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Abstract There are several main challenges in solving nonlinear differential
equations with artificial neural networks (ANNs), such as a nonlinear system’s
sensitivity to its initial values, discretization, and strategies for incorporating
physics-based information into ANNs. As for the first issue, this paper ad-
dresses the initial value problems of nonlinear dynamical systems (a Duffing os-
cillator and a Burger’s equation), which cause large global truncation errors in
sub-domains with a significant reduction in the influence of initial constraints,
using meta-learning-based physics-informed neural networks (MPINNs). The
MPINNs with dual learners outperform physics-informed neural networks with
a single learner (no fine reinitialization capability). As a result, the former ap-
proach improves solution convergence by 98.83% in the sub-time domain (III)
of a Duffing oscillator, and by 85.89% at t = 45 in a Burger’s equation prob-
lem, compared to the latter one. Model accuracy is highly dependent on the
adaptability of the initial parameters in the first hidden layers of the meta-
models. From correlation analyses, it is obvious that the parameters become
less (the Duffing oscillator) or more (the Burger’s equation) correlated dur-
ing fine reinitialization, as the update manner differs or is similar to the one
used in pre-initialization. In the first example, the MPINN achieves both the
mitigation of model sensitivity to its output and the improvement of model
accuracy. Conversely, the second example shows that the proposed approach
is not enough to solve both issues simultaneously, as increased model sensitiv-
ity to its output leads to higher model accuracy. The application of transfer
learning reduces the number of iterative pre-meta-trainings.
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Nomenclature

Symbol Definition

a[l], a[l]
n Output vector of the l-th hidden layer and the n-th component of a[l]

b[l] Bias vector of the l-th hidden layer

c Constant parameter

cn, dn, sn Jacobi elliptic functions

d Constant parameter

dk Search direction vector at the k-th iteration

D(i)
qu , D(i)

su
Query and support datasets, respectively, for the i-th query task and the i-th
support one.

Dte, Dtr Test and training datasets, respectively

f Constant parameter

f(u) Function value at u

fθθθ(x) PINN

fm
θθθ (x) MPINN

fm

θθθ(i)
(x(i)

su ) A model for the i-th support task (it is regarded as the i-th support task)

fm

θθθ(i),
′ (x

(i)
qu) A model for the i-th query task (it is regarded as the i-th query task)

fm
θθθ∗ (xte) MPINN evaluated on Dte

gk Gradient difference vector at the k-th iteration

H(I), Hk Initial Hessian matrix and Hessian matrix at the k-th iteration

iter, iterm
Iterative numbers, respectively, for the PINN (or each inner learner of the MPINN)
and the outer learner of the MPINN

iterMAX ,
itermMAX

Maximum iterative numbers, respectively, for the PINN (or each inner learner of
the MPINN) and the outer learner of the MPINN.

k Constant parameter

L(θθθ, Dtr) Total PINN loss

L(i)(θθθ(i),D(i)
su ),

L(i)(θθθ(i),′ ,D(i)
qu )

Support and query losses, respectively, for the i-th task

||▽L(θθθ,Dtr)|| Norm of the projected gradient of L(θθθ,Dtr)

m Constant parameter

MSEf ,MSEI ,
MSEB , MSEd

Losses, respectively, of residual, initial constraint, boundary constraint, and la-
beled data

Nd, NB , Nf , NI
Number of labeled data for MSEd and number of training samples, respectively,
for MSEB , MSEf and MSEI

NT Number of test samples

NQ, NS Numbers, respectively, of query and support tasks

t, △t Time coordinate and time increment

u, un A single output of fθθθ(x) and a discrete solution of u at the n-th sampling point

u Output vector of fθθθ(x)

ū, ūn Analytical (exact) solution and a discrete solution of ū at the n-th sampling point

u(i)
su , u(i),′

qu , ute Output vectors, respectively, evaluated by fm

θθθ(i)
(x(i)

su ), fm

θθθ(i),
′ (x

(i)
qu), and fm

θθθ∗ (xte)

ū(i)
su , ū(i)

qu , ūte
Actual output vectors, respectively, for D(i)

su , D(i)
qu , and Dte (ū(i)

su and ū(i)
qu require

no labeled data)

Dn
te, ∂

n
x , ∂n

t n-th order differential operators

x Space coordinate

x Input vector
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Nomenclature

Symbol Definition

x(i)
su , x(i)

qu , xte Input vectors, respectively, for D(i)
su , D(i)

qu , and Dte

z[l], z[l]
n

Output vector of the l-th hidden layer before taking an activation and the n-th

component of z[l].

