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Abstract In this paper, we consider a class of stochastic BAM neural net-
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1. Introduction

A class of two-layer interassociative networks called bidirectional associative mem-
ory (BAM) neural networks is an important model with the ability of informa-
tion memory and information association, which is crucial for application in pat-
tern recognition, solving optimization problems and automatic control engineer-
ing [11,14,18]. In such applications, the dynamical characteristics of networks play
an important role.

As is well known, in both biological and man-made neural networks, delays oc-
cur due to finite switching speed of the amplifiers and communication time. They
slow down the transmission rate and can influence the stability of designed neu-
ral networks by creating oscillatory or unstable phenomena. Many authors have
obtained interesting results on the stability of neural networks in [4, 20, 25], and
synchronization in [5], so it is more important in accordance with this fact to study
the BAM neural networks with delays. The circuits diagram and connection pattern
implementing for the delayed BAM neural networks can be found in [3]. In recent
years, some useful results on the dynamical behaviors of the delayed BAM neural
networks have been given, for example, see [12, 16, 21, 27, 28] for stability, see [23]
for the synchronization, and see [2, 3, 17, 19] for the periodic oscillatory behavior.
Of those, since it has been found applications in learning theory [22], which is moti-
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vated by the fact that learning usually requires repetition, it is of prime importance
to study periodic oscillatory solutions of neural networks.

However, a real system is usually affected by external perturbations which in
many cases are of great uncertainty and hence may be treated as random, as pointed
out by [8] that in real nervous systems synaptic transmission is a noisy process
brought on by random fluctuations from the release of neurotransmitters, and other
probabilistic causes. Therefore, it is significant and of prime importance to consider
stochastic effects to the dynamics behavior of stochastic BAM neural networks with
delays. Many interesting results on stability of stochastic BAM neural networks
with delays have been reported, see [1, 6, 15,24,29,30].

To the best of our knowledge, some authors have considered the stability of
trivial solution to the stochastic BAM neural networks, see [6, 15,24,29]. However,
few authors have considered the existence of periodic solution to stochastic BAM
neural networks with delays. Motivated by the above discussions, we will study the
existence and global p-exponential stability of periodic solution for stochastic BAM
neural networks with delays. By establishing new integral inequalities and using the
properties of spectral radius of nonnegative matrix, some sufficient conditions for
the existence and global p-exponential stability of periodic solution for stochastic
BAM neural networks with delays are given. An example is provided to show the
effectiveness of the theoretical results.

2. Model description and preliminaries

For the sake of convenience, we introduce several notations and recall some basic
definitions.

Let Rl (Rl
+) be the space of l-dimensional (nonnegative) real column vectors,

and Rm×l (Rm×l
+ ) denotes the set of m × l (nonnegative) real matrices. Usually I

denotes an l × l unit matrix. For A, B ∈ Rm×l or A, B ∈ Rl, the notation A ≥ B
(A > B) means that each pair of corresponding elements of A and B satisfies the
inequality “ ≥ (>)”. Especially, A ∈ Rm×l is called a nonnegative matrix if A ≥ 0,
and z ∈ Rl is called a positive vector if z > 0. Let ρ(A) denote the spectral radius
of nonnegative square matrix A.

C(X,Y ) denotes the space of continuous mappings from the topological space

X to the topological space Y . Especially, let C
∆
= C([−τ, 0] , Rl) with a norm

∥φ∥ = sup
−τ≤s≤0

|φ (s)| and let |·| be the Euclidean norm of a vector x ∈ Rl, where

τ is a positive constant. Let (Ω,F , {Ft}t≥0, P ) be a complete probability space
with a filtration {Ft}t≥0 satisfy the usual conditions (i.e, it is right continuous
and F0 contains all P-null sets). If x(t) is an Rl-valued stochastic process on t ∈
[−τ,∞), we let xt = x (t+ s) : −τ ≤ s ≤ 0, which is regarded as a C-valued stochas-
tic process for t ≥ 0. Denote by BCb

