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Optimal Decay Rates for the Highest-Order
Derivatives of Solutions for the Compressible

MHD Equations with Coulomb Force∗
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Abstract For the Cauchy problem of the 3D compressible MHD equations
with Coulomb force, the large time behavior of this model is further investigat-
ed in this article. Compared to the previous related works in Tan-Tong-Wang
[J. Math. Anal. Appl. 427 (2015) 600–617], the main novelty of this paper
is that we prove the optimal decay rates for the highest-order spatial deriva-
tives of the solutions to the compressible MHD equations with Coulomb force,
which are the same as those of the heat equation.
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1. Introduction

Considering the initial value problem of 3D isentropic MHD equations with Coulomb
force for viscous compressible fluid:

ρt + div(ρv) = 0,

(ρv)t + div(ρv ⊗ v) +∇P = curlH ×H + µ∆v + (λ+ µ)∇divv + ρ∇Φ,

Ht − curl(v ×H)− ν∆H = 0, divH = 0,

∆Φ = ρ− ρ̄,
(1.1)

with the initial data as follows:

(ρ, v,H,∇Φ)(t, x)
∣∣
t=0

= (ρ0, v0, H0,∇Φ0)(x), (1.2)

the far field behavior of solutions, we assume:

(ρ0, v0, H0,∇Φ0)(x)→ (ρ̄, 0, 0, 0) as |x| → ∞. (1.3)

Here the unknown functions ρ = ρ(t, x) ≥ 0, v = v(t, x) ∈ R3, H = H(t, x) ∈ R3

and Φ = Φ(t, x) ∈ R3 are density, velocity, magnetic field and electric potential
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respectively. The pressure P = P (ρ) is a smooth function with P
′
(ρ) > 0 for ρ > 0.

The constants µ, λ are the viscosity coefficients of the flow, and they satisfy the
physical restrictions µ > 0 and 2µ + 3λ ≥ 0. The constant ν > 0 represents the
magnetic diffusivity. ρ̄ represents the positive constant.

1.1. History of the problem

Let us give some explanations about the above model. When the magnetic field
and the Coulomb force are taken into account, the compressible Navier-Stokes-
Poisson equations are transformed into the compressible viscous magnetohydro-
dynamic(MHD) equations with Coulomb force, which is of hyperbolic-parabolic-
elliptic mixed type. Owing to the physical importance and mathematical challenges,
there is a huge literature on the investigations of well-posedness of smooth or weak
solutions to the compressible MHD equations with Coulomb force, cf. [4,6,8,10,12].
To get straight to the point of this article, let’s just give a brief overview of the re-
sults for this model. When time goes to infinity, Tan-Wang [8] showed the vanishing
vacuum phenomena of the finite energy weak solutions via the weak convergence
method. Wang [9] proved that the weak solutions decay exponentially to the equi-
librium state in L2 norm. What’more, Zheng-Tan [10] obtained the optimal time
decay estimate of the solutions by spectral analysis and energy methods. And Tan-
Tong-Wang [11] obtained the global existence and time decay rates of the solutions
through a general energy method. More precisely, under the assumptions that the
initial data ‖(ρ0 − ρ̄, v0, H0,∇Φ0)(x)‖H3 is sufficiently small, one has

‖(ρ− ρ̄, v,H,∇Φ)(t)‖2HN +

∫ t

0

‖(ρ− ρ̄,∇v,∇H,∇∇Φ)(s)‖2HN ds

≤C‖(ρ0 − ρ̄, v0, H0,∇Φ0)‖2HN .

(1.4)

Furthermore, if (ρ0 − ρ̄, v0, H0,∇Φ0)(x) ∈ HN ∩ L1, it holds that

‖∇`(ρ− ρ̄, v,H,∇Φ)(t)‖HN−l . (1 + t)−
3
4−

`
2 ` = 0, 1, ..., N − 1, (1.5)

and
‖∇`(ρ− ρ̄)(t)‖L2 . (1 + t)−( 5

4 + l
2 ) ` = 0, 1, ..., N − 2. (1.6)

However, when taking ` = N − 1 in (1.5), we find that the L2–decay rate of the
highest-order (i.e. N–order) spatial derivative of the solution (ρ− ρ̄, v,H,∇Φ) is the

same as that of its lower order, which is (1 + t)−
3
4−

N−1
2 and is slower than L2-rate

(1+ t)−
3
4−

N
2 . Comparing the related results with those of the heat equation, it does

not appear to be optimal. Therefore, to improve the time decay rate in (1.5) is an
interesting and meaningful problem.

1.2. Notation

Throughout this paper, we denote Lp(R3) and Hk(R3) as usual Lebesgue space and
Sobolev spaces with norm ‖ · ‖Lp and ‖ · ‖Hk respectively. In order to construct the
low–high frequency decomposition, we will introduce some symbols in the frequency
space. Let φj ∈ C∞0 (R3

ξ)(j = 1,∞) be the following cut–off functions:

φ1(ξ) =

{
1 |ξ| ≤ a0,

0 |ξ| ≥ A0,
(1.7)
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and φ∞(ξ) := 1− φ1(ξ). Here, the two positive numbers satisfy the following rela-
tionship: 0 < a0 < A0. Then, we can define the following operators:

Qjf = F−1[φj(ξ)f̂ ], j = 1,∞.

