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Exponential Stability of Positive Conformable
BAM Neural Networks with Communication

Delays
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Abstract In this paper, we consider a class of nonlinear differential equa-
tions with delays described by conformable fractional derivative. This type
of differential equations can be used to describe dynamics of various prac-
tical models including biological and artificial neural networks with hetero-
geneous time-varying delays. By novel comparison techniques via fractional
differential and integral inequalities, we prove under assumptions involving
the order-preserving property of nonlinear vector fields that, with nonnegative
initial states and inputs, the system state trajectories are always nonnega-
tive for all time. This feature, called positivity, induces a special character,
namely the monotonicity of the system. We then derive tractable conditions
in terms of linear programming and prove, by utilizing the Brouwer’s fixed
point theorem and comparisons induced by the monotonicity, that the system
possesses a unique positive equilibrium point which attracts exponentially all
state trajectories. An application to the exponential stability of fractional lin-
ear time-delay systems is also discussed. Numerical examples with simulations
are given to illustrate the theoretical results.
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1. Introduction

Consider a class of nonlinear fractional differential delay equations of the form

cDα
t0

(
x(t)

y(t)

)
= −Dβ,γ

(
x(t)

y(t)

)
+

(
Af(y(t))

Cg(x(t))

)
+

(
Bf(yσ(t))

Dg(xτ (t))

)
+

(
I

J

)
, (1.1)

where cDα
t0 represents the conformable fractional derivative (CFD). More details

on CFD and the description of system (1.1) will be presented in the next section.
System (1.1) can be used to describe dynamics of various practical models such as
fractional Hopfield-type neural networks or bidirectional associative memory (BAM)
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neural networks [1,2]. System (1.1) also encompasses important classes of time-delay
systems like fractional linear systems with delays.

The theory of fractional calculus is one of the most active research areas in the
past few years due to its demonstrated applications in numerous practical models
such as data analysis, intelligent control, associative memory or optimization [3].
It has been recognized that functional calculus and fractional differential equa-
tions (FrDEs) can more adequately describe many physical phenomena compared
to integer-order models. Several different approaches to fundamental concepts like
fractional derivatives (FrDs) or fractional integrals (FrIs) have been developed in
the senses of the Riemann-Liouville, Caputo or Grünwald-Letnikov [3, 4]. For ex-
ample, the approach of Riemann-Liouville is constructed based on iterating the
integral operator n times combining with the Cauchy formula, while the approach
of Grünwald-Letnikov is based on iterating the derivative n times combining with
the use of Gamma function in the binomial coefficients. The concepts of FrDs formu-
lated in this direction are quite complicated in applications and have some common
drawbacks. For instance, some basic properties of usual derivatives like product
rule or chain rule are not preserved for FrDs. In addition to this, the monotonicity
of a function f typically cannot be determined by FrDs of f in certain meanings.

To overcome some drawbacks of existing FrDs, the authors of [5] proposed a new
well-behaved simple derivative called the conformable fractional derivative (CFD).
Basic results in calculus of functions subject to CFD were also developed in [6,
7]. Recently, conformable fractional-order systems have also attracted considerable
research attention and a number of interesting results involving various aspects
of analysis and control of dynamical systems described by conformable fractional-
order differential equations with or without delays have been published. For a few
references, we refer the reader to recent works [8–15].

Positive systems form a particular class of dynamical systems, whose states and
outputs starting from nonnegative inputs are always nonnegative. This type of
systems is widely used to describe dynamics of many practical models in a variety
of disciplines from biology, ecology and epidemiology, chemistry, pharmacokinetics
to air traffic flow networks, control engineering, telecommunication and chemical-
physical processes [16]. In the past few decades, the theory of positive systems has
been intensively studied for various kinds of linear systems and nonlinear systems
in integer-order models (see, e.g., [17–19] and the references therein). However,
this area is still considerably less well-developed for fractional nonlinear systems, in
particular, for models arising in artificial and biological neural networks.

The research topic of fractional differential equations and fractional neural net-
works (FrNNs) has received growing attention in recent years [20–22]. Some impor-
tant issues in analysis such as stability, passivity, disspativity or identification and
H∞ control have also been extensively studied and developed for neural network
models with delays (see, e.g., [2, 20, 23–26] and the references therein). However,
there are only a few works concerning stability of conformable FrDEs. In partic-
ular, the positivity characterization and the existence, uniqueness and exponential
stability of conformable delay systems in the form of (1.1) have not been studied.
This motivates our present study.

In this paper, we consider a class of nonlinear delay differential equations de-
scribed by conformable fractional derivative as presented in Eq. (1.1). This type
of differential equations can be used to describe dynamics of various models in
practice. By novel comparison techniques via fractional differential and integral
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inequalities, we analyze the positivity of system (1.1) and derive tractable condi-
tions in terms of linear programming (LP) to ensure that the system possesses a
unique positive equilibrium point which attracts exponentially all state trajectories.
The decay rate is determined by some fractional exponential function of the form

Eα(−λ, t− t0) = e−λ
(t−t0)α

α , where 0 < α < 1 is the fractional-order and λ is some
positive scalar representing the fractional exponential decay rate (FEDR). For lin-
ear time-delay systems, the maximum allowable FEDR can be determined by an
LP-based procedure. Numerical examples with simulations are given to illustrate
the obtained analysis results.

Notation: Rn denotes the n-dimensional Euclidean space with the vector norm
∥x∥∞ = max1≤i≤n |xi| and 1n ∈ Rn is the vector with all entries equal one. Rm×n

is the set of m×n-matrices. σ(A) is the set of eigenvalues of matrix A ∈ Rn×n and
ρ(A) = max{|λ| : λ ∈ σ(A)} is its spectral radius. v = vec(v1, v2, . . . , vk) denotes
the augmented vector formulated by stacking components of v1, v2, . . . , vk. For any
vectors x = (xi) ∈ Rn and y = (yi) ∈ Rn, we write x ⪯ y if xi ≤ yi and x ≺ y if
xi < yi for all i ∈ [n] ≜ {1, 2, . . . , n}. Rn

+ = {x ∈ Rn : x ⪰ 0} and |x| = (|xi|) ∈ Rn
+

for x = (xi) ∈ Rn. A matrix A = (aij) ∈ Rm×n is nonnegative, A ⪰ 0, if aij ≥ 0
for all i, j and A is an M-matrix if aij ≤ 0 for all i ̸= j. C([a, b],Rn) denotes the
set of Rn-valued continuous functions on [a, b] endowed with the supremum norm
∥ϕ∥C = supa≤t≤b ∥ϕ(t)∥ for a ϕ ∈ C([a, b],Rn).