F0

(
[−τ, 0] , Rl

)
the family of all bounded F0-

measurable, C-valued random variables ϕ, satisfying ∥ϕ∥pLp = sup
−τ≤s≤0

E|ϕ (s)|p < ∞

, where Ef means the mathematical expectation of f .
For any x ∈ Rl, ϕ ∈ C, we define [x]+ = (|x1|, . . . , |xl|)T ,and [ϕ(t)]+τ =

(|ϕ1|τ , . . . , |ϕl|τ )T , where |ϕi|τ = sup−τ≤s≤0 |ϕi(t+ s)|, i = 1, 2, . . . , l.
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We consider stochastic BAM neural networks with delays as follows:

dxi (t) =

[
−cixi (t) +

n∑
j=1

aijfj (yj (t− τi)) + Ii (t)

]
dt

+
n∑

j=1

σij (yj (t)) dw (t) , t ≥ t0 ≥ 0,

dyi (t) =

[
−c̄iyi (t) +

n∑
j=1

āijgj (xj (t− τi)) + Īi (t)

]
dt

+
n∑

j=1

σ̄ij (xj (t)) dw (t) , t ≥ t0 ≥ 0,

xi (t) = ϕi (t) , yi (t) = φi (t) , t0 − τ ≤ t ≤ t0,

(2.1)

in which i = 1, . . . , n; ci > 0 and ci > 0 denote the passive decay rates; time
delays 0 ≤ τi < τ correspond to finite speed of axonal signal transmission; aij
and aij are the synaptic connection strengths; fj and gj represent the signal prop-
agation functions; Ii(t), Ii(t) are the exogenous inputs and are periodic contin-
uous functions with periodic ω > 0 for t ≥ t0; σ (·) = (σ1 (·) , . . . , σn (·)) and
σ (·) = (σ1 (·) , . . . , σn (·)) : Rn → Rn are the diffusion coefficient vectors; w(t)
is a scalar Brownian motion defined on (Ω,F , {Ft}t≥0, P ). The initial condition
ϕ = col{ϕi},and φ = col{φi} ∈ BCb

F0
([−τ, 0], Rn) .

For convenience in the following we shall rewrite equation(2.1) in the form:
dx (t) = [−Cx (t) +Af (y (t− τ)) + I (t)] dt+ σ (y (t)) dw (t) , t ≥ t0 ≥ 0,

dy (t) =
[
−C̄y (t) + Āg (x (t− τ)) + Ī (t)

]
dt+ σ̄ (x (t)) dw (t) , t ≥ t0 ≥ 0,

x (t) = ϕ (t) , y (t) = φ (t) , t0 − τ ≤ t ≤ t0,

where x(t) = col{xi(t)}, y(t) = col{yi(t)}, C = diag {ci}, A = (aij)n×n, C =
diag{ci}, A = (aij)n×n, f(y(t−τ)) = col{fj(yj(t−τi))}, g(x(t−τ)) = col{gj(xj(t−

τi))}, I(t) = col{Ii(t)}, I(t) = col{Ii(t)}, σ(y(t)) = col{
n∑

j=1

σij (yj (t))}, and

σ(x(t)) = col{
n∑

j=1

σij (xj (t))}, τ = (τi).

As a standing hypothesis, we assume that for any ϕ, φ ∈ BCb
F0

([−τ, 0] , Rn),
there exists a solution of equation(2.1). Later on we shall often denote the solution

of equation(2.1) by z (t) = z (t, t0, ϕ, φ) =
(
xT (t, t0, ϕ), y

T (t, t0, φ)
)T

, or zt (t0, ϕ, φ)
for all t0 ≥ 0 and ϕ, φ ∈ BCb

F0
([−τ, 0] , Rn).

Definition 2.1. A stochastic process zt(s) is said to be periodic with period ω if
its finite dimensional distributions are periodic with periodic ω, i.e., for any positive
integer m and any moments of time t1, . . . , tm, the joint distributions of the random
variables zt1+kω

(s), . . . , ztm+kω
(s) are independent of k (k = ±1,±2, . . .).

Remark 2.1. By the definition of periodicity, if z(t) is a ω-periodic stochastic
process, then its mathematical expectation and variance are ω-periodic [7, p49].