For the sake of simplicity, denote the low and high frequencies respectively as

f l = Q1f, and fh = Q∞f.

In addition, we utilize the symbol a . b to represent a ≤ Cb for a universal positive
constant C. We use C0 to denote the positive constant depending additionally on
the initial data, and we use∇k with an integer k ≥ 0 to represent the usual arbitrary
spatial derivative of order k. Besides, we adopt the following simplified notation:
‖(f, g)‖X := ‖f‖X + ‖g‖X .

Similar to the approach developed by [13], we establish the optimal decay-in-
time of the highest-order derivatives of the solutions in the following theorem.

1.3. Main results

Theorem 1.1. Suppose that the initial data (ρ0 − ρ̄, v0, H0,∇Φ0)(x) ∈ HN ∩ L1

for any integer N ≥ 3 and there exists a constant δ0 > 0 such that if

‖(ρ0 − ρ̄, v0, H0,∇Φ0)‖H3 ≤ δ0, (1.8)

then the Cauchy problem (1.1)-(1.3) has a unique global solution (ρ(t), v(t), H(t),∇Φ
(t)) such that for any t ∈ [0,∞), we have the following optimal time decay rates

‖∇N (ρ− ρ̄, v,H,∇Φ)(t)‖L2 . (1 + t)−
3
4−

N
2 , (1.9)

and
‖∇N−1(ρ− ρ̄)(t)‖L2 . (1 + t)−

5
4−

N−1
2 . (1.10)

Remark 1.1. Let’s do a comparison between the Theorem 1.1 and the main results
(1.5)-(1.6) in [11]. In this paper, we establish the optimal decay rates of the highest-
order spatial derivatives of the solution, which are the same as those of the heat
equation. It is totally new and meaningful.

2. Proof of Theorem 1.1

For the Cauchy problem (1.1)-(1.3) in this section, we will rewrite the system in its
perturbation form which makes it easier to study. Thus, let

σ = ρ− ρ̄, z =
ρ̄

γ
v, γ =

√
P ′(ρ̄), µ1 =

µ

ρ̄
, µ2 =

λ+ µ

ρ̄
.

Then the systems (1.1)-(1.3) can be rewritten as
σt + γdivz = G1,

zt − µ1∆z − µ2∇divz + γ∇σ − ρ̄
γ∇Φ = G2,

Ht − ν∆H = G3, divH = 0,

∆Φ = σ,

(2.1)
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where the nonhomogeneous source terms Gi(i = 1, 2, 3) are defined as

G1 = −γρ̄ (σdivz + z · ∇σ),

G2 = −γρ̄ z · ∇z +
(

µ
σ+ρ̄ − µ1

)
∆u+

(
λ+µ
σ+ρ̄ − µ2

)
∇divz

+ ρ̄
γ

(
P
′
(ρ̄)
ρ̄ − P

′
(σ+ρ̄)

(σ+ρ̄)

)
∇σ + ρ̄

γ(σ+ρ̄)H · ∇H −
ρ̄

2γ(σ+ρ̄)∇(|H|2),

G3 = γ
ρ̄ (H · ∇z − z · ∇H −Hdivz).

(2.2)

The associated initial data are given by

(σ, z,H,∇Φ)(x, 0) = (ρ0 − ρ̄, z0, H0,∇Φ0)(x)→ (0, 0, 0, 0), as |x| → ∞. (2.3)

Before our proofs, we need to construct the following time-weighted energy func-
tional

M(t) = sup
0≤s≤t

(1 + s)
3
2 +N‖∇N (σ, z,H,∇Φ)(s)‖2L2 . (2.4)

Due to the benefits of (2.4), we only prove the following proposition to obtain
the decay rate (1.9) in Theorem 1.1:

Proposition 2.1. Let the hypothesis of Theorem 1.1 hold. Then we have the fol-
lowing conclusion:

M(t) ≤ C(C0 + ‖U0‖2L1). (2.5)

Then, we will divide the proof of proposition 2.1 into the following steps: deriving
the optimal decay rates on the low-frequent parts and the high-frequent parts of the
highest order derivatives of the solution. To this end, we first give a useful lemma
to deal with the integration over time, the proof of which can be found in [1]:

Lemma 2.1. Let l1, l2 > 0, and it holds that

∫ t
2

0

(1 + t− s)−l1(1 + s)−l2ds ≤


C(1 + t)−l1 , l2 > 1,

C(1 + t)−(l1−ε), l2 = 1,

C(1 + t)−(l1+l2−1), l2 < 1,

and

∫ t

t
2

(1 + t− s)−l1(1 + s)−l2ds ≤


C(1 + t)−l2 , l1 > 1,

C(1 + t)−(l2−ε), l1 = 1,

C(1 + t)−(l1+l2−1), l1 < 1,

where ε > 0 is a small but fixed constant.