2. Preliminaries of fractional calculus

Definition 2.1. The (left) conformable fractional derivative of order 0 < α < 1
starting from a of a function f : [t0,+∞) → Rn is defined by

cDα
t0f(t) = lim

ϵ→0

f
(
t+ ϵ(t− t0)

1−α
)
− f(t)

ϵ
, t > t0.

If cDα
t0f(t) exists for t ∈ (t0, t0 + δ) with some δ > 0 and exists finite limits

limt→t+0

cDα
t0f(t), then we define cDα

t0f(t0) = limt→t+0

cDα
t0f(t).

Definition 2.2. A function f : [t0,+∞) → Rn is said to be α-differentiable on the
interval (t0,+∞) if the derivative cDα

t0f(t) exists for all t ∈ (t0,+∞). We denote by
Cα([t0,+∞),Rn) the set of α-differentiable functions x(t) on (t0,+∞) and cDα

t0x(t)
is continuous on (t0,+∞).

Remark 2.1. If a function f is differentiable on (t0,+∞), then

cDα
t0f(t) = (t− t0)

1−αf ′(t).

Thus, for a constant function, cDα
t0f(t) = 0. Conversely, if cDα

t0f(t) = 0 for t ∈
(t0, t0 + δ) then it can be shown by using the conformable fractional mean value
theorem [5] that f(t) = 0 for all t ∈ (t0, t0 + δ) [6].

Proposition 2.1. If the functions f , g are α-differentiable at t > t0, then we have

(i) cDα
t0(λf(t) + µg(t)) = λ cDα

t0f(t) + µ cDα
t0g(t) for λ, µ ∈ R.

(ii) cDα
t0(f(t)g(t)) = g(t) cDα

t0f(t) + f(t) cDα
t0g(t).

(iii) cDα
t0

(
f(t)

g(t)

)
=
g(t) cDα

t0f(t)− f(t) cDα
t0g(t)

g2(t)
.
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Proposition 2.2 (Chain rule [6]). If the functions f and g are α-differentiable on
(t0,+∞), then h(t) = f(g(t)) is also α-differentiable for t ∈ (t0,+∞) with g(t) ̸= 0,
and we have

cDα
t0h(t) =

cDα
t0f(g(t))g(t)

α−1 cDα
t0g(t), t ∈ (t0,+∞).

Remark 2.2. As an application of the chain rule given in (2.2), if φ : [t0,+∞) → R
is an α-differentiable function, then f(t) = φ2(t) is also α-differentiable on (t0,+∞)
and we have

cDα
t0

(
φ2(t)

)
= 2φ(t) cDα

t0φ(t), t > t0.

Let ξ : [t0,+∞) → Rn be an α-differentiable function and ∥ξ(t)∥2 = ξ⊤(t)ξ(t).
Then, we have

cDα
t0

(
∥ξ(t)∥2

)
= 2ξ⊤(t) cDα

t0ξ(t), t > t0.

Moreover, for any symmetric positive definite matrix P ∈ Sn+, the following deriva-
tive rule holds

cDα
t0

(
ξ⊤(t)Pξ(t)

)
= ξ⊤(t)P cDα

t0ξ(t) +
cDα

t0ξ
⊤(t)Pξ(t), t > t0.

The following monotone property can be derived with the help of conformable
fractional mean value theorem proven in [5].

Lemma 2.1. Let f be a continuous, α-differentiable function on (t0,+∞). If
cDα

t0f(t) ≥ 0 (respectively cDα
t0f(t) ≤ 0) for all t ∈ (t0,+∞), then the function

f is increasing (decreasing) on [t0,+∞).

Definition 2.3 (see [27]). The conformable integral of order 0 < α < 1 of a function
f starting from a is given by

Iαa f(t) =

∫ t

a

f(s)

(s− a)1−α
ds,

if the concerned integral is well defined.

The following properties that are similar to fundamental theorems of calculus
can be obtained [7]. Let f : [a,+∞) → Rn be a continuous function. Then, we have

Iαa (cDα
a f(t)) = f(t)− f(a).

If, in addition, the function f is α-differentiable function on (a,+∞), then

cDα
a (Iαa f(t)) = f(t).

Finally, the following auxiliary result will be used in our next derivation. For
given α ∈ (0, 1) and λ ∈ R, the fractional conformable exponential function Eα(λ, s),
s ≥ 0, is defined as

Eα(λ, s) = exp

(
λ
sα

α

)
.

Lemma 2.2. For a given α ∈ (0, 1), the solution x ∈ C([t0,+∞),R) of the follow-
ing problem

cDα
t0x(t) + µx(t) = q(t), t > t0,

x(t0) = x0,
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can be represented in the form

x(t) = exp

(
−µ (t− t0)

α

α

)[
x0 +

∫ t

t0

exp

(
µ
(s− t0)

α

α

)
q(s)

(s− t0)1−α
ds

]
= Eα(−µ, t− t0)

(
x0 +

∫ t

t0

Eα(µ, s− t0)q(s)

(s− t0)1−α
ds

)
, t > t0,

where µ is some real constant.

Proof. The proof can be deduced using a type of fractional constant variation
formula proposed in [27]. We omit it here.

2.1. Model description

Consider system (1.1). This system can be written in the componentwise form as
follows

cDα
t0xi(t) = −βixi(t) +

m∑
j=1

aijfj(yj(t)) +

m∑
j=1

bijfj(yj(t− σj(t))) + Ii,

cDα
t0yj(t) = −γjyj(t) +

n∑
i=1

cjigi(xi(t)) +

n∑
i=1

djigi(xi(t− τi(t))) + Jj ,

(2.1)

where βi, i ∈ [n], and γj , j ∈ [m] are given positive scalars; A = (aij), B = (bij),
C = (cji) and D = (dji) are known real matrices of appropriate dimensions; delays
τi(t) ∈ [0, τ ], σj(t) ∈ [0, σ] are continuous functions, where σ and τ are known
positive constants. System (1.1) is typically used to describe dynamics of neural
networks in bidirectional associative memory (BAM) model. For more detail biology
description of system (1.1), we refer the reader to [18].

For a given t0 ≥ 0, the initial condition of system (1.1) is specified as

xt0 = x0 ∈ C([−τ , 0],Rn), yt0 = y0 ∈ C([−σ, 0],Rm), (2.2)

that is,

xt0(s) = x(t0 + s) = x0(s), s ∈ [−τ , 0],
yt0(θ) = y(t0 + θ) = y0(θ), θ ∈ [−σ, 0].

