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the Ito formula. An application is given to stochastic inclusions which have a
different form than usual.
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1. Introduction

The Ito formula [3,4,7,13] is really about integration by parts in the setting where
there is a stochastic integral. It is of fundamental importance in SPDE and related
fields [3, 4, 7, 9, 17]. We establish an implicit Ito formula in this work and apply it
to study a specific stochastic evolution inclusion.

1.1. The situation

Let V ⊆ W,W ′ ⊆ V ′ be separable Banach spaces, such that V is dense in W and
B ∈ L (W,W ′) satisfies

⟨Bw,w⟩ ≥ 0, ⟨Bu, v⟩ = ⟨Bv, u⟩ . (1.1)

Note that B does not need to be one to one. Also allowed is the case where B is
the Riesz map. It could also happen that V = W . Let X have values in V and
satisfy the following

BX (t) = BX0 +

∫ t

0

Y (s) ds+B

∫ t

0

Z (s) dW (s) , (1.2)

X0 ∈ L2 (Ω;W ) and is F0 measurable, where Z is L2

(
Q1/2U,W

)
progressively

measurable and
∥Z∥L2([0,T ]×Ω,L2(Q1/2U,W)) <∞.

Here Q is a nonnegative self adjoint operator defined on U . See [21] for stochastic
integrals.
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Assume that X,Y satisfy

BX,Y ∈ K ′ ≜ Lp
′
([0, T ]× Ω;V ′) ,

the σ algebra of measurable sets defining K ′ will be the progressively measurable
sets. Here 1/p′ + 1/p = 1, p > 1. In the following sense (1.2) holds: For a.e.
ω, the equation holds in V ′ for all t ∈ [0, T ]. Thus we are considering a particular
representativeX ofK for which this happens. Also it is only assumed that BX (t) =
B (X (t)) for a.e. t. Thus BX is the name of a function having values in V ′ for
which BX (t) = B (X (t)) for a.e. t. Assume that X is progressively measurable
and

X ∈ Lp ([0, T ]× Ω, V ) ≜ K.

AlsoW (t) is a JJ∗ Wiener process on U1 in the above diagram. U1 can be assumed
to be U .

The goal is to prove the following Ito formula valid for a.e. t for each ω off a
set of measure zero.

⟨BX (t) , X (t)⟩ = ⟨BX0, X0⟩+
∫ t

0

(
2 ⟨Y (s) , X (s)⟩+ ⟨BZ,Z⟩L2

)
ds

+

∫ t

0

(
Z ◦ J−1

)∗
BX ◦ JdW. (1.3)

The most significant feature of the last term is that it is a local martingale.
To understand the goal, the following fundamental deterministic result will be

very helpful. It says essentially that if (Bu)
′ ∈ Lp

′
(0, T ;V ′) and u ∈ Lp (0, T ;V )

then the map u→ Bu (t) is continuous as a map from

X1 ≜
{
u ∈ Lp ([0, T ] ;V ) : (Bu)

′ ∈ Lp
′
([0, T ] ;V ′)

}
with

∥u∥X1
≜ ∥u∥Lp(0,T,V ) +

∥∥(Bu)′∥∥
Lp′ (0,T ;V ′)

to W ′.

Proposition 1.1. Let Y ∈ Lp
′
(0, T ;V ′) and

Bu (t) = Bu0 +

∫ t

0

Y (s) ds in V ′, u0 ∈W,Bu (t) = B (u (t)) for a.e. t. (1.4)

Thus Y = (Bu)
′
as a weak derivative in the sense of V ′ valued distributions. It is

known that u ∈ Lp (0, T, V ) for p > 1. Then t→ Bu (t) is continuous into W ′ for t
off a set of measure zero N and there exists a continuous function t → ⟨Bu, u⟩ (t)
such that for all t /∈ N, ⟨Bu, u⟩ (t) = ⟨B (u (t)) , u (t)⟩ , Bu (t) = B (u (t)) , and for
all t,

1

2
⟨Bu, u⟩ (t) = 1

2
⟨Bu0, u0⟩+

∫ t

0

⟨Y (s) , u (s)⟩ ds.

Note that the formula (1.4) shows that Bu0 = Bu (0) . Also it shows that t →
⟨Bu, u⟩ (t) is continuous. To emphasize this a little more, Bu is the name of a
function. Bu (t) = B (u (t)) for a.e. t and t→ Bu (t) is continuous into V ′ on [0, T ]
because of the integral equation.