Next, we can state the optimal decay rate on linearized system (2.1), whose
proof can be seen in [3, 14]:

Lemma 2.2. Let (σ̄, z̄, H̄,∇Φ̄) be the global solution of the linearized system of (2.1)
with the initial data (σ̄0, z̄0, H̄,∇Φ̄0) ∈ H`(R3). Then if there exists a sufficiently
small constant δ0 > 0, such that

K0 = ‖(σ̄0, z̄0, H̄,∇Φ̄0)‖L1 ≤ δ0, (2.6)
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then for all 0 ≤ k ≤ N (k be an integer), it holds that

‖∇k(σ̄l, z̄l, H̄,∇Φ̄l)‖L2 . (1 + t)−
3
4−

k
2 ‖(σ̄0, z̄0, H̄,∇Φ̄0)‖L1 , (2.7)

for all t ≥ 0.

For simplicity, we define U = (σ, z,H,∇Φ) to be the global smooth solution of
the Cauchy problem (2.1)–(2.3). Next, we can deduce the L2–decay estimate for
the low frequency part of the solution for the perturbation system (2.1):

Lemma 2.3. Under the assumptions of Theorem 1.1, we have the following esti-
mates:

‖∇N (σl, zl, H l,∇Φl)(t)‖L2 . (1 + t)−
3
4−

N
2 (‖U0‖L1 + δ

√
M(t)), (2.8)

Proof. Defining G = (G1, G2, G3)T , by (2.1)-(2.2), Lemma 2.1, Lemma 2.2,
Plancherel theorem and the Hausdorff-Young’s inequality, we obtain from the Duham
el’s principle that

‖∇N (σl, zl, H l,∇Φl)(t)‖L2

.(1 + t)−
3
4−

N
2 ‖U0‖L1 +

∫ t
2

0

(1 + t− s)− 3
4−

N
2 ‖Gl(s)‖L1ds

+

∫ t

t
2

(1 + t− s)− 5
4

∥∥|ξ|N−1Ĝl(s)
∥∥
L∞

ds.

(2.9)

To derive the decay on ∇N (σL, zl, HL,∇ΦL), by taking advantage of low and high
frequency decomposition, we can estimate the nonlinear terms in (2.2) like Lemma
3.1. What’s more, by the estimates (1.5) and Lemma 3.2-Lemma 3.5, we have

‖Gl(s)‖L1 .
∥∥∥γ
ρ̄

(σdivz + z · ∇σ)(s)
∥∥∥
L1

+
∥∥∥γ
ρ̄
z · ∇z(s)

∥∥∥
L1

+
∥∥∥[( µ

σ + ρ̄
− µ1

)
∆z +

(λ+ µ

σ + ρ̄
− µ2

)
∇divz

]
(s)
∥∥∥
L1

+
∥∥∥ ρ̄
γ

(P ′(ρ̄)

ρ̄
− P

′
(σ + ρ̄)

(σ + ρ̄)

)
∇σ(s)

∥∥∥
L1

+
∥∥∥[ ρ̄

γ(σ + ρ̄)
H · ∇H − ρ̄

2γ(σ + ρ̄)
∇(|H|2)

]
(s)
∥∥∥
L1

+
∥∥∥γ
ρ̄

(H · ∇z − z · ∇H −Hdivz)(s)
∥∥∥
L1

. ‖(σ, z)(s)‖L2‖∇(σ, z)(s)‖L2

+
∥∥∥[( µ

σ + ρ̄
− µ1

)
,
(λ+ µ

σ + ρ̄
− µ2

)]
(s)
∥∥∥
L2
‖∆z(s)‖L2

+
∥∥∥(P ′(ρ̄)

ρ̄
− P

′
(σ + ρ̄)

(σ + ρ̄)

)
(s)
∥∥∥
L2
‖∇σ(s)‖L2

+
∥∥∥ ρ̄

(σ + ρ̄)
(s)
∥∥∥
L∞
‖H(s)‖L2‖∇H(s)‖L2

+ ‖(z,H)(s)‖L2‖∇(z,H)(s)‖L2

. ‖(σ, z)(s)‖L2‖∇(σ, z)(s)‖L2 + ‖σ(s)‖L2‖∆z(s)‖L2

+ ‖(z,H)(s)‖L2‖∇(z,H)(s)‖L2

. (1 + s)−2.

(2.10)
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Moreover, with the help of decay rate (1.5), the definition (2.4) of M(t), Lemma
3.6, remark 3.1 and the Hölder’s and Hausdorff-Young’s inequality, we can estimate
the derivatives of the nonlinear term (2.2) as:∥∥|ξ|N−1Ĝl(s)

∥∥
L∞

. ‖∇N−1Gl(s)‖L1

. ‖∇N−1(σdivz + z · ∇σ)(s)‖L1 + ‖∇N−1(z · ∇z)(s)‖L1

+
∥∥∥∇N−2

[( µ

σ + ρ̄
− µ1

)
∆z +

(λ+ µ

σ + ρ̄
− µ2

)
∇divz

]
(s)
∥∥∥
L1

+
∥∥∥∇N−1

[(P ′(ρ̄)

ρ̄
− P

′
(σ + ρ̄)