2.2. Preliminaries

Assumption (A): We assume that nonlinear functions (which represent neuron
activation functions) fj(·) and gi(·) are continuous; fj(0) = 0, gi(0) = 0, and there

exist positive scalars lfj , l
g
i such that

0 ≤ fj(u)− fj(v)

u− v
≤ lfj , 0 ≤ gi(u)− gi(v)

u− v
≤ lgi , (2.3)

for all u, v ∈ R, u ̸= v.

Proposition 2.3. Let Assumption (A) hold. Then, for each initial condition
(x0, y0), the problem governed by system (1.1) and (2.2) possesses a unique solution

χ(t) =

[
x(t)

y(t)

]
, which is continuous in t on [t0,+∞).
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Proof. We define the function space

Fd =

{
ϕ =

[
x0

y0

]
: x0 ∈ C([−τ , 0],Rn), y0 ∈ C([−σ, 0],Rm)

}
,

and a function G : [t0,+∞)× Fd → Rn+m, (t, ϕ) 7→ G(t, ϕ), given by

G(t, ϕ) =

[
−Dβx0(0) +Af(y0(0)) +Bf(y0(−σ(t))) + I

−Dγy0(0) + Cg(x0(0)) +Dg(x0(−τ(t))) + J

]
.

where

Dβ = diag{β1, β2, . . . , βn}, Dγ = diag{γ1, γ2, . . . , γm},
f(y(t)) = vec(fj(yj(t))), f(y(t− σ(t))) = vec(fj(yj(t− σj(t)))),

g(x(t)) = vec(gi(xi(t))), g(x(t− τ(t)) = vec(gi(xi(t− τ(t)))),

I = (Ii) ∈ Rn, J = (Jj) ∈ Rm.

Then, the problem (1.1) and (2.2) can be written in the from of functional differ-
ential equation

cDα
t0χ(t) = −Dβ,γχ(t) +G(t, χt), t > t0,

χt0 = ϕ ∈ Fd,
(2.4)

where Dβ,γ = diag {Dβ , Dγ}, χt = vec(xt, yt) ∈ Fd and xt ∈ C([−τ , 0),Rn),
yt ∈ C([−σ, 0),Rm) are defined as xt(s) = x(t + s), s ∈ [−τ , 0], yt(θ) = y(t + θ),
θ ∈ [σ, 0].

By assumption (2.3), the function G(t, ϕ) is continuous and satisfies Lipschitz
condition with respect to ϕ. By the fundamental results of functional differential
equations, and similar to the method of [11], the existence and uniqueness of a
global solution χ(t) of the problem (1.1)-(2.2) can be obtained. In addition, such a
solution is absolutely continuous in t on [t0,+∞). The proof is completed.

Similar to [18], we say that the solution χ(t) is a positive solution of system
(2.2) is χ(t) ⪰ 0 for all t ≥ t0. Thus, to characterize the positivity of system (2.2),
we define the following admissible set of initial conditions

F+
d =

{
ϕ =

[
x0

y0

]
: x0 ∈ C([−τ , 0],Rn

+), y0 ∈ C([−σ, 0],Rm
+ )

}
.

Definition 2.4. System (1.1) is said to be positive if for any initial function ϕ ∈ F+
d

and nonnegative input vectors I ⪰ 0, J ⪰ 0, the corresponding solution χ(t) =
vec(x(t), y(t)) of system (1.1) is positive.

The concept of equilibrium points (EPs) of system (1.1) is defined as usual,
which is also given the following definition.

Definition 2.5. A (constant) vector χ∗ = vec(x∗, y∗), where x∗ ∈ Rn and y∗ ∈ Rm,
is said to be an EP of system (1.1) if it satisfies the following algebraic system{

−Dβx∗ + (A+B)f(y∗) + I = 0,

−Dγy∗ + (C +D)g(x∗) + J = 0.
(2.5)

Moreover, χ∗ is called a positive EP if χ∗ ⪰ 0.
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Definition 2.6. An EP χ∗ = vec(x∗, y∗) of system (1.1) is said to be globally
fractional exponentially stable (GFES) if there exist positive scalars C, which is
independent of initial conditions, and λ such that any solution χ(t) = vec(x(t), y(t))
of system (1.1) satisfies the following inequality

∥χ(t)− χ∗∥∞ ≤ C∥ϕ− χ∗∥CEα(−λ, t− t0), t ≥ t0.

2.3. Auxiliary results

In this section, we recall some results in nonlinear analysis and nonnegative matrix
theory that will be useful for our next derivation in this paper. First, let f : V → V
be a mapping from a metric space V into itself. A point x ∈ V is called a fixed
point of f if it is unchanged under the effect of f , that is, f(x) = x. The following
result is a form of Brouwer’s fixed point theorem [28].

Proposition 2.4. Suppose that V is a nonempty, convex and compact subset of Rn

and f : V → V is a continuous mapping. Then, f possesses at least a fixed point
in V .

Next, we list some properties of nonsingular M-matrices [29]. A matrix P =
(pij) ∈ Rn×n is an M-matrix if it can be expressed in the form P = sIn −Q, where
Q = (Qij) ⪰ 0 and s ≥ ρ(Q). In addition, P is a nonsingular M-matrix if and only
if s > ρ(Q).

Proposition 2.5 ( [29]). Let P ∈ Rn×n be an M-matrix. The following statements
are equivalent.

(i) P is a nonsingular M-matrix.

(ii) All principal minors of P are positive.

(iii) P is inverse-positive, that is, the inverse P−1 exists and P−1 ⪰ 0.

(iv) There exists a vector ν ∈ Rn, ν ≻ 0, such that Pν ≻ 0.

It follows from Proposition 2.5 that if H = (hij) ∈ Rn×n is a nonnegative matrix
whose spectral radius satisfies ρ(H) < 1, then (In − H)−1 ⪰ 0 and there exists a
positive vector ξ = (ξi) such that (In −H)ξ ≻ 0. Therefore,

n∑
j=1

hijξj < ξi, ∀i ∈ [n].

3. Main results

3.1. Positive solutions

In this section, we will prove that, with nonnegative initial states and weighted coef-
ficients, and under the assumption given in (2.3), any solution χ(t) = vec(x(t), y(t))
of system (1.1) is positive. First, by extending Lemma 2.3 in [30], we obtain the
following result.

Lemma 3.1. For a given function r(·) ∈ C([t0,+∞),R+) and a real number p, the
corresponding solution of the problem

cDα
t0x(t) = −px(t) + r(t), t ≥ t0,

x(t0) = x0,
(3.1)
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is nonnegative for all t ≥ t0 provided that x0 ≥ 0.