α Scalar

αk Iterative step size

β Learnable parameter for swish

ε, εm, εH
Convergence tolerances, respectively, for the PINN (or each inner learner of the
MPINN), the outer learner of the MPINN, and loss reduction tolerance

θθθ Parameter matrix of the PINN and MPINN

θθθk, θθθ
(i),′
mk

Parameter matrices updated, respectively, at the k-th iteration by the PINN (or
each inner learner of the MPINN) and at the mk-th meta-iteration by the outer
learner of the MPINN

θθθ(I) Initial parameter matrix

θθθ(i) Parameter matrix trained on D(i)
su

θθθ(i),′ Parameter matrix trained on D(i)
qu

θθθ[l−1] Parameter matrix that maps from a[l−1] to z[l]

θ
[l−1]
j,i Parameter that controls a function mapping from a

[l−1]
i to z

[l]
j

θθθ∗ Optimal parameter matrix achieved by the meta-training for a meta-test phase

λf , λI , λB , λd Parameters, respectively, for MSEf , MSEI , MSEB , and MSEd

ω Constant parameter

µ Constant parameter

σσσ[l] Activation of the l-th hidden layer

1. Introduction

Physical phenomena of dynamical systems are modeled by governing differential
equations, and the analysis of their solutions provides insight into them. That is
why it is critical to find precise solutions in science and engineering. Due to the
absence of analytical solutions in many practical cases, numerical approaches such
as finite difference, finite volume, and finite element methods have dominated over
the last seven decades. Nonetheless, classical solvers have disadvantages that re-
quire a lot of computational efforts, especially for multi-scale or multi-physics-based
nonlinear systems. Researchers continue to face challenges in numerical solver de-
sign with the balance between accuracy and robustness. Recently, various artificial
neural network (ANN)-based solvers among many alternatives have gained large
attention because of the prospect of replacing classical solvers. The advantages
of ANNs for solving governing differential equations are as follows: (i) powerful
modeling for interdisciplinary problems; (ii) simple modeling for strong nonlinear
relationships; (iii) efficient forward evaluation of a trained model for real-time ap-
plications; (iv) automatic gradient-based optimization due to analytically differen-
tiable modeling; (v) meshless modeling for discretization. ANNs have been applied
to solve dynamical systems governed by not only ordinary differential equations
(ODEs) [1–5] but partial differential equations (PDEs) [2, 6–19]. Consistent chal-
lenges [20–22] were reported for performance improvement during 1990 – 2000, but
there was no significant progress. Raissi et al. [7] proposed a new conceptual neu-
ral network known as a physics-informed neural network (PINN) in 2019. They
developed a physics-informed fully connected neural network (PIFCNN) with high
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model accuracy, where a PDE residual loss was incorporated into data-driven func-
tional representation as one of constraint conditions, in small data regimes. Their
success in the research has led many researchers to explore PINNs. There are sev-
eral types of neural networks in modeling PINNs, and these two are among them:
a PIFCNN [2, 3, 5–11, 13, 15–17, 19, 23] and a physics-informed convolutional neu-
ral network (PICNN) [4, 8, 12, 14]. Several studies have revealed that PIFCNNs
perform well with small data [4, 7, 11] or even in the absence of data [8, 9, 12].
A literature review by us supports the claim that PINNs have addressed vari-
ous problems in engineering, science, and mathematics: structural dynamics [1],
nonlinear dynamical systems in applied mathematics [2, 3, 6, 10, 12–14, 23], seis-
mic response [4], quantum mechanics, reaction-diffusion, and propagation of water
wave [7], flow [7–9, 11, 16], thermal-transfer related problems [15, 18], composite
material [17]. Studies on differential equations have been mostly engaged in bound-
ary value problems (BVPs) [2, 8, 13–15] and initial boundary value problems (IB-
VPs) [2, 3, 6, 7, 9–12, 16–19]. When selecting a research subject, the complexity of
boundary conditions can motivate researchers to choose it as a highly challenging
topic. However, in many cases, solution convergence with some degree of accuracy
or even higher accuracy can be achieved by adding intricate boundary constraints
without labeled data. While initial value problems (IVPs) [3, 5, 23] have received
less attention despite their poor solution convergence in sub-domains with a sharp
decline in the influence of initial constraints. To address this fundamental issue,
several studies introduced noticeable but limited approaches. Meng et al. [3] pro-
posed a parallel PINN to decompose a long-time domain into multiple independent
sub-domains with shorter time interval. This strategy resulted in faster convergence
and reasonable solution predictions. However, the optimal number of sub-domains
to be applied, depending on the characteristics of dynamic systems, was not dis-
cussed. The study by Florio et al. [5] highlighted the combination of a shallow PINN
and the theory of functional connections and an extreme learning process. They
succeeded in solving the stiff systems of ODEs by the proposed approach without
reducing the stiffness of the problems. Nonetheless, the use of labeled data was
exposed as a crucial limitation because of expensive data generation. Robinson et
al. [23] used the injection of partially known physical information at an intermediate
layer in a PINN during training for solving benchmark problems in the literature
including oscillations. Despite the focus, the relationship between the injection and
the nature of models has remained inconclusive. This implies that discovering a
universal method for diverse dynamical systems is a huge challenging task. This
study represents the first application of both meta-learning and transfer learning,
which involve the fine initialization of parameters, to PINNs for solving the IVPs
of a nonlinear Duffing oscillator and a nonlinear Burger’s equation without labeled
data. A Duffing oscillator is a type of nonlinear second-order ODE that describes
the behavior of a damped-driven harmonic oscillator. It is a type of dynamical sys-
tem that exhibits complex behavior, including chaos, resonance, and bifurcations
due to its nonlinear nature. Applications include electronic circuits, mechanical
systems, and biological systems, while Burgers’ equation is a fundamental nonlin-
ear PDE that governs fluid flow. It is used in various areas of fluid dynamics,
including the study of turbulence, shock waves, and nonlinear wave propagation.
Additionally, it has applications in other fields, such as traffic flow modeling and
nonlinear acoustics. In a broad sense, meta-learning may be extended to include
the selection of a suitable algorithm by taking into consideration the features of
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input datasets, exploring the topology of neural network architectures, and tuning
a set of hyperparameters. In a narrow sense, it is the algorithm to fine-tune a set
of model parameters. Our current study is limited to the latter, but we will extend
it to the former. A meta-learning strategy for a new task was proposed by Peng et
al. [24] who were one of the pioneers to discover a suitable learning algorithm. A
typical strategy involves training existing models on a new target dataset and then
selecting the model that performs best on it. Such a strategy needs big datasets
to achieve adequate model accuracy. However, in many real circumstances, a lack
of data would limit the ineffective traditional method to laboratory experiments.
A new requirement in machine learning is to discover new algorithms to imitate
how humans learn new tasks based on their prior knowledge. As humans learn
new similar tasks based on it, a set of fine meta-tuned initial parameters is sim-
ilar in function to it. This means that meta-learning-based algorithms can learn
new analogous features rapidly and precisely with fewer data. Therefore, meta-
learning is one of the strategies for how an ANN acquires useful prior knowledge
by adjusting initial parameters. Learning rules of meta-learning were proposed by
a series of studies in 1991 [25] and 1997 [26]. Hochreiter et al. [27] and Younger et
al. [28] marked a turning point in gradient descent-based deep meta-learning that
belongs to one of the three categories: metric-based, model-based, and optimization
(gradient)-based techniques. Many trials by the third method update a meta-model
using a bi-level optimization process with multi-inner learners for tuning support
models and a single outer learner for meta-learning. Model-agnostic meta-learning
(MAML), proposed by Finn et al. [29], showed the feasibility of an application of the
dual learners to few-shot problems for classification, regression, and reinforcement
learning using gradient-based backpropagation. Their application was successful in
adapting a meta-model to new tasks. Several ideas [30–33] on meta-learning have
been proposed to improve the training efficiency of PINNs. This paper discusses the
model accuracy of classical PINNs and meta-learning-based PINNs (MPINNs) for
the IVPs of both examples. Non-uniform random sampling (NURS) is applied to
both in training. Evaluations on the convergence of the solutions to the problems are
made across entire domains. Experimental data show that the MPINNs outperform
the PINNs in tracking their solutions in all domains as well as in the sub-time do-
main (III) of the Duffing oscillator and at t = 45 in the Burger’s equation problem.
The meta-learning with the dual learners makes a large contribution to improving
the solution convergence of the MPINNs, as it mostly updates the initial values of
the first hidden layers of the meta-models. Correlation analyses assist us in gaining
a deeper comprehension of how the initial parameters become adaptable to inputs
and responsive to outputs throughout the meta-training, depending on the nature
of the dynamical systems. The Duffing oscillator achieves both the mitigation of the
MPINN’s sensitivity to its output and the enhancement of the model accuracy, but
regarding the Burger’s equation, the proposed model is insufficient to address both
issues simultaneously, as the model’s sensitivity to its output increases during the
meta-tuning. This means that it could be less robust. In the MPINN algorithm, the
application of transfer learning to support tasks minimizes the number of iterative
pre-meta-tunings.
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2. Problem statement and examples