Definition 2.2. The periodic solution z(t, t0, ϕ, φ) with the initial condition ϕ, φ ∈
BCb

F0
([−τ, 0] , Rn) of equation(2.1) is called global p-exponential stability if there

are constants λ > 0 and L ≥ 1 such that for any solution z(t, t0, ϕ1, φ1) with the
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initial condition ϕ1, φ1 ∈ BCb
F0

([−τ, 0] , Rn) of equation(2.1), we have

E|z (t, t0, ϕ, φ)− z (t, t0, ϕ1, φ1)|p ≤ L
∥∥(ϕT , φT )T − (ϕT

1 , φ
T
1 )

T
∥∥p
Lp e

−λ(t−t0), t ≥ t0.

Here λ is called the exponential convergence rate.

Definition 2.3. The set S ⊂ BCb
F0

([−τ, 0] , Rn) is called a global attracting set of

equation(2.1), if for any initial value ϕ, φ ⊂ BCb
F0

([−τ, 0] , Rn), we have

dist(xt(t0, ϕ), S) → 0 and dist(yt(t0, φ), S) → 0 as t → ∞,

where
dist (η, S) = inf

γ∈S
ρ (η, γ) for η ∈ BCb

F0
([−τ, 0] , Rn) ,

where ρ (·, ·) is any distance in BCb
F0

([−τ, 0] , Rn) .

Definition 2.4. The solutions zt (t0, ϕ, φ) of equation(2.1) are said to be
(i) p-uniformly bounded, if for each α > 0, t0 ≥ 0, there exists a positive

constant θ = θ (α) which is independent of t0 such that E
∥∥(ϕT , φT )T

∥∥p ≤ α implies
E [∥zt (t0, ϕ, φ)∥p] ≤ θ, t ≥ t0;

(ii) p-point dissipative, if there is a constant N > 0, for any point ϕ, φ ∈
BCb

F0
([−τ, 0] , Rn), there exists T (t0, ϕ, φ) such that

E [∥zt (t0, ϕ, φ)∥p] ≤ N, t ≥ t0 + T (t0, ϕ, φ) .

We recall the following result [26, Theorem 3.5] which lays the foundation for
the existence of a periodic solution to equation (2.1).

Lemma 2.1 ( [26]). Assume that the solutions of equation (2.1) are globally ex-
istent, p-uniformly bounded and p-point dissipative for p > 2, then there is an
ω-periodic solution.

For A ∈ Rn×n
+ , the spectral radius ρ(A) is an eigenvalue of A and its eigenspace

is denoted by

Wρ (A)
∆
= {z ∈ Rn |Az = ρ (A) z } ,

which includes all positive eigenvectors of A provided that the nonnegative matrix
A has at least one positive eigenvector(see [10]).

Lemma 2.2 ( [13]). Suppose that M ∈ Rn×n
+ and ρ(M) < 1, then there exists a

positive vector z such that
(I −M)z > 0.

For M ∈ Rn×n
+ and ρ(M) < 1, we denote

Ωρ(M) = {z ∈ Rn|(I −M)z > 0, z > 0},

which is a nonempty set by Lemma 2.2, and which satisfies that k1z1+k2z2 ∈ Ωρ(M)
for any scalars k1 > 0, k2 > 0 and vectors z1, z2 ∈ Ωρ(M). So Ωρ(M) is a cone
without a vertex in Rn, which we refer to as a “ρ-cone ”.
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Lemma 2.3. Let u(t), v(t) ∈ C(R,Rn
+) be a solution of the delay integral inequality

u(t) ≤ M1e
−δ1(t−t0) [ϕ1(t0)]

+
τ +

∫ t

t0
e−C1(t−t0)A1v (s) ds

+
∫ t

t0
e−C1(t−t0)B1 [v (s)]

+
τ ds+ J1, t ≥ t0,

v(t) ≤ M̄1e
−δ̄1(t−t0) [φ1(t0)]

+
τ +

∫ t

t0
e−C̄1(t−t0)Ā1u (s) ds

+
∫ t

t0
e−C̄1(t−t0)B̄1 [u (s)]