(σ + ρ̄)

)
∇σ
]
(s)
∥∥∥
L1

+
∥∥∥∇N−1

[ ρ̄

(σ + ρ̄)
(H · ∇H −∇(|H|2))

]
(s)
∥∥∥
L1

+
∥∥∥∇N−1(H · ∇z − z · ∇H −Hdivz)(s)

∥∥∥
L1

. ‖(σ, z)(s)‖L2‖∇N (σ, z)(s)‖L2 + ‖∇(σ, z)(s)‖L2‖∇N−1(σ, z)(s)‖L2

+ ‖∇N−2σ(s)‖L2‖∆z(s)‖L2 + ‖σ(s)‖L2‖∇Nz(s)‖L2

+ ‖∇N−1σ(s)‖L2‖∇σ(s)‖L2 + ‖∇H(s)‖L2‖∇N−1H(s)‖L2

+ ‖(z,H)(s)‖L2‖∇N (z,H)(s)‖L2

. δ(1 + s)−
3
4−

N
2

√
M(s) + (1 + s)−1−N

2 .

(2.11)

Inserting estimates (2.10) and (2.11) into (2.9), then using the monotonicity of M(t)
and Lemma 2.1, we can obtain Lemma 2.3.

Next, we will work on establishing the energy estimate at high frequency, i.e.
the N -order spatial derivative of the solution. Our results are illustrated in the
following Lemma:

Lemma 2.4. Under the conditions of Theorem 1.1, the estimate

‖∇N (σh, zh, Hh,∇Φh)(t)‖L2 ≤ C(C0 + δ
√

M(t))(1 + t)−
3
4−

N
2 (2.12)

holds.

Proof. By the ∇N energy estimate, for Q∞((2.1)1), Q∞((2.1)2), Q∞((2.1)3) on
σh, zh, Hh respectively, we can see that

1

2

d

dt
‖∇Nσh‖2L2 + γ〈∇Ndivzh,∇Nσh〉 = 〈∇NGh1 ,∇Nσh〉,

1

2

d

dt
‖∇Nzh‖2L2 + γ〈∇N∇σh,∇Nzh〉 − µ1〈∇N∆zh,∇Nzh〉

− µ2〈∇N∇divzh,∇Nzh〉 − ρ̄

γ
〈∇N∇Φh,∇Nzh〉 = 〈∇NGh2 ,∇Nzh〉,

1

2

d

dt
‖∇NHh‖2L2 − ν〈∇N∆Hh,∇NHh〉 = 〈∇NGh3 ,∇NHh〉.

(2.13)
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And note that

− ρ̄
γ
〈∇N∇Φh,∇Nzh〉 =

ρ̄

γ
〈∇NΦh,∇Ndivzh〉

= − ρ̄
γ
〈∇NΦh,∇N

[1

ρ̄
div(σz) +

1

γ
σt

]h
〉

= − 1

γ
〈∇NΦh,∇Ndiv(σz)h〉 − ρ̄

γ2
〈∇NΦh,∇N∆Φht 〉

=
1

γ
〈∇N∇Φh,∇N (σz)h〉+

ρ̄

γ2
〈∇N∇Φh,∇N∇Φht 〉

=
ρ̄

2γ2

d

dt
‖∇N∇Φh‖2L2 +

1

γ
〈∇N∇Φh,∇N (σz)h〉.

(2.14)

Thus by (2.13), (2.14) and integration by parts, we infer that

1

2

d

dt
‖∇N (σh, z,H)‖2L2 +

ρ̄

2γ2

d

dt
‖∇N∇Φh‖2L2 + (µ1 + µ2)‖∇N+1zh‖2L2

+ ν‖∇N+1Hh‖2L2 = 〈∇NGh1 ,∇Nσh〉+ 〈∇NGh2 ,∇Nzh〉+ 〈∇NGh3 ,∇NHh〉

− 1

γ
〈∇N∇Φh,∇N (σz)h〉. (2.15)

Now, let us estimate the terms in the righthand side of (2.15) one by one. For
the first term, we know that:

〈∇NGh1 ,∇Nσh〉 = −γ
ρ̄
〈∇N (σdivz + z · ∇σ)h,∇Nσh〉

= −γ
ρ̄
〈∇N (σdivz)h,∇Nσh〉 − γ

ρ̄
〈∇N (z · ∇σ)h,∇Nσh〉

:= I1 + I2.

(2.16)

For I1, by (1.8) and Lemma 3.1–Lemma 3.5, we get

|I1| . ‖∇N (σdivz)h‖L2‖∇Nσh‖L2

. ‖∇N (σdivz)‖L2‖∇Nσh‖L2

. (‖σ‖L∞‖∇Ndivz‖L2 + ‖∇Nσ‖L2‖divz‖L∞)‖∇Nσ‖L2

. (‖∇σ‖H1‖∇Ndivz‖L2 + ‖∇Nσ‖L2‖∇divz‖H1)‖∇Nσ‖L2

. δ(‖∇Nσ‖2L2 + ‖∇N+1z‖2L2),

(2.17)

where we have used Young’s and Hölder’s inequalities. For the term I2, we obtain
from f = fh + f l that

I2 = −γ
ρ̄
〈∇N (z · ∇σ)h,∇Nσh〉

= −γ
ρ̄
〈∇N (z · ∇σ)−∇N (z · ∇σ)l,∇Nσh〉

= −γ
ρ̄
〈∇N (z · ∇σh) +∇N (z · ∇σl)−∇N (z · ∇σ)l,∇Nσh〉

:= I2,1 + I2,2 + I2,3.