Using PINNs for solving IVPs may result in significant truncation errors due to their
limited capacity to accurately adjust initial parameters. Figure 3 and 4 show two
of the cases. This paper employs the MPINNs to tackle the issue at hand for two
case studies regarding the nonlinear Duffing oscillator and the nonlinear Burger’s
equation. The IVPs and the BVPs (or the IBVPs) are both treated to examine the
characteristics of the examples. When dealing with IVPs, the complexity of ini-
tial conditions can cause an initial constraint effect to persist throughout an entire
domain. This can lead to insufficient global truncation error occurrence and poor
observation of the reduction of the error. Additionally, as neural network modeling
becomes more intricate, there can be more factors that influence model accuracy.
To avoid these potential factors and any ambiguity in identifying the sources of
errors, this study employs the simple examples and concentrates on the analysis
of the impact of initial parameters on the solution accuracy of the MPINNs. In
addition, it focuses on the correlation analysis between them before and after the
fine reinitialization. For the IVPs, the initial condition of the Duffing oscillator is
two-point, whereas in the Burger’s equation case, it is one-dimensional. Duffing
oscillators governed by a second-order nonlinear ODE can capture the relationship
between the input and the output of nonlinear dynamical systems under various
conditions such as steady-state, transient, and other dynamic scenarios. The be-
haviour of the exact solution to Eq.(2.1), including amplitude and phase, depends
on the parameter value, 1/4 of cn(2t, 1/4). As it deviates from zero, the function
deviates from a simple cosine wave, and the shape and characteristics of the peri-
odic oscillation change accordingly. In other words, the modulus can range from 0
to 1, with values being close to 0 corresponding to simple cosine-like oscillations,
and values being close to 1 corresponding to more complex and highly nonlinear
oscillations. Figure 3 demonstrates the phenomena mentioned above well.

m ·D2
t ū+ c ·Dtū+ k · ū+ f · ū3 = d · cos(ωt), ∀t ∈ [0, 9]

with ū(0) = 1 andDtū(0) = 0. (2.1)

A Burger’s equation (see Eq.(2.2)) is a nonlinear PDE governing the behaviour of
traffic, liquid, and gas flow as well as the flow of materials during material processing
operations such as casting and forging. It has numerous applications in physics,
engineering, and applied mathematics.