+
τ ds+ J̄1, t ≥ t0,

u(t) ≤ ϕ1 (t) , v(t) ≤ φ1 (t) , ∀t ∈ [t0 − τ, t0] ,

(2.2)

where A1, B1,M1, A1, B1,M1 ∈ Rn×n
+ , C1 =diag{c1i} and C1 =diag{c1i}, where

c1i, c1i > 0, δ1, δ1 > 0 are constants, J1, J1 ≥ 0 are constant vectors, ϕ1(t), φ1(t) ∈
C([t0 − τ, t0], R

n
+). If ρ(K−1

1 (A1 + B1 + A1 + B1)) < 1, then there are constants
0 < λ and N > 0 such that

u (t) + v(t) ≤ Nze−λ(t−t0) +
(
I − Π̂

)−1

(J1 + J1), t ≥ t0, (2.3)

for any ϕ1(t), φ1 (t) ∈ Q =
{
[ϕ1(t0)]

+
τ + [φ1(t0)]

+
τ ≤ z

∣∣∣z > 0, z ∈ Ωρ

(
eλτ Π̂ + M1+M1

N

)}
,

where K1, Π̂, λ and N are determined by

K1 = diag{k1} with ki = min{c1i, c1i}, ρ

(
eλτ Π̂ +

M1 +M1

N

)
< 1,

λ < min

{
min

1≤i≤n
{ki} , δ1, δ1

}
, Π̂ = (K1 − λI)−1(A1 +B1 +A1 +B1).

Proof. From the condition ρ(K−1
1 (A1+B1+A1+B1)) < 1, by using continuity, we

obtain that there exist positive constants λ and N such that ρ(eλτ Π̂+ M1+M1

N ) < 1.
From Lemma 2.2, we know

(eλτ Π̂ +
M1 +M1

N
)z < z. (2.4)

In order to prove (2.3), we first prove for any d > 1,

u (t) + v(t) < dNze−λ(t−t0) +
(
I − Π̂

)−1

(J1 + J1), t ≥ t0. (2.5)

If (2.5) is not true, from the fact that [ϕ1(t0)]
+
τ + [φ1(t0)]

+
τ ≤ z and u(t), v(t) is

continuous, then there must be a t1 > t0 and 1 ≤ i ≤ n such that

ei (u(t1) + v(t1)) = ei
(
dNze−λ(t1−t0) +

(
I − Π̂

)−1

(J1 + J1)

)
, (2.6)

u(t) + v(t) ≤ dNze−λ(t−t0) +
(
I − Π̂

)−1

(J1 + J1), t ≤ t1, (2.7)

where ei = (0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0). Hence, it follows from (2.2), (2.4) and (2.7) that

u(t1) + v(t1)
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≤
(
M1 +M1

)
e−λ(t−t0)

(
[ϕ1 (t0)]

+
τ + [φ1 (t0)]