Proof. It suffices to prove for the case x0 > 0 that x(t) > 0 for t ≥ t0. On the
contrary, assume that there exists a tr > t0 such that x(tr) = 0 and x(t) > 0 for
t ∈ [t0, tr). For any t > t0, we have∫ t

t0

ds

(s− t0)1−α
= lim

ϵ→0+

∫ t

t0+ϵ

ds

(s− t0)1−α

= lim
ϵ→0+

(t− t0)
α − ϵα

α
=

(t− t0)
α

α
> 0.

Thus, for a continuous function φ(s) ≥ 0, the integral
∫ t

t0

φ(s)ds
(s−t0)1−α is well-defined

and nonnegative for t ∈ (t0, tr). By Lemma 2.2, it follows from (3.1) that

x(t) = Eα(−p, t− t0)

(
x0 +

∫ t

t0

Eα(p, s− t0)r(s)

(s− t0)1−α
ds

)
≥ Eα(−p, t− t0)x0, t ∈ (t0, tr). (3.2)

Let t ↑ tr, and the last inequality in (3.2) gives

0 = x(tr) ≥ x0e
−p

(tr−t0)α

α > 0.

This contradiction shows that x(t) > 0 for t ∈ [t0,+∞). The proof is completed.

We now prove the positivity of system (1.1) as presented in the following theo-
rem.

Theorem 3.1. Let Assumption (A) hold and assume that the weight coefficient
matrices A, B, C and D are nonnegative (equivalently, the augmented matrix

W =

(
A B

C⊤ D⊤

)
is nonnegative). Then, system (1.1) is positive. More precisely, for any initial
function ϕ ∈ F+

d and nonnegative input vectors I ⪰ 0, J ⪰ 0, the corresponding
solution χ(t) = vec(x(t), y(t)) is nonnegative, χ(t) ⪰ 0, for all t ≥ t0.

Proof. Let χ(t) = vec(x(t), y(t)) be a solution of system (1.1) with initial condi-
tion ϕ ∈ F+

d and input vector J = vec(I, J) ∈ Rn+m
+ . We first recall here that

a vector field F : Rn
+ → Rn is said to be order-preserving (see [16]) on Rn

+ if for
any y1, y2 ∈ Rn

+, y
1 ⪯ y2, then F (y1) ⪯ F (y2). By assumption (2.3), if y1 = (y1j ),

y2 = (y2j ) ∈ Rn
+, y

1 ⪯ y2, then we have fj(y
1
j ) ≤ fj(y

2
j ) for all j ∈ [m]. Thus,

m∑
j=1

aijfj(y
1
j ) ≤

m∑
j=1

aijfj(y
2
j ), i ∈ [n].

Similarly, we also have
∑m

j=1 bijfj(y
1
j ) ≤

∑m
j=1 bijfj(y

2
j ), i ∈ [n]. This shows that

the vector fields FA(y) = Af(y) and FB(y) = Bf(y) are order-preserving on Rm
+ .

Consequently, if y(t) ≻ 0, t ∈ [−σ, t1), for some t1 > t0, then by taking into account
the ith components of the vector fields FA(y) and FB(y), we have

ri(t) ≜ (Af(y(t)))i + (Bf(yσ(t)))i + Ii
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=

m∑
j=1

aijfj(yj(t)) +

m∑
j=1

bijfj(yj(t− σj(t))) + Ii ≥ 0, t ∈ [t0, t1).

It follows from (2.1) that

cDα
t0xi(t) = −βixi(t) + ri(t), t ≥ t0, i ∈ [n],

and ri(t) ≥ 0 for t ≥ t0. By Lemma 3.1, we have xi(t) ≥ 0 for all t ∈ [t0, t1), i ∈ [n].
Therefore, χ(t) ⪰ 0 for t ∈ [t0, t1).

We now prove that χ(t) ⪰ 0 for all t ≥ t0. For this, by the idea of modifying
initial conditions, let χϵ(t) = vec(xϵ(t), yϵ(t)) be the solution of system (1.1) with
initial condition ϕϵ = ϕ + ϵ1n+m, where ϵ > 0 is sufficiently small. Due to the
continuity dependence, there exists a t1 > t0 such that χϵ(t) ≻ 0 for t ∈ [t0, t1).
We will show that yϵ(t) ≻ 0 for all t ≥ t0. In contrast, suppose that there exists a
t̂ > t0 and an index j ∈ [m] such that

yjϵ(t̂) = 0 and yjϵ(t) > 0, t ∈ [t0, t̂),

and yϵ(t) ⪰ 0 for t ∈ [t0, t̂]. Then, we have xϵ(t) ⪰ 0 for t ∈ [−τ , t̂]. Similar to the
first part of the proof, we have

r̂j(t) ≜ (Cg(xϵ(t)))j + (Dg(xτϵ(t)))j

=

n∑
i=1

cjigi(xiϵ(t)) +

n∑
i=1

djigi(xiϵ(t− τi(t))) + Jj ≥ 0, t ∈ [t0, t̂].

By similar lines in the proof of Lemma 3.1, we also obtain

yjϵ(t) = Eα(−γj , t− t0)

(
y0j(0) + ϵ+

∫ t

t0

Eα(γj , s− t0)r̂j(s)

(s− t0)1−α
ds

)
≥ ϵEα(−γj , t− t0), t ∈ [t0, t̂). (3.3)

Let t ↑ t̂, from (3.3), we obtain

yjϵ(t̂) ≥ ϵe−γj
(t̂−t0)α

α > 0,

which yields a contradiction. By this we can conclude that yϵ(t) ≻ 0 and thus
xϵ(t) ⪰ 0 for t ≥ t0. Let ϵ ↓ 0 we obtain

χ(t) = lim
ϵ↓0

χϵ(t) ⪰ 0

for all t ∈ [t0,+∞). The proof is completed.

3.2. Positive equilibria

In this section, by utilizing the Brouwer’s fixed point theorem, we derive conditions
for the existence of positive EP of system (1.1). First, it can be verified from (2.5)
that a vector χ∗ = vec(x∗, y∗) ∈ Rn+m is an EP of system (1.1) if and only if it
satisfies the algebraic system{

D−1
β ((A+B)f(y∗) + I) = x∗,

D−1
γ ((C +D)g(x∗) + J) = y∗.

(3.4)
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From (3.4), we define the functions si(y), s̃j(x) and a mapping S : Rn+m → Rn+m

as

si(y) =
1

βi

[ m∑
j=1

(aij + bij)fj(yj) + Ii

]
, i ∈ [n],

s̃j(x) =
1

γj

[ n∑
i=1

(cji + dji)gi(xi) + Jj

]
, j ∈ [m],

and

S (χ) =
(
s1(y) s2(y) · · · sn(y) s̃1(x) s̃1(x) · · · s̃m(x)

)⊤
=

(
D−1

β

(
(A+B)f(y) + I

)
D−1

γ

(
(C +D)g(x) + J

)) , (3.5)

where χ = vec(x, y), x ∈ Rn and y ∈ Rm.