(2.18)
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In terms of the commutator notation of Lemma 3.4, one can obtain

− γ

ρ̄
〈∇N (z · ∇σh),∇Nσh〉 = −γ

ρ̄
〈z · ∇∇Nσh,∇Nσh〉 − γ

ρ̄
〈[∇N , z]∇σh,∇Nσh〉.

We can employ integrating by parts to imply

|〈z · ∇∇Nσh,∇Nσh〉| =
∣∣∣1
2
〈divz, |∇Nσh|2〉

∣∣∣ . ‖∇z‖L∞‖∇Nσh‖2L2

. δ‖∇Nσh‖2L2 .
(2.19)

On the other hand, based on the estimates (3.5) of Lemma 3.4, we can derive

|〈[∇N , z]∇σh,∇Nσh〉| . ‖[∇N , z]∇σh‖L2‖∇Nσh‖L2

. (‖∇z‖L∞‖∇Nσh‖L2 + ‖∇Nz‖L6‖∇σh‖L3)‖∇Nσh‖L2

. (‖∇2z‖H1‖∇Nσh‖L2 + ‖∇N+1z‖L2‖∇σh‖H1)‖∇Nσh‖L2

. δ(‖∇Nσh‖2L2 + ‖∇N+1z‖2L2).

(2.20)

Using (2.19)-(2.20), we have

|I2,1| . δ(‖∇Nσh‖2L2 + ‖∇N+1z‖2L2). (2.21)

For the term I2,2, by the fact that ‖∇kf l‖L2 ≤ ‖∇k−1f l‖L2(k ≥ 1), we have:

|I2,2| . ‖∇N (z · ∇σl)‖L2‖∇Nσh‖L2

. (‖z‖L∞‖∇N+1σl‖L2 + ‖∇Nz‖L6‖∇σl‖L3)‖∇Nσ‖L2

. (‖∇z‖H1‖∇Nσ‖L2 + ‖∇N+1z‖L2‖∇σ‖H1)‖∇Nσ‖L2

. δ(‖∇Nσ‖2L2 + ‖∇N+1z‖2L2).

(2.22)

Similar to (2.22), we have

|I2,3| . ‖∇N (z · ∇σ)l‖L2‖∇Nσh‖L2

. ‖∇N−1(z · ∇σ)‖L2‖∇Nσ‖L2

. (‖z‖L∞‖∇Nσ‖L2 + ‖∇N−1z‖L6‖∇σ‖L3)‖∇Nσ‖L2

. (‖∇z‖H1‖∇Nσ‖L2 + ‖∇Nz‖L2‖∇σ‖H1)‖∇Nσ‖L2

. δ(‖∇Nσ‖2L2 + ‖∇Nz‖2L2).

(2.23)

Inserting estimates (2.21)-(2.23) into (2.18), it is easy to obtain

|I2| . δ‖(∇Nσ,∇Nz,∇N+1z)‖2L2 . (2.24)

Therefore, summing up estimates (2.17) and (2.24), we have

|〈∇NGh1 ,∇Nσh〉| . δ‖(∇Nσ,∇Nz,∇N+1z)‖2L2 . (2.25)
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For the second term in the right-hand side of (2.15), we obtain from (2.2) that

〈∇NGh2 ,∇Nzh〉 = −γ
ρ̄
〈∇N (z · ∇z)h,∇Nzh〉

+
〈
∇N

[( µ

σ + ρ̄
− µ1

)
∆z +

(λ+ µ

σ + ρ̄
− µ2

)
∇divz

]h
,∇Nzh

〉
+
ρ̄

γ

〈
∇N

[(P ′(ρ̄)

ρ̄
− P

′
(σ + ρ̄)

(σ + ρ̄)

)
∇σ
]h
,∇Nzh

〉
+
〈
∇N

[ ρ̄

γ(σ + ρ̄)
H · ∇H

]h
,∇Nzh

〉
−
〈
∇N

[ ρ̄

2γ(σ + ρ̄)
∇(|H|2)

]h
,∇Nzh

〉
:=

7∑
i=3

Ii.

(2.26)

Next, we devote ourselves to estimating the five terms on the right-hand side of
(2.26). For the term I3, I6 and I7, similar to the proof of (2.17), we can obtain

|I3|+ |I6|+ |I7| . δ‖∇N+1z‖2L2 + ‖∇N+1H‖2L2 . (2.27)

I4 is estimated by

|I4| =
∣∣∣〈 ∇N[( µ

σ + ρ̄
− µ1

)
∆z +

(λ+ µ

σ + ρ̄
− µ2

)
∇z
]h
,∇Nzh

〉∣∣∣
=
∣∣∣〈 ∇N−1

[( µ

σ + ρ̄
− µ1

)
∆z +

(λ+ µ

σ + ρ̄
− µ2

)
∇z
]h
,∇Ndivzh

〉∣∣∣
.
∥∥∥∇N−1

[( µ

σ + ρ̄
− µ1

)
∆z +

(λ+ µ

σ + ρ̄
− µ2

)
∇z
]h∥∥∥

L2
‖∇Ndivzh‖L2

.
∥∥∥∇N−1

[( µ

σ + ρ̄
− µ1

)
∆z +

(λ+ µ

σ + ρ̄
− µ2

)
∇z
]∥∥∥
L2
‖∇N+1zh‖L2

. (‖σ‖L∞‖∇N+1z‖L2 + ‖∇N−1σ‖L6‖∆z‖L3)‖∇N+1z‖L2

. (‖∇σ‖H1‖∇N+1z‖L2 + ‖∇Nσ‖L2‖∆z‖H1)‖∇N+1z‖L2

. δ(‖∇N+1z‖2L2 + ‖∇Nσ‖2L2).

(2.28)

Similarly, we also have

|I5| . δ(‖∇N+1z‖2L2 + ‖∇Nσ‖2L2). (2.29)

Plugging (2.27)-(2.29) into (2.26) yields that

|〈∇NGh2 ,∇Nzh〉| . δ‖(∇Nσ,∇N+1H,∇N+1z)‖2L2 . (2.30)

We also need to estimate the last term 〈∇NGh3 ,∇Nzh〉 which is equivalent to the
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following:

|〈∇NGh3 ,∇NHh〉| =
∣∣∣γ
ρ̄
〈∇N (H · ∇z − z · ∇H −Hdivz)h,∇NHh〉

∣∣∣
. ‖∇N (H · ∇z − z · ∇H −Hdivz)h‖L2‖∇NHh‖L2

. ‖∇N (H · ∇z − z · ∇H −Hdivz)‖L2‖∇N+1H‖L2

. (‖(z,H)‖L∞‖∇N+1(z,H)‖L2

+ ‖∇(z,H)‖L∞‖∇N (z,H)‖L2)‖∇N+1H‖L2

. δ(‖∇N (z,H)‖2L2 + ‖∇N+1(z,H)‖2L2).

(2.31)

The same as before∣∣∣− 1

γ
〈∇N∇Φh,∇N (σz)h〉

∣∣∣ . ‖∇N (σz)h‖L2‖∇N∇Φh‖L2

. ‖∇N (σz)‖L2‖∇N−1σh‖L2

. ‖(σ, z)‖L∞‖∇N (σ, z)‖L2‖∇Nσ‖L2

. δ‖∇N (σ, z)‖2L2 .

(2.32)

Thus, with the aid of the estimates (2.25), (2.30)-(2.32), we obtain from (2.15)
that

1

2

d

dt
‖∇N (σh, z,H)‖2L2 +

ρ̄

2γ2

d

dt
‖∇N∇Φh‖2L2 + (µ1 + µ2)‖∇N+1zh‖2L2

+ ν‖∇N+1Hh‖2L2 . δ(‖∇N (σ, z,H)‖2L2 + ‖∇N+1(z,H)‖2L2).

(2.33)

Next, we will derive the dissipation estimate for σh to close the estimate. To
end this, taking Q∞(∇N−1(2.1)2) and multiplying ∇Nσh, integrating over R3 and
using equation (2.1)1 and (2.1)4 we have

d

dt

∫
R3

∇N−1zh∇Nσhdx+ γ‖∇Nσh‖2L2 +
ρ̄

γ
‖∇N (∇Φ)h‖2L2

=γ‖∇Nzh‖2L2 + µ1〈∇N+1zh,∇Nσh〉+ µ2〈∇Ndivzh,∇Nσh〉
+ 〈∇NGh1 ,∇N−1zh〉+ 〈∇N−1Gh2 ,∇Nσh〉.

(2.34)

The Young inequality implies

|µ1〈∇N+1zh,∇Nσh〉| . ‖∇N+1zh‖2L2 +
γ

4
‖∇Nσh‖2L2 , (2.35)

and
|µ2〈∇Ndivzh,∇Nσh〉| . ‖∇Ndivzh‖2L2 +

γ

4
‖∇Nσh‖2L2 . (2.36)

Then, we should estimate the term 〈∇NGh1 ,∇N−1zh〉. From (2.2)1, we can get

〈∇NGh1 ,∇N−1zh〉 = −γ
σ̄
〈∇N (σdivz)h,∇N−1zh〉 − γ

σ̄
〈∇N (z · ∇σ)h,∇N−1zh〉

:= J1 + J2.