+
τ

)
+

∫ t1

t0

e−C1(t1−s)A1v (s) ds

+

∫ t1

t0

e−C1(t1−s)B1 [v (s)]
+
τ ds+

∫ t1

t0

e−C1(t1−s)A1u (s) ds

+

∫ t1

t0

e−C1(t1−s)B1 [u (s)]+τ ds+ J1 + J1

≤
(
M1+M1

)
e−λ(t1−t0)z +

∫ t1

t0

e−C1(t1−s)A1

(
dNze−λ(s−t0) +

(
I − Π̂

)−1 (
J1 + J1

))
ds

+

∫ t1

t0

e−C1(t1−s)B1

(
dNzeλτe−λ(s−t0) +

(
I − Π̂

)−1 (
J1 + J1

))
ds

+

∫ t1

t0

e−C1(t1−s)A1

(
dNze−λ(s−t0) +

(
I − Π̂

)−1 (
J1 + J1

))
ds

+

∫ t1

t0

e−C1(t1−s)B1

(
dNzeλτe−λ(s−t0) +

(
I − Π̂

)−1 (
J1 + J1

))
ds+ J1 + J1

≤
(
M1 +M1

)
e−λ(t1−t0)z +

∫ t1

t0

e−K1(t1−s)A1dNze−λ(s−t0)ds

+

∫ t1

t0

e−K1(t1−s)B1dNzeλτe−λ(s−t0)ds+

∫ t1

t0

e−K1(t1−s)A1dNze−λ(s−t0)ds

+

∫ t1

t0

e−K1(t1−s)B1dNzeλτe−λ(s−t0)ds

+K−1
1

(
A1 +B1 +A1 +B1

) (
I − Π̂

)−1 (
J1 + J1

)
+ J1 + J1

≤
(
M1 +M1

)
N

e−λ(t1−t0)Nz +

∫ t1

t0

e−K1(t1−s) (A1 +A1

)
dNze−λ(s−t0)ds

+

∫ t1

t0

e−K1(t1−s) (B1 +B1

)
dNzeλτe−λ(s−t0)ds+ Π̂

(
I − Π̂

)−1 (
J1 + J1

)
+ J1 + J1

= e−λ(t1−t0)

((
M1 +M1

)
N

+

∫ t1

t0

e−K1(t1−s) (A1 +A1

)
eλ(t1−s)ds

+

∫ t1

t0

eλτe−K1(t1−s) (B1 +B1

)
eλ(t1−s)ds

)
dNz +

(
I − Π̂

)−1 (
J1 + J1

)
≤ e−λ(t1−t0)

((
M1 +M1

)
N

+ eλτ Π̂

)
dNz +

(
I − Π̂

)−1 (
J1 + J1

)
< dNze−λ(t1−t0) +

(
I − Π̂

)−1 (
J1 + J1

)
,

which contradicts to the equality (2.6). So (2.5) holds for all t ≥ t0. Letting d → 1 in
(2.5), we have (2.3). The proof is complete.

If J1 = 0 and J1 = 0, we can easily get the following corollary.

Corollary 2.1. Assume that all conditions of Lemma 2.3 hold. Then all solutions
of the inequality (2.2) exponentially convergence to zero.

3. Main results

To obtain the existence and global p-exponential stability of periodic solution of
equation(2.1), we introduce the following assumptions.
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(H1) fj (0) = gj (0) = σij (0) = σij (0) = 0, fj , gj , σij and σij are Lipschitz-
continuous with Lipschitz constants αj > 0, βj > 0, Lij > 0 and Lij > 0, respec-
tively, for i, j = 1, 2, . . . , n.

(H2) Set Υ = K−1
2 (A2H + B2H + A2H + B2H), and there exists an integral

p > 2 such that ρ(Υ) < 1 , where

A2 = diag

4p−1(p (p− 1) /2)
p/2

(2ci (p− 1) / (p− 2))
1−p/2

(
n∑

j=1

|Lij |
p

p−1

)p−1
 ,

B2 = diag

4p−1c1−p
i

(
n∑

j=1

|aijαj |
p

p−1

)p−1
 ,

A2 = diag

4p−1(p (p− 1) /2)
p/2

(2ci (p− 1) / (p− 2))
1−p/2

(
n∑

j=1

∣∣Lij

∣∣ p
p−1

)p−1
 ,

B2 = diag

4p−1c1−p
i

(
n∑

j=1

|aijβj |
p

p−1

)p−1
 ,

K2 = diag{k2i} with k2i = min{ci, ci}, H = (hij)n×n, hij = 1, i, j = 1, . . . , n.

Theorem 3.1. Suppose that (H1)− (H2) hold, then the system (2.1) must have a
periodic solution, which is globally p-Exponentially stable and in the attracting set
S = {ϕ ∈ BCb

F0
([−τ, 0] , Rn) | (∥ϕ1∥pLp , . . . , ∥ϕn∥pLp) < (I −Υ1)

−1(J2 + J2)}, where

J2 = col
{(

Îi
ci

)p}
, J2 = col

{(
Îi

ci

)p}
, Îi = sup0≤t≤ω Ii(t), Îi = sup0≤t≤ω Ii(t),

Υ1 = (K2 − λI)−1(A2H +B2H +A2H +B2H) and λ > 0 is determined by

ρ(Υ1) < 1 and λ < min
1≤i≤n

{k2i} . (3.1)

Proof. By using continuity and condition (H2), we know that (3.1) has at least
one positive solution.