The Ito formula to be developed in this paper is a probabilistic version of the
above. Specifically, our main results about the Ito formula is as follows.
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Theorem 1.1. For ω off a set of measure zero, for every t /∈ Nω, a set of measure
zero dependent on ω,

⟨BX (t) , X (t)⟩ = ⟨BX0, X0⟩+
∫ t

0

(
2 ⟨Y (s) , X (s)⟩+ ⟨BZ,Z⟩L2

)
ds

+2

∫ t

0

(
Z ◦ J−1

)∗
BX ◦ JdW. (1.5)

Also, there exists a unique continuous, progressively measurable function denoted as
⟨BX,X⟩ such that it equals ⟨BX (t) , X (t)⟩ for a.e. t and ⟨BX,X⟩ (t) equals the
right side of the above for all t. In addition to this,

E (⟨BX,X⟩ (t)) = E (⟨BX0, X0⟩) + E

(∫ t

0

(
2 ⟨Y (s) , X (s)⟩+ ⟨BZ,Z⟩L2

)
ds

)
.

(1.6)
The quadratic variation of the stochastic integral in (1.5) is dominated by

C

∫ t

0

∥Z∥2L2
∥BX∥2W ′ ds (1.7)

for a suitable constant C. Also t → BX (t) is continuous with values in W ′ for
t ∈ NC

ω .

It is a technical generalization of known results. It allows for the possibility that
B is not one to one and this introduces many details which must be considered
carefully. The case that B is the identity is discussed in [21]. It was originally due
to Krylov [13].

We prove this theorem in Section 2 and provide in Section 3 an application to
evolution inclusions in which there is a stochastic integral.

2. The Ito formula

In this section, we shall prove Theorem 1.1. We first give some background involving
theorems from probability. Then we establish the Ito formula.

2.1. Background

Notation We shall list existing important theorems as propositions, and leave the
word theorem only for our main results.

Concerning a general Ito formula involving Ito integrals in infinite dimensions,
the level of generality might not be familiar and we begin with a brief summary of
background theorems. The proofs can mostly be found in [21], [23], [11], [12]

A normal filtration, denoted as {Ft} , is defined as follows.

1. Each Ft is a σ algebra and Fs ⊆ Ft if s ≤ t;

2. Fs = ∩{Ft : t > s} ;
3. Each Ft contains all sets of measure zero in FT .
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It is assumed that all filtrations are normal in this paper.
The following lemma is fundamental to the presentation. A proof is found in [12].

Lemma 2.1. Let Φ : [0, T ]× Ω → V, be B ([0, T ])×F measurable and suppose

Φ ∈ K ≜ Lp ([0, T ]× Ω;E) , p ≥ 1.

Then there exists a sequence of nested partitions, Pk ⊆ Pk+1,

Pk ≜
{
tk0 , · · · , tkmk

}
such that the step functions given by

Φrk (t) ≜
mk∑
j=1

Φ
(
tkj
)
X(tkj−1,t

k
j ]
(t) ,

Φlk (t) ≜
mk∑
j=1

Φ
(
tkj−1

)
X[tkj−1,t

k
j )
(t)

both converge to Φ in K as k → ∞ and

lim
k→∞

max
{∣∣tkj − tkj+1

∣∣ : j ∈ {0, · · · ,mk}
}
= 0.

Also, each Φ
(
tkj
)
,Φ
(
tkj−1

)
is in Lp (Ω;E). One can also assume that Φ (0) = 0.

The mesh points
{
tkj
}mk

j=0
can be chosen to miss a given set of measure zero. In

addition to this, we can assume that∣∣tkj − tkj−1

∣∣ = 2−nk

except for the case where j = 1 or j = mnk
when this might not be so. In the case

of the last subinterval defined by the partition, we can assume∣∣tkm − tkm−1

∣∣ = ∣∣T − tkm−1

∣∣ ≥ 2−(nk+1).

The following lemma is convenient. The proof is a simple application of the
Borel Cantelli theorem.

Lemma 2.2. Let fn → f in Lp ([0, T ]× Ω, E) . Then there exists a subsequence nk
and a set of measure zero N such that if ω /∈ N, then

fnk
(·, ω) → f (·, ω)

in Lp ([0, T ] , E) and for a.e. t.

Because of this lemma, it can also be assumed that for a.e. ω, pointwise con-
vergence is obtained on [0, T ] as well as convergence in Lp ([0, T ]). This kind of
assumption will be tacitly made whenever convenient.

To begin with, here is a useful lemma about how to recognize a martingale.

Lemma 2.3. Let {X (t)} be a stochastic process adapted to the filtration {Ft} for
t ≥ 0, E (|X (t)|) < ∞. Then it is a martingale for the given filtration if for every
stopping time σ it follows

E (X (t)) = E (X (σ)) .

In fact, it suffices to check this on stopping times which have two values.
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The main result on the quadratic variation [M ] for a continuous local martingale
is the following.

Proposition 2.1. Let M (t) be a continuous local martingale for t ∈ [0, T ] having
values in H a separable Hilbert space adapted to the normal filtration {Ft} such that
M (0) = 0. Then there exists a unique continuous, increasing, nonnegative, local
submartingale [M ] (t) called the quadratic variation such that

∥M (t)∥2 − [M ] (t)

is a real local martingale and [M ] (0) = 0. Here t ∈ [0, T ] . If δ is any stopping time:[
Mδ
]
= [M ]

δ
.