(2.37)

Following the idea of (2.17) and (2.28), we can get

|J1|+ |J2| . δ(‖∇Nσ‖2L2 + ‖∇Nz‖2L2 + ‖∇N+1z‖2L2). (2.38)
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For the last term 〈∇N−1G2,∇Nσh〉, it is easy to check that

〈∇N−1G2,∇Nσh〉 = −γ
ρ̄
〈∇N−1(z · ∇z)h,∇Nσh〉

+
〈
∇N−1

[( µ

σ + ρ̄
− µ1

)
∆z +

(λ+ µ

σ + ρ̄
− µ2

)
∇divz

]h
,∇Nσh

〉
+
ρ̄

γ

〈
∇N−1

[(P ′(ρ̄)

ρ̄
− P

′
(σ + ρ̄)

(σ + ρ̄)

)
∇σ
]h
,∇Nσh

〉
+
〈
∇N−1

[ ρ̄

γ(σ + ρ̄)
H · ∇H

]h
,∇Nσh

〉
−
〈
∇N−1

[ ρ̄

2γ(σ + ρ̄)
∇(|H|2)

]h
,∇Nσh

〉
:=

7∑
j=3

Jj .

(2.39)

For the term J3, we have

|J3| . ‖∇N−1(z · ∇z)h‖L2‖∇Nσh‖L2

. ‖∇N (z · ∇z)‖L2‖∇Nσh‖L2

. (‖z‖L∞‖∇N+1z‖L2 + ‖∇Nz‖L6‖∇z‖L3)‖∇Nσ‖L2

. δ(‖∇Nσ‖2L2 + ‖∇N+1z‖2L2).

(2.40)

Similarly, we have

|J4|+ |J5| . δ(‖∇Nσ‖2L2 + ‖∇N+1z‖2L2). (2.41)

For the terms J6 and J7, we can get

|J6|+ |J7| .
∥∥∥∇N−1

[ ρ̄

γ(σ + ρ̄)
H · ∇H

]h∥∥∥
L2
‖∇Nσh‖L2

.
∥∥∥∇N−1

[ ρ̄

γ(σ + ρ̄)
H · ∇H

]∥∥∥
L2
‖∇Nσh‖L2

. (‖H‖L∞‖∇NH‖L2 + ‖∇N−1H‖L6‖∇H‖L3)‖∇Nσ‖L2

. δ‖∇N (σ,H)‖2L2 .

(2.42)

Substituting (2.35)-(2.36), (2.38) and (2.40)-(2.42) into (2.34) yields immediately

d

dt

∫
R3

∇N−1zh∇Nσhdx+
γ

2
‖∇Nσh‖2L2 +

ρ̄

γ
‖∇N (∇Φ)h‖2L2

. ‖∇N+1zh‖2L2 + δ(‖∇N (σ, z,H)‖2L2 + ‖∇N+1z‖2L2).

(2.43)

Now, to close the above energy estimate, we define the following temporary
energy functional:

E(t) = D0‖∇N (σh, zh, Hh,∇Φh)‖2L2 +

∫
R3

∇N−1zh∇Nσhdx, (2.44)
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where D0 is a large enough positive number. Then we have the equivalence rela-
tionship as follows:

c1‖∇N (σh, zh, Hh,∇Φh)‖2L2 ≤ E(t) ≤ C1‖∇N (σh, zh, Hh,∇Φh)‖2L2 , (2.45)

where c1 and C1 are two positive constants which are independent of time. Together
with the estimates (2.33) and (2.43), applying Lemma 3.1 and the smallness of δ,
we obtain

d

dt
E(t) + ‖∇Nσh‖2L2 + ‖∇N+1zh‖2L2 + ‖∇N+1Hh‖2L2 + ‖∇N (∇Φ)h‖2L2

. ‖(∇N (σl, zl, H l)‖2L2 .
(2.46)

Employing the property of the high-frequency part, we have

‖∇Nσh‖2L2 + ‖∇N+1zh‖2L2 + ‖∇N+1Hh‖2L2 + ‖∇N (∇Φ)h‖2L2 ≥ C1E(t). (2.47)

Then taking full advantage of the Gronwall inequality and Lemma 2.3, we can
obtain

E(t) ≤ E(0)e−C1t +

∫ t

0

e−C1(t−s)‖∇N (σl, zl, H l)(s)‖2L2ds

≤ E(0)e−C1t + C

∫ t

0

e−C1(t−s)(1 + s)−
3
2−N

(
‖U0‖2L1 + δ2M(s)

)
ds

≤ E(0)e−C1t + C
(
‖U0‖2L1 + δ2M(t)

)∫ t

0

e−C1(t−s)(1 + s)−
3
2−Nds

≤ C(1 + t)−
3
2−N (E(0) + ‖U0‖2L1 + δ2M(t)).

(2.48)

Therefore, due to the equivalence relationships of E(t), we directly complete the
proof of Lemma 2.4.

Finally, by Lemma 2.3 and Lemma 2.4, it holds that

‖∇N (σ, z,H,∇Φ)(t)‖2L2

≤ ‖∇N (σh, zh, Hh,∇Φh)(t)‖2L2 + ‖∇N (σl, zl, H l,∇Φl)(t)‖2L2

≤ C(1 + t)−
3
2−N (E(0) + ‖U0‖2L1 + δ2M(t)).

(2.49)

Following the definition (2.4) of M(t) and estimate (2.49), one can deduce that

M(t) ≤ C(E(0) + ‖U0‖2L1 + δ2M(t)).