By the method of variation parameter, we have for t ≥ t0, i = 1, . . . , n,

xi (t) = xi (t0) e
−ci(t−t0) +

∫ t

t0
e−ci(t−s)

n∑
j=1

aijfj (yj (s− τi)) ds+
∫ t

t0
e−ci(t−s)

×
n∑

j=1

σij (yj (s)) dw (s) +
∫ t

t0
e−ci(t−s)Ii (s) ds =: I1i + I2i + I3i + I4i,

yi (t) = yi (t0) e
−c̄i(t−t0) +

∫ t

t0
e−c̄i(t−s)

n∑
j=1

āijgj (xj (s− τi)) ds+
∫ t

t0
e−c̄i(t−s)

×
n∑

j=1

σ̄ij (xj (s)) dw (s) +
∫ t

t0
e−c̄i(t−s)Īi (s) ds =: Ī1i + Ī2i + Ī3i + Ī4i.

By using the inequality (a+ b+ c+ d)
p ≤ 4p−1 (ap + bp + cp + dp) for any positive

real numbers a, b, c and d, taking expectations, we find for all t ≥ t0,

E|xi (t)|p ≤ 4p−1E (|I1i|p + |I2i|p + |I3i|p + |I4i|p) . (3.2)

First, we evaluate the first term of the right-hand side as follows:

E|I1i|p = E
∣∣∣xi (t0) e

−ci(t−t0)
∣∣∣p
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≤ e−pci(t−t0) ∥ϕ∥pLp . (3.3)

As to the second term, by hölder inequality, we have

E|I2i|p = E

∣∣∣∣∣∣
∫ t

t0

e−ci(t−s)
n∑

j=1

aijfj (yj (s− τi)) ds

∣∣∣∣∣∣
p

≤ E

∣∣∣∣∣∣
∫ t

t0

e−ci(t−s)
n∑

j=1

aijαj |yj (s− τi)| ds

∣∣∣∣∣∣
p

≤ E

[∫ t

t0

e−ci(t−s)ds

]p−1
∫ t

t0

e−ci(t−s)

 n∑
j=1

|aijαj | |yj (s− τi)|

p

ds


≤ c1−p

i

∫ t

t0

e−ci(t−s)

 n∑
j=1

|aijαj |
p

p−1

p−1
n∑

j=1

E |yj (s− τi)|pds

 . (3.4)

As to the third term, using an estimate on the Itô integral established in [9, Propo-
sition 1.9] and hölder inequality, we obtain:

E|I3i|p = E

∣∣∣∣∣
∫ t

t0

e−ci(t−s)
n∑

j=1

σij (yj (s)) dw (s)

∣∣∣∣∣
p

≤ cp

∫ t

t0

(
e−cip(t−s)E

∣∣∣∣∣
n∑

j=1

σij (yj (s))

∣∣∣∣∣
p)2/p

ds

p/2

≤ cp

∫ t

t0

(
e−cip(t−s)E

∣∣∣∣∣
n∑

j=1

Lij |yj (s)|

∣∣∣∣∣
p)2/p

ds

p/2

= cp

∫ t

t0

(
e−ci(p−1)(t−s)e−ci(t−s)E

∣∣∣∣∣
n∑

j=1

Lij |yj (s)|

∣∣∣∣∣
p)2/p

ds

p/2

≤ cp

[∫ t

t0

e
−ci

2(p−1)
p−2

(t−s)
ds

]p/2−1
[∫ t

t0

e−ci(t−s)E

∣∣∣∣∣
n∑

j=1

Lij |yj (s)|

∣∣∣∣∣
p

ds

]

≤ cp(2ci (p− 1) / (p− 2))1−p/2

[∫ t

t0

e−ci(t−s)E

∣∣∣∣∣
n∑

j=1

Lij |yj (s)|

∣∣∣∣∣
p

ds

]

≤ cp

(
2ci (p− 1)

(p− 2)

)1− p
2

[∫ t

t0

e−ci(t−s)