Regarding (3.4) and (3.5), a vector χ∗ ∈ Rn+m is an EP of system (1.1) if and
only if it is a fixed point of the mapping S , that is, S (χ∗) = χ∗. Based on the
Brouwer’s fixed point theorem, we have the following result.

Theorem 3.2. Let Assumption (A) hold and assume that

ρ(H ) < 1, H =

(
0n H12

H21 0m

)
, (3.6)

where the matrices H12 = (hfij) ∈ Rn×m, H21 = (hgji) ∈ Rm×n are defined by
entries

hfij =
1

βi
(|aij |+ |bij |) lfj , hgji =

1

γj
(|cji|+ |dji|) lgi , i ∈ [n], j ∈ [m].

Then, for a given input vector J = vec(I, J) ∈ Rn+m, system (1.1) has at least
one EP.

Proof. By Proposition 2.5, it follows from (3.6) that In+m − H is a nonsingular
M-matrix. Thus, there exists a vector ξ = vec(ξ1, ξ2) ∈ Rn+m, ξ ≻ 0, such that
(In+m − H )ξ ≻ 0. In addition, the inverse matrix (In+m − H )−1 exists and is
nonnegative.

For given input vectors I ∈ Rn and J ∈ Rm, we define the vectors

ζ1 = (Dβ)
−1|I| ∈ Rn

+, ζ2 = (Dγ)
−1|J | ∈ Rm

+

and (
ρ1

ρ2

)
= (In+m − H )−1

(
ζ1

ζ2

)
+

(
ξ1

ξ2

)
. (3.7)

It is clear that ρ = vec(ρ1, ρ2) ≻ 0 and, from (3.7), we have(
ρ1

ρ2

)
= H

(
ρ1

ρ2

)
+

(
ζ1

ζ2

)
+ (In+m − H )ξ. (3.8)
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Revealed by the decomposition (3.8), we define the convex compact subset B ⊂
Rn+m as follows

B =
{
χ = vec(x, y)

∣∣x ∈ Rn, y ∈ Rm, |x| ⪯ ρ1 and |y| ⪯ ρ2
}
.

For any χ = vec(x, y) ∈ B, where x = (xi) ∈ Rn and y = (yj) ∈ Rm, we have
|xi| ≤ ρ1i and |yj | ≤ ρ2j . Thus, together with condition (2.3), we have the following
estimate

|si(y)| =

∣∣∣∣∣∣ 1βi
( m∑

j=1

(aij + bij)fj(yj) + Ii

)∣∣∣∣∣∣
≤ 1

βi

( m∑
j=1

(|aij |+ |bij |)|fj(yj)|+ |Ii|
)

≤ 1

βi

( m∑
j=1

lfj (|aij |+ |bij |)|yj |+ |Ii|
)

≤
m∑
j=1

hfijρ2j + ζ1i, i ∈ [n]. (3.9)

Similarly, we also have

|s̃j(x)| ≤
n∑

i=1

hgjiρ1i + ζ2j , j ∈ [m]. (3.10)

It follows from (3.9) and (3.10) that

|S (χ)| ⪯ H

(
ρ1

ρ2

)
+

(
ζ1

ζ2

)
⪯

(
ρ1

ρ2

)
. (3.11)

This shows that S (χ) ∈ B for any χ ∈ B. In other words, S is a continuous
mapping that maps the convex compact set B into itself. By the Brouwer’s fixed
point theorem [28], S possesses at least a fixed point χ∗ ∈ B, which is an EP of
system (1.1). The proof is completed.

Remark 3.1. If

W =

(
A B

C⊤ D⊤

)
⪰ 0 and J =

(
I

J

)
⪰ 0,

then, according to condition (2.3), we have

si =
1

βi

( m∑
j=1

(aij + bij)fj(yj) + Ii

)
≥ 0,

s̃j =
1

γj

( n∑
i=1

(cji + dji)gi(xi) + Jj

)
≥ 0,

for any x = (xi) ∈ Rn
+ and y = (yi) ∈ Rm

+ . Thus, S (χ) ⪰ 0 for any χ ∈ Rn+m
+ . This

shows that the mapping S keeps the convect cone B+ = B∩Rn+m
+ invariant. Once

again, the Brouwer’s fixed point theorem ensures that the mapping S possesses at
least a positive fixed point χ+

∗ ∈ B+, which is a positive EP of system (1.1). We
summarize this result in the following corollary.
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Corollary 3.1. Let Assumption (A) hold. Assume that the matrixW =

(
A B

C⊤ D⊤

)
is nonnegative and condition (3.6) is satisfied. Then, for a given nonnegative input
vector J = vec(I, J), system (1.1) has at least a positive EP χ+

∗ ∈ Rn+m
+ .

Remark 3.2. Let H̃ = H12H21 = (H̃ij) ∈ Rn×n, where

H̃ij =
1

βi

m∑
k=1

1

γk
(|aik|+ |bik|) (|ckj |+ |dkj |) lfk l

g
j , i, j ∈ [n].

By the Schur identities (see [18, Remark 4] for more details), we have

det(λIn+m − H ) = det

(
λIn −H12

−H21 λIm

)

= λm det

(
λIn − 1

λ
H̃

)
= λm−n det

(
λ2In − H̃

)
(3.12)

for any λ ∈ C, λ ̸= 0. Therefore, λ ∈ σ(H )\{0} if and only if µ = λ2 ∈ σ(H̃ )\{0}
and, consequently, ρ(H ) < 1 if and only if ρ(H̃ ) < 1. By this, condition (3.6)

holds if and only if ρ(H̃ ) < 1. Similarly, we can also conclude that condition (3.6)

holds if and only if ρ(Ĥ ) < 1, where Ĥ = H21H12 = (Ĥij) ∈ Rm×m and

Ĥij =
1

γi

n∑
k=1

1

βk
(|cik|+ |dik|) (|akj |+ |bkj |) lgkl

f
j , i, j ∈ [m].

Corollary 3.2. Let condition (2.3) hold and assume that the weight coefficient

matrices A, B, C, and D are nonnegative. If ρ
(
H̃
)
< 1 or ρ

(
Ĥ
)
< 1, then system

(1.1) has at least one positive EP χ+
∗ ∈ Rn+m

+ for any nonnegative input vector
J = vec(I, J).

3.3. Fractional exponential stability

In this section, we focus on the (fractional) exponential stability of the unique
positive EP of system (1.1). The main result of this section is presented as in the
following theorem.