Together with the smallness of δ, it implies that M(t) ≤ C(E(0) + ‖U0‖2L1). This
completes the proof of Proposition 2.1. What’s more, note that σ = div∇Φ, and
then we have (1.10).

3. Appendix

In our appendix, we will give some important analytical tools which are available
to our proof mentioned above. To begin with, let’s introduce the properties about
high-low frequency decomposition.
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Lemma 3.1. If F (x) ∈ H`(R3) ( ` is an integer), it holds that

‖∇iF‖L2 ≤ ‖∇iFh‖L2 + ‖∇iF l‖L2 , i ≥ 0, (3.1)

‖∇iF l‖L2 ≤ ‖∇i−1F l‖L2 , i ≥ 1, (3.2)

‖∇iFh‖L2 ≤ ‖∇i+1Fh‖L2 , i ≥ 1. (3.3)

In the next few lines, we will give the well-known theorem, known as the
Gagliardo-Nirenberg-Sobolev inequality.

Lemma 3.2. Let 0 ≤ i, j ≤ `. Then we have

‖∇iF‖Lp . ‖∇jF‖1−θLq ‖∇`F‖θLr ,

where θ ∈ [ i` , 1] and satisfies

1

p
− i

3
=
(1

q
− j

3

)
(1− θ) +

(1

r
− `

3

)
θ.

In particular, taking p = q = r = 2, one has

‖∇iF‖L2 . ‖∇jF‖
`−i
`−j

L2 ‖∇`F‖
i−j
`−j

L2 .

Proof. See the article [7] to get more details about this proof.
To facilitate the estimation of cross terms, we list the following Lemma, cf [5].

Lemma 3.3. It holds that for ` ≥ 0,

‖∇`(F1F2)‖Lp . ‖F1‖Lp1‖∇`F2‖Lp2 + ‖F2‖Lp3‖∇`F1‖Lp4 ,

where p, p2, p3 ∈ (1,+∞) and

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Furthermore, with the help of Lemma 3.2-Lemma 3.3, we can derive the following
estimate.

Lemma 3.4. Let integer ` ≥ 1. For any pair of functions F1 and F2 belonging to
H` ∩ L∞, we can define the following commutator

[∇`, F1]F2 = ∇`(F1F2)− F1∇`F2. (3.4)

Then we have

‖[∇`, F1]F2‖Lp . ‖∇F1‖Lp1 ‖∇`−1F2‖Lp2 + ‖∇`F1‖Lp3‖F2‖Lp4 . (3.5)

Here p, p1, p2, p3 are defined in Lemma 3.2.

For convenience, we will present some Sobolev embedding inequalities.

Lemma 3.5. (i) Assume that F (x) ∈ H1(R3). Then we have:

‖F‖L6 ≤ C‖∇F‖L2 ,

‖F‖L3 ≤ C(‖F‖L2 + ‖F‖L6) ≤ C‖F‖H1 .

(ii) If F (x) ∈ H2(R3), then

‖F‖L∞ ≤ C‖∇F‖H1 .
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In the end, we present the following Moser-type inequality.

Lemma 3.6. Assume that F (f) is a smooth function of f with bounded derivatives
of any order and f belongs to H` for any integer ` ≥ 3. Then it holds that

‖∇`F (f)‖L2 . sup
1≤j≤`

‖F (j)(f)‖L∞
( ∑

2≤k≤`

‖f‖k−1− 3(k−1)
2`

L2 ‖∇`f‖1+
3(k−1)

2`

L2 +‖∇`f‖L2

)
.

(3.6)
Specifically, if f has the lower and upper bounds with ‖f‖H` ≤ 1, then we have

‖∇`F (f)‖L2 . ‖∇`f‖L2 . (3.7)

Proof. See the article [2] to get more details about this proof.

Remark 3.1. Observe that µ
σ+ρ̄ − µ1, λ+µ

σ+ρ̄ − µ2 , P
′
(ρ̄)
ρ̄ − P

′
(σ+ρ̄)

(σ+ρ̄) and ρ̄
σ+ρ̄are all

smooth functions of σ. By virtue of Lemma 3.6, we can get

‖∇i
( µ

σ + ρ̄
− µ1

)
‖L2 . ‖∇iσ‖L2 , ‖∇i

(λ+ µ

σ + ρ̄
− µ2

)
‖L2 . ‖∇iσ‖L2 ,

and

‖∇i
(P ′(ρ̄)

ρ̄
− P

′
(σ + ρ̄)

(σ + ρ̄)

)
‖L2 . ‖∇iσ‖L2 , ‖∇i

( ρ̄

σ + ρ̄

)
‖L2 . ‖∇iσ‖L2 .

Conclusion: In this paper, we have studied the optimal decay rates for the highest-
order derivatives of solutions for the compressible MHD equations under the influ-
ence of Coulomb force. In the future, we will derive the optimal decay rates of the
solutions for this model in the non-isentropic case. It’s worth pointing out that
there is no information about the solutions to the linear systems for this case, and
we will address this difficulty in our future work.
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