(
n∑

j=1

|Lij |
p

p−1

)p−1 n∑
j=1

E|yj (s)|pds

]
.(3.5)

where cp = (p (p− 1) /2)
p/2

. As far as the last term is concerned, we have

E|I4i|p =

∣∣∣∣∫ t

t0

e−ci(t−s)Ii (s) ds

∣∣∣∣p ≤

(
Îi
ci

)p

. (3.6)
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It follows from (3.2)-(3.6) that

E|xi (t)|p ≤ 4p−1

e−pci(t−t0) ∥ϕ∥pLp + c1−p
i

∫ t

t0
e−ci(t−s)

(
n∑

j=1

|aijαj |
p

p−1

)p−1

×
n∑

j=1

E|yj (s− τi)|pds

]
+ cp(2ci (p− 1) / (p− 2))

1−p/2

×

∫ t

t0
e−ci(t−s)

(
n∑

j=1

|Lij |
p

p−1

)p−1
n∑

j=1

E|yj (s)|pds

+
(

Îi
ci

)p .

Proceeding as the proof above, we have

E|yi (t)|p ≤ 4p−1

e−pc̄i(t−t0) ∥φ∥pLp + c̄1−p
i

∫ t

t0
e−c̄i(t−s)

(
n∑

j=1

|āijβj |
p

p−1

)p−1

×
n∑

j=1

E|xj (s− τi)|pds

]
+ cp(2c̄i (p− 1) / (p− 2))

1−p/2

×

∫ t

t0
e−c̄i(t−s)

(
n∑

j=1

∣∣L̄ij

∣∣ p
p−1

)p−1
n∑

j=1

E|xj (s)|pds

+
(

Îi

c̄i

)p .

Set Vi(t) = E|xi(t)|p, V i(t) = E|yi(t)|p, i = 1, . . . , n. It follows from (H2) that

V (t) ≤ 4p−1 ∥ϕ∥pLp e−c(t−t0) +
∫ t

t0
e−C(t−s)A2V (s) ds

+
∫ t

t0
e−C(t−s)B2

[
V (s)

]+
τ
ds+ J2,

V (t) ≤ 4p−1 ∥φ∥pLp e−c(t−t0) +
∫ t

t0
e−C(t−s)A2V (s) ds

+
∫ t

t0
e−C(t−s)B2 [V (s)]

+
τ ds+ J2,

where V (t) = (V1(t), . . . , Vn(t))
T , V (t) = (V 1(t), . . . , V n(t))

T , c = min1≤i≤n ci and
c = min1≤i≤n ci.

From Lemma 2.3 and Condition (H2), the solutions of equation(2.1) are p-
uniformly bounded and S = {ϕ ∈ BCb

F0
([−τ, 0] , Rn) | (∥ϕ1∥pLp , . . . , ∥ϕn∥pLp) < (I−

Υ1)
−1(J2+J2)} is an attracting set of equation (2.1) (i.e., the family of all solutions

of equation (2.1) is p-point dissipative). From Lemma 2.1, there must exist an ω-
periodic solution.

Denote z∗(t) = (x∗
1(t), . . . , x

∗
n(t), y

∗
1(t), . . . , y

∗
n(t))

T with the initial condition(
ϕ∗T , φ∗T

)T
be the ω-periodic solution and z(t)=(x1(t),. . ., xn(t), y1(t),. . ., yn(t))

T

with initial condition (ϕT , φT )T be an arbitrary solution of equation(2.1).
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We rewrite equation (2.1) by

d [xi (t)−x∗
i (t)]=

[
−ci (xi (t)−x∗

i (t))+
n∑

j=1

aij (fj (yj (t−τi)) −fj
(
y∗j (t− τi)

)]
dt

+
n∑

j=1

(
σij (yj (t))− σij

(
y∗j (t)

))
dw (t) , t ≥ t0,

d [yi (t)−y∗i (t)]=

[
−c̄i (yi (t)−y∗i (t))+

n∑
j=1

āij (gj (x̄j (t− τi)) −gj
(
x̄∗
j (t− τi)

)]
dt

+
n∑

j=1

(
σ̄ij (xj (t))− σ̄ij

(
x∗
j (t)

))
dw (t) , t ≥ t0,

xi (t)− x∗
i (t) = ϕi (t)− ϕ∗

i (t) , yi (t)− y∗i (t) = φi (t)− φ∗
i (t) , t0 − τ ≤ t ≤ t0.