∂tū+ ū · ∂xū = µ · ∂2
xū, ∀(t, x) ∈ [0, 90]× [−4, 4]

with ū(0, x) = 2x, (2.2)

here, m = 1, c = 0, k = f = 2, d = 0, ω = 0 and µ = 1. Eq.(2.1) has the
exact solution of ū(t) = cn(2t, 1

4 ). The exact solution to Eq.(2.2) is ū(t, x) =
2x

1+2t . For the BVP of the Duffing oscillator, the boundary conditions are enforced
to Eq.(2.1) instead of the given initial conditions: ū(0) = 1 and Dtū(0) = 0,
and ū(9) = cn(18, 1

4 ) and Dtū(9) = −2dn(18, 1
4 ) sn(18,

1
4 ). For the IBVP of the

Burger’s equation, the boundary condition of ū(90, x) = 2x
181 is enforced additionally

to Eq.(2.2).
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3. PINN

This section introduces a model representation of a classical PINN (see Figure 1)
and discusses the outputs from the IVPs and the BVP (or the IBVP) including the
limitation in applying the PINN model to the IVPs.

3.1. PINN representation

A PINN is a form of multi-layer perceptron that is interpreted as a functional
approximator. It can be defined by

ū = fθ(x) (3.1)

for the Duffing oscillator,

x = {t} and u = {u} (3.2)

and in the case of the Burger’s equation,

x =

t

x

 and ū = {u}. (3.3)

Figure 1. A schematic algorithm of a classical PINN.



492 W. Duanyai, W K. Song, T. Chitthamlerd & G. Kumar

An input vector for the first hidden layer is x (see Eq.(3.2) and(3.3)) and each
hidden layer’s output is represented in a forward propagation phase by

a[0] = x,

z[1] = θθθ[0] · a[0] + b[1],

a[1] = σσσ[1](z[1]),

...

z[l] = θθθ[l−1] · a[l−1] + b[l],

a[l] = σσσ[l](z[l]),

u = θθθ[l] · a[l] + b[l+1].

(3.4)

The PINN has a single input layer, a single output one, and l hidden ones. In
this study, a Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is used for op-
timization. It is in the family of Quasi-Newton methods that update an approximate
Hk based on gk across iterations. The optimizer has three different stopping criteria
which are listed below, and it stops when one of those is met: (C1) iter = iterMAX ;
(C2) L(θθθ,Dtr) < ε; (C3) ||▽L(θθθ,Dtr)|| < εH . Here, iter, iterMAX and ε are re-
placed, respectively, with iterm, itermMax, and εmfor the meta-training. L(θθθ,Dtr)

is also switched with L(i)(θθθ(i),D
(i)
su ) and

∑NQ
i=1 L

(i)(θθθ(i),
′
,D

(i)
qu ), respectively, for each

inner learner and the outer learner of the MPINN. The losses are defined by the
same combination of the individual losses of Eq.(3.5). (C2) is applied only to the
outer learner, not to each inner learner and the PINN with a single learner. The
simulations in the study use the options: itermMax is 5,000; itermMax is 50; εm is
8.0×10−6; εH is 2.22×10−9; the maximum number of line search steps per iteration
is 50. The PINN updates θθθ by minimizing Eq.(3.5) that includes four individual
losses presented below. ūs can be acquired through measurements or physical laws.
In this research, the MSEd is not considered.

L(θθθ,Dtr) = λfMSEf + λIMSEI + λBMSEB + λdMSEd, (3.5)

where λf = λI = λB = λd = 1 and

MSEf =
1

Nf

Nf∑
p=1

[f(up)]
2, (3.6a)

MSEI =
1

NI

NI∑
q=1

[uq − ūq]
2, (3.6b)

MSEB =
1

NB

NB∑
r=1

[ur − ūr]
2, (3.6c)

MSEd =
1

Nd

Nd∑
s=1

[us − ūs]
2. (3.6d)
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3.2. Experiments for the performance evaluation of the PINN