Theorem 3.3. Let Assumption (A) hold. Assume that the weight coefficient ma-
trices are nonnegative and one of the three following conditions is satisfied

(i) The spectral radius of the matrix H satisfies ρ
(
H
)
< 1;

(ii) there exists a vector η = (ηi) ∈ Rn, η ≻ 0, such that

1

βi

m∑
k=1

lfk
γk

(aik + bik)

n∑
j=1

(ckj + dkj) l
g
j ηj < ηi, i ∈ [n];

(iii) there exists a vector ζ = (ζi) ∈ Rm, ζ ≻ 0, such that

1

γi

n∑
k=1

lgk
βk

(cik + dik)

m∑
j=1

(akj + bkj) l
f
j ζj < ζi, i ∈ [m].
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Then, for any nonnegative input vector J = vec(I, J) ∈ Rn+m
+ , system (1.1) has

a unique positive EP χ+
∗ ∈ Rn+m

+ , which is GFES for any delays τi(t) ∈ [0, τ ],
σj(t) ∈ [0, σ].

Proof. As discussed in Remark 3.2, the three conditions (i), (ii), and (iii) are
equivalent. Thus, in what follows, we only consider condition ρ

(
H
)
< 1. The rest

of the proof will be divided into some steps.
(a) The existence of positive EP: By Corollary 3.1, for any input vector J =
vec(I, J) ∈ Rn+m

+ , system (1.1) possesses a positive EP χ+
∗ = vec(x∗, y∗) ∈ Rn+m

+ ,
which satisfies the following algebraic system{

−Dβx∗ + (A+B)f(y∗) + I = 0,

−Dγy∗ + (C +D)g(x∗) + J = 0.
(3.13)

Then, we have

cDα
t0(x(t)− x∗) = −Dβ(x(t)− x∗) +A [f(y(t))− f(y∗)]

+B [f(yσ(t))− f(y∗)] ,
cDα

t0(y(t)− y∗) = −Dγ(y(t)− y∗) +A [g(x(t))− g(x∗)]

+D [g(xτ (t))− g(x∗)] .

(3.14)

(b) Upper differential inequalities: We define the following functions

µ(t) = |x(t)− x∗| = (µi(t)) and η(t) = |y(t)− y∗| = (ηj(t)), t ≥ t0.

Let

cDα+
a f(t) = lim sup

ϵ→0+

f
(
t+ ϵ(t− a)1−α

)
− f(t)

ϵ

denote the fractional upper-right Dini derivative of order α, starting from a of a
function f . It follows from (3.14) that

cDα+
t0 µi(t) = sgn(xi(t)− x∗i)

cDα
t0

(
xi(t)− x∗i

)
= −βi sgn

(
xi(t)− x∗i

)(
xi(t)− xi∗

)
+

m∑
j=1

aij sgn
(
xi(t)− x∗i

)(
fj(yj(t))− fj(yj∗)

)
+

m∑
j=1

bij sgn
(
xi(t)− x∗i

)(
fj
(
yj(t− σj(t))

)
− fj(yj∗)

)
≤ −βiµi(t) +

m∑
j=1

lfj

(
aijηj(t) + bijηj(t− σj(t))

)
. (3.15)

Similarly, we have

cDα+
t0 ηj(t) ≤ −γjηj(t) +

n∑
i=1

lgi

(
cjiµi(t) + djiµi(t− τi(t))

)
. (3.16)

(c) Frational exponential domination: It is noticed at first that condition (i), ρ(H ) <
1, holds if and only if In+m − H is a nonsingular M-matrix. By Proposition 2.5,
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there exists a vector ξ = vec(ξ1, ξ2) ≻ 0, where ξ1 = (ξ1i) ∈ Rn and ξ2 = (ξ2j) ∈ Rm,
such that (

In −H12

−H21 Im

)(
ξ1

ξ2

)
≻ 0.

Thus, for sufficiently small ϵ > 0, we have{
H12ξ2 ≺ ξ1 − ϵ1n,

H21ξ1 ≺ ξ2 − ϵ1m.
(3.17)

Let ε̂ = ϵmini,j{βi, γj} > 0. It follows from (3.17) that

− βiξ1i +

m∑
j=1

lfj (aij + bij)ξ2j < −ϵ̂, i ∈ [n],

− γjξ2j +

n∑
k=1

lgk(cjk + djk)ξ1k < −ϵ̂, j ∈ [m].

(3.18)

We now define functions φi, ψj : [0,+∞) → R, i ∈ [n], j ∈ [m], by

φi(λ) = (λ− βi)ξ1i +

m∑
j=1

lfj (aij + bijEα(λ, σ)) ξ2j ,

ψj(λ) = (λ− γj)ξ2j +

n∑
i=1

lgi (cji + djiEα(λ, τ)) ξ1i.

Clearly, the functions φi(·), ψj(·) are continuous and strictly increasing, φi(0) < −ϵ̂,
ψj(0) < −ϵ̂ and φi(λ) → +∞, ψi(λ) → +∞ as λ→ +∞. Thus, there exist positive

constants λ̃i, λ̂j such that φi(λ̃i) = 0, ψj(λ̂j) = 0 and φi(λ) < 0 for λ ∈ [0, λ̃i),

ψi(λ) < 0 for λ ∈ [0, λ̂j).

Let λ⋆ = min
{
λ̃i, λ̂j : i ∈ [n], j ∈ [m]

}
. Then, φi(λ⋆) ≤ 0, ψj(λ⋆) ≤ 0 and, for

any λ ∈ (0, λ⋆), we have

− βiξ1i +

m∑
j=1

lfj (aij + bijEα(λ, σ)) ξ2j < −λξ1i,

− γjξ2j +

n∑
i=1

lgi (cji + djiEα(λ, τ)) ξ1i < −λξ2j .
(3.19)

For a fixed λ ∈ (0, λ⋆), we define the following comparative functions

µ̂(t) = C(ξ)∥ϕ− χ+
∗ ∥CEα(−λ, t− t0)ξ1,

η̂(t) = C(ξ)∥ϕ− χ+
∗ ∥CEα(−λ, t− t0)ξ2, t ≥ t0,

(3.20)

where C(ξ) = 1/mini,j{ξ1i, ξ2j}.
Let

Υ(t) =

(
µ(t)

η(t)

)
, Υ̂(t) =

(
µ̂(t)

η̂(t)

)
= C(ξ)∥ϕ− χ+

∗ ∥CEα(−λ, t− t0)

(
ξ1

ξ2

)
.
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By direct calculation using the properties of conformable fractional derivative, we
get

cDα+
t0 Υ̂(t) = −λΥ̂(t), t > t0.

If t ∈ [t0,+∞) ∩ {t ≥ t0 : t− τi(t) ≤ t0}, then

µ̂i(t− τi(t)) = µ̂i(t0) = C(ξ)∥ϕ− χ+
∗ ∥Cξ1i

≤ Eα(λ, τ)µ̂i(t).