Let Ui(t) = E|xi(t)−x∗
i (t)|p and U i(t) = E|yi(t)−y∗i (t)|p, i = 1, . . . , n. Proceeding

as the proof of the existence of periodic solution of equation(2.1), we have

U (t) ≤ 4p−1 ∥ϕ∥pLp e−c(t−t0) +
∫ t

t0
e−C(t−s)A2U (s) ds

+
∫ t

t0
e−C(t−s)B2

[
U (s)

]+
τ
ds,

U (t) ≤ 4p−1 ∥φ∥pLp e−c(t−t0) +
∫ t

t0
e−C(t−s)A2U (s) ds

+
∫ t

t0
e−C(t−s)B2 [U (s)]

+
τ ds,

where U(t) = (U1(t), . . . , Un(t))
T and U(t) = (U1(t), . . . , Un(t))

T .
From Corollary 2.1, we get that the periodic solution is globally p-exponentially

stable, and the proof is completed.

4. Example

Example 4.1. Consider the periodic stochastic BAM neural networks with delays:

d

x1 (t)

x2 (t)

 = −

4 0

0 8

x1(t)

x2(t)

 dt+

 0.4 0.1

0.1 0.4

 f1 (y1 (t− 1))

f2 (y2 (t− 2))

 dt

+

 sin t

sin t

 dt+

 0.1y1 (t) + 0.1y2 (t)

0.1y1 (t) + 0.1y2 (t)

 dw (t) ,

d

 y1 (t)

y2 (t)

 = −

 4 0

0 8

 y1(t)

y2(t)

 dt+

 0.4 0.1

0.1 0.4

 g1 (x1 (t− 1))

g2 (x2 (t− 2))

 dt

+

 sin t

sin t

 dt+

 0.1x1 (t) + 0.1x2 (t)

0.1x1 (t) + 0.1x2 (t)

 dw (t) ,

(4.1)

where f (x) = arctanx, g (x) = ex−e−x

ex+e−x .
It is obvious that

A = A =

0.4 0.1

0.1 0.4

 , C = C =

 4 0

0 8

 ,
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αj = βj = 1, Lij = Lij = 0.1, i, j = 1, 2, τ = 2 and I1(t) = I2(t) = I1(t) = I2(t) =
sin t. Taking p = 3, we have

A2 = Ā2 =

 (16×
√
27)× 10−3 0

0 (8
√
2×

√
27)× 10−3

 ,

B2 = B̄2 =

81× 10−3 0

0 81/4× 10−3

 ,

K2 =

 4 0

0 8

 , H =

 1 1

1 1

 .

Therefore,

K−1
2 (A2H +B2H + Ā2H + B̄2H)

=

 (
8×

√
27 + 162

)
× 10−3

(
8×

√
27 + 162

)
× 10−3(

2
√
2×

√
27 + 81/16

)
× 10−3

(
2
√
2×

√
27 + 81/16

)
× 10−3

 ,

ρ
(
K−1

2 (A2H +B2H + Ā2H + B̄2H)
)

=
[(
8 + 2

√
2
)
×

√
27 + 162 + 81/16

]
× 10−3 < 1.

It follows from Theorem 3.1 that this equation has a 2π-periodic solution, which
is globally exponentially stable.

5. Conclusion

Some sufficient conditions for the existence and global p-exponential stability of
ω-periodic solutions for stochastic BAM neural networks with delays are given by
establishing new integral inequalities and using the properties of spectral radius of
nonnegative matrice. At the same time, the solution satisfies the p-point dissipation
and p-uniform boundedness, the BAM neural network under random disturbance
can also obtain the existence of periodic solution. In the future, we plan to explore
the influence of fractional Brownian motion on the existence of periodic solutions
of BAM neural network through the demonstration which is similar to this paper.
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