Recall that Mδ (t) ≜M (δ ∧ t).

The quadratic variation for the stochastic integral is obtained according to the
following corollary.

Corollary 2.1. Suppose that Φ is L2

(
Q1/2U,H

)
progressively measurable and has

the localizing sequence.Then the quadratic variation, [Φ ·W ] is given by the formula

[Φ ·W ] (t) =

∫ t

0

||Φ (s)||2L2(Q1/2U,H) ds.

The main tool for dealing with stochastic equations is the Burkholder-Davis-
Gundy (BDG) inequality which is a relationship between the maximal function

M∗ = sup
t∈[0,T ]

|M (t)|

of a martingale and the quadratic variation.

Proposition 2.2. Let {M (t)} be a continuous H valued martingale which is uni-
formly bounded, M (0) = 0, where H is a separable Hilbert space and t ∈ [0, T ] .
Then if F (r) = rp for some p ≥ 1, there are constants, C and c independent of
such martingales M such that

c

∫
Ω

F
(
([M ] (T ))

1/2
)
dP ≤

∫
Ω

F (M∗) dP ≤ C

∫
Ω

F
(
([M ] (T ))

1/2
)
dP,

where
M∗ (ω) ≜ sup {||M (t) (ω)|| : t ∈ [0, T ]} .

Proposition 2.3. Let H be a Hilbert space and suppose (M,Ft) , t ∈ [0, T ] is a
uniformly bounded continuous martingale with values in H. Also let {tnk}

mn

k=1 be a
sequence of partitions satisfying

lim
n→∞

max
{∣∣tni − tni+1

∣∣ , i = 0, · · · ,mn

}
= 0, {tnk}

mn

k=1 ⊆
{
tn+1
k

}mn+1

k=1
.

Then

[M ] (t) = lim
n→∞

mn−1∑
k=0

∣∣M (
t ∧ tnk+1

)
−M (t ∧ tnk )

∣∣2
H
,

the limit taking place in L2 (Ω). In case thatM is just a continuous local martingale,
the above limit happens in probability.
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Proposition 2.4. Let X (t) be a real valued stochastic process which is Ft adapted
for a normal filtration Ft, with the property that off a set of measure zero in Ω,
t→ X (t) is lower semicontinuous. Then

τ ≜ inf {t : X (t) > α}

is a stopping time.

The following generalization will also be useful. It generalizes the usual notions
of Fourier expansion.

Proposition 2.5. There exists a countable set {ei}∞i=1 of vectors in V such that

⟨Bei, ej⟩ = δij ,

and for each x ∈W,

Bx =
∞∑
i=1

⟨Bx, ei⟩Bei, and ⟨Bx, x⟩ =
∞∑
i=1

|⟨Bx, ei⟩|2 .

The series converges in W ′.

2.2. Preliminaries

From the integral equation (1.2), if ϕ ∈ Lq (Ω;V ) and ψ ∈ C∞
c (0, T ) for q =

max (p, 2) , ∫
Ω

∫ T

0

(
(BX) (t)−B

∫ t

0

Z (s) dW (s)−BX0

)
ψ′ϕdtdP

=

∫
Ω

∫ T

0

∫ t

0

Y (s)ψ′ (t) dsϕdtdP,

then the term on the right equals∫
Ω

∫ T

0

∫ T

s

Y (s)ψ′ (t) dtdsϕ (ω) dP =

∫
Ω

(
−
∫ T

0

Y (s)ψ (s) ds

)
ϕ (ω) dP.

It follows that, since ϕ is arbitrary,∫ T

0

(
(BX) (t)−B

∫ t

0

Z (s) dW (s)−BX0

)
ψ′ (t) dt = −

∫ T

0

Y (s)ψ (s) ds

in Lq
′
(Ω;V ′) and so the weak time derivative of

t→ (BX) (t)−B

∫ t

0

Z (s) dW (s)−BX0

equals Y in Lq
′
(
[0, T ] ;Lq

′
(Ω, V ′)

)
. Thus, for a.e. t, say t /∈ N̂ ⊆ [0, T ] ,m

(
N̂
)
=

0,

B

(
X (t)−

∫ t

0

Z (s) dW (s)

)
= BX0 +

∫ t

0

Y (s) ds in Lq
′
(Ω, V ′) .
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That is,

(BX) (t) = BX0 +

∫ t

0

Y (s) ds+B

∫ t

0

Z (s) dW (s)

holds in Lq
′
(Ω, V ′) where (BX) (t) = B (X (t)) a.e. t, in addition to holding for all

t for each ω. Now let {tnk}
mn∞
k=1n=1 be partitions for which, from Lemma 2.1, there

are left and right step functions X l
k and Xr

k , which converge in Lp ([0, T ]× