that system (1.1) is bounded and the singularity is unstable. Since there are no
other attracting singularities in the first quadrant, the Poincaré-Bendixson theorem
shows the existence of the limit cycle. See Figure 5 where a numerical example of
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Figure 5. Three numerical examples of system (1.1). In the first case, the singularity is globally
asymptotically stable without limit cycles. The parameter values are β = 4, µ = 1, a = 1, b = 1, c = 1,
K = 3 and r = 1. In the second case and third case, the singularity is locally unstable, and a unique
limit cycle occurs according to Theorem 5.1. The parameter values are β = 5, µ = 2, a = 0.5, b = 1,
c = 1, K = 7 and r = 1 for case 2 and the same for case 3 except that K = 10.

the limit cycle is presented.

6. Discussion

For small prey densities, the functional response function in (1.1) behaves as a
quadratic function which is a restriction not imposed by most papers on predator-
prey systems. To impose a sigmoid shape, it is not necessary to restrict the func-
tional response to this quadratic behaviour. To illustrate this idea, we can consider
the more general sigmoid functional response

p(x) =
dx+ x2

a+ bx+ cx2
, (6.1)

with d > 0.
The functional form in system (6.1) will have an sigmoidal functional form, when

the parameter d is positive and not too large: a straightforward computation shows

p′′(0) = 2(a−db)
a2 . It means that if d is not too large, the functional response remains

sigmoidal. It can be viewed as a mixture of the sigmoid functional response in [15]
and a Monod-Haldane functional response. In this paper, we proved the uniqueness
of the limit cycle when d = 0 in (6.1), but it would be interesting to see how many
limit cycles the more general system with d > 0 would have. We expect this system
to have two limit cycles for certain values of the parameters. This is a question to
be resolved in future research.
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