In this section, the PINNs with different architectures are used to solve the IVPs and
the BVP (or the IBVP), and the examination of the convergence of their solutions
is included. The PINN for modelling the Duffing oscillator has six hidden layers,
and each has 64 nodes with batch normalization and dropout (dropout rate = 0.5).
Initialization is achieved by a variance scaling (VS) initializer and activations are
swish with β = 1.0. For the Burger’s equation, it has five hidden layers with 128
nodes per layer. Batch normalization is applied to every single hidden layer. A
combination of a normal Xavier initializer and tanh activations is used. Figure 2
and tables 1–2 illustrate the evidence of the use of the NURS to the sub-domains
across the entire domains in training the PINNs. The entire domain of the Duffing
oscillator is divided into three sub-domains (see Figure 2(a) and Figure 2(b)), while
the one of the Burger’s equation has four sub-domains (see Figure 2(c) and 2(d)). It
functions well on imposing samples in a more concentrated manner neighboring the
left end or both ones of the entire domains depending on the nature of the problems.
Regarding the Duffing oscillator, the IVP uses only two samples to theMSEI . Each
of (I), (II), and (III) has 84.99%, 10%, and 5% of 7,001 samples, respectively, for
the MSEf . The BVP uses each two samples at t=0 and t=9 for the MSEB , and
each sub-domain uses 42.83%, 14.28%, and 42.83% of 7,004 ones, respectively, for
the MSEf . In the case of the Burger’s equation, the MSEI uses 10,000 samples
for the IVP. Each of (I), (II), (III), and (IV) has 38.82%, 1.18%, 0.59%, and 0.59%
of 17,000 samples, respectively, for the MSEf . Whereas the MSEI only uses 1,000
samples for the IBVP, and it must be much less in comparison to the 10,000 samples
of the IVP case. Each of the sub-domains has 81.20%, 1.25%, 1.25%, and 3.75% of
8,005 samples, respectively, for the MSEf . Each of the intersections (90, -4), (90,
-2), (90, 0), (90, 2), and (90, 4) imposed along the right end boundary has a single
sample for the MSEB . It turns out that the IBVP needs much fewer samples than
17,000 ones of the IVP for the highly accurate solution. The Duffing oscillator is
tested using 1,000 uniformly distributed samples throughout the domain, and the
Burger’s equation is sampled specifically along the dashed lines shown in (c) or (d)
of Figure 2.
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(a) (b)

(c) (d)

Figure 2. Distributions of samples across the sub-domains. (a) and (b) are, respectively, for the IVP
and BVP of the Duffing oscillator; (c) and (d) are, respectively, for the IVP and IBVP of the Burger’s
equation. In Figure (c) and (d), orange and gray indicate samples, respectively, for MSEI and MSEf ,
and blue displays samples for MSEB .

Table 1. Number of samples for the Duffing oscillator

Problem
MSEI

MSEf
MSEB Total

type (I) (II) (III) Sub-total

IVP 2 5,950 700 350 7,000 − 7,001

BVP − 3,000 1,000 3,000 7,000 4 7,004

Table 2. Number of samples for the Burger’s equation

Problem
MSEI

MSEf
MSEB Total

type (I) (II) (III) (IV)
Sub-
total

IVP 10,000 6,600 200 100 100 7,000 − 17,000

BVP 1,000 6,500 100 100 300 7,000 5 8,005
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To discuss the solution accuracy of the MPINNs as well as the PINNs, we quan-
tify the global truncation errors using the root mean square error (RMSE) presented
below:

RMSE =

√√√√ 1

NT

NT∑
n=1

(un − ūn)2. (3.7)

(a) (b)

Figure 3. Convergence of the solutions to the Duffing oscillator. (a) Comparison of the solution by the
PINN and the exact one to the IVP. (b) Comparison of the solution by the PINN and the exact one to
the BVP.

Table 3. Comparison of the RMSEs of the Duffing oscillator

Problem RMSE(m)

type (I) (II) (III) Overall

IVP 1.673 × 10−2 5.967 × 10−2 1.697 × 10−1 1.043 × 10−1

BVP 7.443 × 10−4 1.307 × 10−3 6.192 × 10−4 9.391 × 10−4

Figure 3 and Table 3 indicate that the RMSEs of the IVP increase with t, and
(III) is the critical sub-domain. Unlike the IVP, the largest RSME occurs in (II) for
the BVP, but it is relatively very small. The overall RMSE of the IVP increase by
11,006.4 %, and the local RMSE in (III) rises by 27,306.3 % in comparison to the
BVP. As shown in Figure 4 and Table 4, the sub-domains at t = 45 and t = 67.5
are critical for the IVP of the Burger’s equation. The IBVP finds the critical sub-
domain in the middle, but it is also relatively small. The overall RMSE of the IVP
increases by 659.69 %, and the local RMSE at t = 45 rises by 475.87 % compared
to the IBVP. When it comes to the IVPs, it is obvious from the findings that the
PINNs tend to increase the local RMSEs over t. This trend is more pronounced in
the case of the Duffing oscillator. In the case of the Burger’s equation, the local
RMSEs start to increase rapidly after t = 45 and decrease somewhat around t = 90,
but the decrement is not significant. This phenomenon appears to be mainly caused
by a reduction in the influence of the initial constraints. In contrast, the boundary
constraints play an imperative role in the high-quality convergence of the solutions
for the BVP and the IBVP, especially in the critical sub-domains. One of the driving
forces behind this study is the IVP issue. In section 4, we propose an alternative
strategy to address it for the examples.
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(a)

(b)

Figure 4. Convergence of the solutions to the Burger’s equation. (a) Comparison of the solution by the
PINN and the exact one to the IVP. (b) Comparison of the solution by the PINN and the exact one to
the IBVP.