If t− τi(t) > t0, then we have

(t− τi(t)− t0)
α + τα ≥ (t− τi(t)− t0)

α + ταi (t)

≥ (t− t0)
α.

Therefore,

µ̂i(t− τi(t)) = C(ξ)∥ϕ− χ+
∗ ∥CEα(−λ, t− τi(t)− t0)ξ1i

≤ C(ξ)∥ϕ− χ+
∗ ∥CEα(−λ, t− t0)Eα(λ, τ)ξ1i

= Eα(λ, τ)µ̂i(t). (3.21)

Similarly, for any t ≥ t0, we also have

η̂j(t− σj(t)) ≤ Eα(λ, σ)η̂j(t). (3.22)

We now show that Υ(t) ⪯ Υ̂(t) for all t ≥ t0. To this end, we notice at first that
C(ξ)ξ ⪰ 1n+m and

Υ(t0) ⪯ C(ξ)∥ϕ− χ+
∗ ∥Cξ = Υ̂(t0).

Thus, for given q > 1, we have Υ(t0) ≺ qΥ̂(t0). If Υ(t) ≺ qΥ̂(t) does not hold for
all t > t0, then there exists an index k and a t > t0 such that

Υk(t) = qΥ̂k(t), Υk(t) < qΥ̂k(t), t ∈ [t0, t), (3.23)

and Υ(t) ⪯ qΥ̂(t) for all t ∈ [t0, t].
If 1 ≤ k ≤ n, then from (3.15), (3.18) and (3.22), for t ∈ [t0, t), we have

cDα+
t0 Υk(t) ≤ −βkΥk(t) +

m∑
j=1

lfj (akjηj(t) + bkjηj(t− σj(t)))

≤ −βkΥk(t) + q

m∑
j=1

lfj (akj η̂j(t) + bkj η̂j(t− σj(t)))

≤ −βkΥk(t) + q

m∑
j=1

lfj (akj + bkjEα(λ, σ)) η̂j(t)

= −βkΥk(t) + qC(ξ)∥ϕ− χ+
∗ ∥CEα(−λ, t− t0)

×
m∑
j=1

lfj
(
akj + bkjEα(λ, σ)

)
ξ2j

≤ −βkΥk(t) + qC(ξ)∥ϕ− χ+
∗ ∥CEα(−λ, t− t0) (−λ+ βk) ξ1k

= −βk
(
Υk(t)− qΥ̂k(t)

)
− qλΥ̂k(t)

= −βk
(
Υk(t)− qΥ̂k(t)

)
+ q cDα+

t0 Υ̂k(t). (3.24)
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The last inequality in (3.24) implies that

cDα+
t0

(
Υk(t)− qΥ̂k(t)

)
≤ −βk

(
Υk(t)− qΥ̂k(t)

)
, t ∈ [t0, t). (3.25)

By Lemmas 2.1 and 2.2, it follows from (3.25) that

Υk(t)− qΥ̂k(t) ≤
(
Υk(t0)− qΥ̂k(t0)

)
Eα(−βk, t− t0), t ∈ [t0, t). (3.26)

Let t ↑ t, from (3.23) and (3.26), we readily obtain

0 = Υk(t)− qΥ̂k(t) ≤
(
Υk(t0)− qΥ̂k(t0)

)
Eα(−βk, t− t0) < 0.

This contradiction shows that Υ(t) ≺ qΥ̂(t) for all t ≥ t0. Letting q ↓ 1 we get
Υ(t) ⪯ Υ̂(t), t ≥ t0. The case 1 ≤ k ≤ m can be proved by similar arguments.
Finally, from (3.20), we have

∥χ(t)− χ+
∗ ∥∞ = ∥Υ(t)∥∞

≤ C(ξ)∥ξ∥∞∥ϕ− χ+
∗ ∥CEα(−λ, t− t0), t ≥ t0,

by which we can conclude the fractional exponential stability of the EP χ∗.
(d) Uniqueness of the positive EP: Assume that χ̂+

∗ = vec(x̂∗, ŷ∗) is also a positive
EP of system (1.1). Then, χ̂+

∗ can be regarded as a stationary solution of (1.1) with
constant initial condition ϕ = χ̂+

∗ . By Step (c), we have

∥χ̂+
∗ − χ+

∗ ∥∞ ≤ C(ξ)∥ξ∥∞∥χ̂+
∗ − χ+

∗ ∥∞Eα(−λ, t− t0) → 0

as t → +∞. Thus, χ̂+
∗ = χ+

∗ . This indicates the uniqueness of χ+
∗ . The proof is

completed.

Remark 3.3. The result of Theorem 3.3 encompasses those of Theorem 3 in [18]
and Theorem 1 in [31] as some special cases. More specifically, since system (1.1)
describes a class of fractional BAM neural networks, which include the nominal
model of BAM neural networks [18] and Hopfield neural networks [31], the results
of [18, 31] are critical cases of Theorem 3.3 and can be revoked by significantly
simplifying the derivation process of Theorem 3.3.

3.4. An application to fractional linear systems with delay

Consider the following fractional linear system with delay

cDα
t0x(t) = Ax(t) +Adx(t− τ(t)), t > t0,

x(t0 + s) = ϕ(s), s ∈ [−τ , 0],
(3.27)

where A, Ad ∈ Rn×n are given real matrices, and τ(t) ∈ [0, τ ] is the time-varying
delay.

Similar to the proof of Theorem 3.3, it can be verified from (3.27) that any
solution x(t, t0, ϕ) of system (3.27) satisfies

|x(t, t0, ϕ)| ⪯ x̂(t, t0, |ϕ|), t ≥ t0, (3.28)
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where x̂(t, t0, |ϕ|) is the corresponding solution of the following problem

cDα
t0 x̂(t) = ADx̂(t) + |Ad|x̂(t− τ(t)), t > t0,

x̂(t0 + s) = |ϕ(s)|, s ∈ [−τ , 0],
(3.29)

where the matrix AD = (aDij) is determined as

aDij =

{
aii if i = j,

|aij | if i ̸= j.

Clearly, M = AD + |Ad| is a Metzler matrix. Thus, if the matrix M is Hurwitz,
then system (3.29), and hence system (3.27), are GFES. We summarize this result
in the following proposition.

Proposition 3.1. Assume that one of the following equivalent conditions is satis-
fied.

(i) The matrix M = AD + |Ad| is Hurwitz.

(ii) There exists a vector ξ ∈ Rn, ξ ≻ 0, such that(
AD + |Ad|

)
ξ ≺ 0.