Table 4. Comparison of the RMSEs of the Burger’s equation

Problem RMSE(m/s)

type t = 0 t = 22.5 t = 45 t = 67.5 t = 90 Overall

IVP
1.057 ×
10−3

2.198 ×
10−3

2.277 ×
10−2

2.247 ×
10−2

1.616 ×
10−2

1.293 ×
10−2

IBVP
7.837 ×
10−4

2.101 ×
10−3

3.954 ×
10−3

1.271 ×
10−3

3.973 ×
10−4

1.702 ×
10−3

4. MPINN

In machine learning, there are several strategies for better adaptation of parameters
to new inputs by learning from prior models. In this regard, various meta-learning
techniques have been introduced in the literature [34]. This section discusses the
MPINN based on the MAML that fine-reinitializes θθθ using bi-level optimization.
Comparative evaluations on the convergence of the solutions to the IVPs by the
PINNs and MPINNs are implemented.

4.1. Meta-learning based on the MAML

An ANN is a typical nonlinear system, and its solution is highly dependent on its
initial parameter values, as is well known. A meta-learning process is designed
to improve the adaptability of the initial values of θθθ that leads to better solution
convergence. To achieve this, bi-level optimization is required. The outer learner,
which reinitializes a meta-model for each inner learner in every single meta-iteration,
enables each inner one to learn more adaptable features to a new task than a single
learner. As a result, bi-level optimization can improve model accuracy as θθθ alters
its direction and magnitude of increments in a different update manner (see Figure
5), but to improve it, θθθ can also be updated in a similar manner, as discussed in
section 5 for the Burger’s equation. Figure 5 summarizes (a) of Figure 6. Figure 5

and 6 display that first, training on D
(i)
su updates θθθ to θθθ(i) by adapting θθθ to x

(i)
su . θθθ

(i)

takes a next forward step and achieves θθθ(i),
′
when

∑NQ
i=1 L

(i)(θθθ(i),
′
,D

(i)
qu ) minimizes.

Therefore, θθθ reaches θθθ(i),
′
through θθθ(i). θθθ∗ is more adjustable to a new task when
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D
(i)
su and D

(i)
qu are more similar in characteristics to Dte.

Figure 5. The key concept of the MAML for a single new task.

In the meta-training, the BFGS optimizer is also used. The first step begins with

both θθθ(I) and H(I), and a procedure with the steps of 1 - 6 for each of fm
θθθ(i)(x

(i)
su) is

repeated until one of the criteria stops the optimizer. The BFGS keeps Hk positive
definite for updating formulations:

Step 1: find dk by solving Hkdk = −▽L(θθθk,Dtr. (4.1a)

Step 2: perform a line search in dk for computing αk = α

by minimize L(θθθk + αdk,Dtr). (4.1b)

Step 3: set sk = αkdk and update θθθk+1 = θθθk + sk. (4.1c)

Step 4: compute gk = ▽L(θθθk+1,Dtr)− ▽L(θθθk,Dtr). (4.1d)

Step 5: update Hk+1 = Hk +
gkgk

T

gkTsk
− Hksksk

THk
T

skTHksk
. (4.1e)

Step 6: return to step 1.

In (a) of Figure 6, fm
θθθ(i)(x

(i)
su) is deployable and NS is nine for both examples,

and NQ becomes automatically equal to NS. θθθ is updated to θθθ(i) by each inner

learner when the update of θθθk in Eq.(4.1c) on D
(i)
su is completed for fm

θθθ(i)(x
(i)
su). Each

inner learner follows the learning rule of the PINN. The outer learner updates θθθ to

θθθ(i),
′
(θθθ(i),

′
means θθθ∗ in the test phase) in substance through θθθ(i). It is also achieved

by Eq.(4.1c) when Eq.(4.2) instead of L(θθθk,Dtr) is applied to Eq.(4.1a). Eq.(4.2)
indicates the total of individual query losses.

NQ∑
i=1

L(i)(θθθ
(i),′

mk ,D(i)
qu ). (4.2)

The optimizer stops the outer learner by (C3) when each iterm reaches 17 and
40, respectively, for the Duffing oscillator and the Burger’s equation. The transfer of
the parameters (see (b) of Figure 6) significantly drops the number of the iterative

pre-meta-tunings. For the Duffing oscillator, fm
θθθ(1)(x

(1)
su ) undergoes 1,077 iterations

for the training, but fm
θθθ(6)(x

(6)
su ) needs five iterations only, and the rest necessitate a

significantly smaller number of iterations too. For the Burger’s equation, fm
θθθ(1)(x

(1)
su )
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undergoes 140 iterations, while each of fm
θθθ(i)(x

(i)
su) for i = 2, 4, 5, 8, and 9 requires

only one. An automatic evaluation of fm
θθθ∗(xte) on Dte follows the meta-training for

computing the RMSE of the MPINNs.

(a)

(b)

Figure 6. Schematic MPINN algorithm with the dual learners based on the MAML. (a) The meta-tuning

and meta-test phases for the MPINN. (b) The application of the transfer learning to fm

θθθ(i)
(x(i)

su ).

4.2. Experiments for the comparative performance evaluation
of the PINNs and the MPINNs

In this section, the experimental results of the IVPs by the PINNs and the MPINNs
are discussed. Figure 7 and Table 5 show that the MPINN decreases the overall
RMSE and the local RMSE in (III) of the Duffing oscillator problem, respectively,
by 98.84 % and 98.83 % relative to the PINN. The former reduces the overall RMSE
and the local RMSE at t = 45, respectively, by 79.81% and 85.89 % for the Burger’s
equation, as shown in Figure 8 and Table 6, relative to the latter. The meta-training
samples both examples in the same manner shown in (a) and (c) of Figure 2.
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Figure 7. Comparison of the convergence of the solutions to the IVP of the Duffing oscillator.

Table 5. Comparison of the RMSEs of the IVP of the Duffing oscillator

Solver
RMSE

(I) (II) (III) Overall

PINN 1.673 × 10−2 5.967 × 10−2 1.697 × 10−1 1.043 × 10−1

MPINN 1.854 × 10−4 7.842 × 10−4 1.979 × 10−3 1.212 × 10−3

Figure 8. Comparison of the convergence of the solutions to the IVP of the Burger’s equation.

Table 6. Comparison of the RMSEs of the IVP of the Burger’s equation

Solver
RMSE

t = 0 t = 22.5 t = 45 t = 67.5 t = 90 Overall

PINN
1.057 ×
10−3

2.198 ×
10−3

2.277 ×
10−2

2.247 ×
10−2

1.616 ×
10−2

1.293 ×
10−2

MPINN
5.937 ×
10−4

3.651 ×
10−3

3.213 ×
10−3

1.993 ×
10−3

3.605 ×
10−3

2.611 ×
10−3

Based on the experimental data, we conclude that the MPINNs with reinitial-
ization capability effectively solves the IVPs presented in the examples, whereas the
PINNs with no fine adjustment function struggle to solve them.

5. Adaptability and correlation analyses

To showcase the adaptability of initial parameters, we first examine the evolution
of the initial values of θθθ[l] of fm

θθθ (x) before (either the VS or the normal Xavier is
implemented for pre-meta-training) and after the fine reinitialization by the meta-
training and then sort out hidden layers that play a key role in the reinitialization
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and adaptation (see Figure 9 and 10). From the data, there is no doubt that θθθ(0)

initiates it for both IVP problems.

Figure 9. Evolution of the distribution of the initial values of θθθ[l] of the Duffing oscillator.

Figure 10. Evolution of the distribution of the initial values of θθθ[l] of the Burger’s equation.

This section investigates how the initial values of θθθ[0]s are related to the out-
puts of the examples. Additionally, as a supplementary to Figure 5, changes in
the initial values of θθθ[0]s before and after the application of the meta-learning are
highlighted. As for the issues, correlation analyses are conducted using Kendall’s
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rank-order correlation coefficient. To make heatmaps for the analyses more read-
able, in addition to different colors, a square factor with different sizes is added
to them. The size of a square in a correlation matrix generally corresponds to the
strength of the correlation, with a larger size indicating a stronger correlation. The
color of the square indicates the sign of the correlation, with blue and red typically
representing positive and negative correlations, respectively. The depth of the color,
either darker blue or darker red, represents the strength of the correlation with the
square size.

Figure 11 displays the sampling of input coordinates for u(t, x) that is used for

correlation analysis between θ
[0]
j,i and u(t, x). 256 samples are collected at random.

In Figures 12-15, an x-axis or y-axis is graduated from left to right or top to bottom,

respectively, and the graduations are labeled with θ
[0]
j,i values where necessary. To

label them, the Duffing oscillator begins with i = 1, then selects j = 1, 2, . . . , 64.
The Burger’s equation begins with i = 1, then selects j = 1, 2, . . . , 128, and this
process repeats for i = 2. For the first example, Figure 12.(a) and 12.(b) show

the heatmaps of the correlation between θθθ[0] initialized, respectively, by the VS
(before the use of the meta-learning) and the re-initializer (it means the whole
meta-learning process) and the output, u(t). The comparative analysis of both
heatmaps demonstrates that they become less correlated during the meta-learning.
The PINN with the two-point initial condition is sensitive to the initial value of θθθ[0],
and the mitigation of the sensitivity, as inferred from the lower correlation between
the initial value of θθθ[0] and u(t), improves the model accuracy. This suggests that
the meta-learning effectively finds the optimal initial parameters, which leads to
the improved solution accuracy in the presence of the less sensitivity to u(t), as the

elements of θθθ[0] are updated individually. It can be explained by comparing Figure
14.(a) with 14.(b) which depict the correlations between θθθ[0]s before and after the
fine reinitialization. In the case of the Burger’s equation (see Figure 13.(a) and

13.(b)), unlike the Duffing oscillator, the initial value of θθθ[0] and the output, u(t, x)
become more correlated during the meta-learning. This increased sensitivity leads
to the improved model accuracy, as the model captures more complex relationships
between x and u(t, x). It seems that the increase in the model accuracy due to
the application of the meta-learning comes at the cost of the decreased robustness.
The reason for this appears to be the integration of relatively intricate geometric
domain information into the initial condition with a large number of samples used
for discretization, making it difficult to decrease the sensitivity. However, it is
imperative to be cautious, as this could lead to a less robust model that is vulnerable
to the risk of overfitting and noise or inaccuracies in new input data, before finding
an acceptable trade-off between robustness and model accuracy.

Figure 14 and 15 show the heatmaps of the correlation between θθθ[0]s initialized,
respectively, by the VS and the Xavier initializers (before the use of the meta-
learning) and the re-initializer for both examples. The Duffing oscillator (see Figure
14.(a) and 14.(b)) demonstrates that the correlation becomes less during the meta-
learning. From the data, it is clear that the re-initializer updates the elements of
θθθ[0] independently in different directions and with different increments compared
to the VS used in the pre-meta-learning. The observation supports Figure 5 well.
For the case of the Burger’s equation, in contrast to the former, θθθ[0]s become more
correlated as shown in Figure 15.(a) and 15.(b) which suggests that the elements of

θθθ[0] are updated in an interdependent manner in the application of the re-initializer.
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Figure 11. 256 samples for labeling the y-axis of Figure 13.(a) and 13.(b) with (t, x) top to bottom:
first select t = 0, then select x between 4 and -4, and repeat this for t on the dashed lines (see the
direction of arrows).

Figure 12. (a) Correlation analysis between θθθ[0] initialized in the last meta-iteration and u(t) for the
Duffing oscillator.
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Figure 12. (b) Correlation analysis between θθθ[0] initialized in the last meta-iteration and u(t) for the
Duffing oscillator.
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Figure 13. (a) Correlation analysis between θθθ[0] initialized by the Xavier and u(t, x) for the Burger’s
equation.
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Figure 13. (b) Correlation analysis between θθθ[0] initialized in the last meta-iteration and u(t, x) for
the Burger’s equation.
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Figure 14. (a) Correlation analysis between θθθ[0]s initialized by the VS for the Duffing oscillator.
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Figure 14. (b) Correlation analysis between θθθ[0]s initialized in the last meta-iteration for the Duffing
oscillator.
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Figure 15. (a) Correlation analysis between θθθ[0]s initialized by the Xavier for the Burger’s equation.
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Figure 15. (b) Correlation analysis between θθθ[0]s initialized in the last meta-iteration for the Burger’s
equation.

6. Conclusion

IVPs, which have significant importance in science and engineering and are associ-
ated with various real-world challenges, need for their accurate numerical solution as
an essential task. In this study, we deal with the examples that are very simple but
reflect the characteristics of IVPs well. The case studies are devised to encompass
both scenarios: one where the output repeats itself or other similar patterns (the
Duffing oscillator) and another where there is substantial variation in the gradient
of the output with t (the Burger’s equation). Through the scenarios, in addition to
the precise numerical solutions of the IVPs, it is possible to observe a distinct dis-
similarity in the relation between the solutions with high accuracy and the model’s
sensitivity to them when the fine reinitialization is implemented.

The PINNs with a single learner struggle to find accurate solutions to the IVPs.
As evidence of this, the experimental data demonstrate the large RMSEs. It implies
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that the use of PINNs in science and engineering is limited because, unlike BVP
and IBVP, IVPs may necessitate fine reinitialization. In response to the limitation,
we propose the MPINN with the dual learners based on the MAML. The collab-
oration of the multiple number of inner learners and the outer learner overcomes
the limitation of the PINNs with no fine re-initializer, as it enables the optimal
reinitialization of θθθ and gives the solutions with higher precision. In this process,
θθθ[0] initiates the fine reinitialization for both IVPs. The findings show how closely
the solution convergence of the IVPs is coupled to the initial values of θθθ[0]s.

For the Duffing oscillator, the meta-learning decreases the sensitivity of the
initial value of θθθ[0] to u(t) by updating its components in the different manner,
leading to the highly accurate solution. On the contrary, in the case of the Burger’s
equation, updating the components of θθθ[0] in the interdependent manner increases
the sensitivity of the meta-model to u(t, x). The findings from the correlation
analyses hint that the application of the meta-learning process alone for solving
the PDE may be insufficient to optimize both issues at the same time, despite the
improvement in the model accuracy. Applying joint optimization to the MPINN,
which may reset the correlation between the initial parameters and the output,
could provide a double-purpose solution. Regarding savings in computation cost,

the use of the transfer learning between fm
θθθ(i)(x

(i)
su) contributes to the reduction of

the number of iterations required for the pre-meta-training of each inner learner.

7. Future works

A lot of progress has been made in self-tuning neural networks through joint op-
timization involving neural network architecture search and hyperparameters. It
could be imperative to apply the optimization method to the MPINN for achiev-
ing both higher model accuracy and robustness. To realize it, our upcoming study
will develop a hypergradient descent-based MPINN. The optimal trade-off between
higher model accuracy and lower sensitivity using an event-triggered mechanism to
activate a hypergradient descent process could be achieved.
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