Then, system (3.27) is GFES. More precisely, there exists a positive scalar δ such
that any solution x(t, t0, ϕ) of system (3.27) satisfies the fractional exponential es-
timate

∥x(t, t0, ϕ)∥∞ ≤ δ∥ϕ∥CEα(−λ, t− t0), t ≥ t0,

where the maximum allowable decay rate λ > 0 can be determined by the following
generic procedure

maximize λ > 0 s.t.

aii +

n∑
j=1
j ̸=i

|aij |
ξj
ξi

+

n∑
j=1

|adij |Eα(λ, τ)
ξj
ξi

≤ 0, i ∈ [n].

4. Simulations

Example 4.1. Consider system (1.1) with Sigmoidal-Boltzmann nonlinear func-

tions fj(yj) = Sθf
j
(yj), gi(xi) = Sθg

i
(xi), where θfj , θ

g
i (i, j = 1, 2, 3) are given

positive scalars and weighted sigmoid function Sθ(x) is defined as

Sθ(x) =
1− exp

(
−x

θ

)
1 + exp

(
−x

θ

) , θ > 0, x ∈ R. (4.1)

It can be verified by simple calculation from (4.1) that

S ′
θ(x) =

2 exp
(
−x

θ

)
θ
(
1 + exp

(
−x

θ

))2 > 0

and

sup
t∈(0,+∞)

t

(1 + t)2
=

1

4
.
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Thus, Assumption (A) is satisfied with lfj = 1

2θf
j

and lgi = 1
2θg

i
. To illustrate the

obtained theoretical results, we specify the system parameters as follows

θfj = 1.75, θgi = 1.6 (i, j = 1, 2, 3),

Dβ = βI3, Dγ = γI3, β = 2.05, γ = 1.86,

A =

2.05 1.12 0.68

0.85 1.21 0.66

1.12 1.35 0.98

 , B =

0.52 1.18 1.35

1.46 0.95 0.88

0.64 0.78 1.23

 ,

C =

0.62 1.38 1.22

0.86 0.57 1.15

1.25 0.68 0.94

 , D =

1.15 0.56 0.72

0.45 1.23 0.92

1.14 0.87 0.79

 .
Then, we have

H12 =

0.3582 0.3206 0.2829

0.3220 0.3010 0.2146

0.2453 0.2969 0.3080

 , H21 =

0.2974 0.2201 0.4015

0.3259 0.3024 0.2604

0.3259 0.3478 0.2907


and

H̃ = H12H21 =

0.3032 0.2742 0.3095

0.2638 0.2365 0.2701

0.2701 0.2509 0.2653

 .
Clearly, (

I3 − H̃
)−1

=

2.6492 1.4993 1.6673

1.4331 2.3009 1.4496

1.4634 1.3370 2.4692

 ≻ 0.

By Proposition 2.5, I3 − H̃ is a nonsingular M-matrix. Thus, the derived con-
ditions in Theorem 3.3 are fulfilled. By Theorem 3.3, for a given input vector
J = vec(I, J), where I, J ∈ R3

+, system (1.1) has a unique positive EP χ∗, which
is GFES for any bounded time-varying delays τi(t), σj(t).

For given input vectors

I =

 0.5

1.0

0.75

 and J =

1.2

0.8

1.5

 ,

by solving system (2.5) with Matlab Symbolic Toolbox, we obtain a unique positive
EP χ∗ = vec(x∗, y∗), where

x∗ =

2.2255

2.2051

2.1205

 and y∗ =

2.4457

2.0775

2.6167

 .

The behavior of nonlinear functions fj(yj) and gi(xi) is presented in Fig. 1.
Simulation results for state trajectories xi(t) and yj(t) with various values of order



Positive Conformable BAM Neural Networks with Delays 471

α ∈ (0, 1), initial conditions x0(s) = (2.0, 1.5, 2.5)⊤, y0(s) = (2.0, 1.5, 3.0)⊤, s ∈
[−5, 0] and time-varying delays τi(t) = 1 + 4| sin(10πt)|, σj(t) = 5| cos(5πt)| are
presented in Fig. 2 and Fig. 3, respectively. Clearly, the conducted state trajectories
of the system are positive and converge to the unique positive EP χ∗, which validates
the obtained theoretical results.
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Figure 1. Behavior of nonlinear functions
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Figure 2. State trajectories x(t) with delays τi(t) = 1 + 4| sin(10πt)| and σj(t) = 5| cos(5πt)|
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Figure 3. State trajectories y(t) with delays τi(t) = 1 + 4| sin(10πt)| and σj(t) = 5| cos(5πt)|
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Example 4.2. Consider system (3.27) with the system matrices

A =

(
−1.0 0.5

0.5 −1.2

)
, Ad =

(
0.2 0.1

0 0.3

)
.

It is easy to verify that the matrix

M = AD + |Ad| =

(
−0.8 0.6

0.5 −0.9

)

is Metzler and Hurwitz. By Proposition 3.1, system (3.27) is GFES for bounded
delay τ(t) ∈ [0, τ ]. We now apply Proposition 3.1 to determine the decay rate λ.
By direct computation, it is found that the condition{

−ξ1 + 0.5ξ2 + (0.2ξ1 + 0.1ξ2)Eα(λ, τ) ≤ 0

0.5ξ1 − 1.2ξ2 + 0.3ξ2Eα(λ, τ) ≤ 0

is feasible for a vector ξ = (ξ1, ξ2)
⊤ ≻ 0 if and only if Eα(λ, τ) ≤ 2.0287. By this,

the critical decay rate λ̄ can be obtained as

λ̄ =
α

τα
ln(2.0287). (4.2)

Figure 4 demonstrates the correspondence of delay rate λ̄ to the distribution of
order α ∈ (0, 1) and upper bound of delay τ . It can be seen from Fig. 4 that the
decay rate decreases when the delay goes larger. In addition, for a fixed range of
delay, there exists an order α such that the decay rate λ̄ attains its maximal value.
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Figure 4. Decay rate λ̄

5. Conclusion

In this paper, the positivity of solutions and fractional exponential stability of pos-
itive steady states have been studied for a class of nonlinear time-delay differential
equations in a model of conformable fractional BAM neural networks. Based on



Positive Conformable BAM Neural Networks with Delays 473

some newly derived comparison techniques via fractional differential and integral in-
equalities, tractable conditions in terms of linear programming problems have been
formulated to ensure that, for each nonnegative input vector, the system possesses
a unique positive equilibrium point, which is fractional exponentially stable for any
bounded delays. As an application, fractional exponential estimate for linear time-
delay systems has also been discussed. The efficacy of the obtained results has been
demonstrated by numerical numerical examples with simulations.
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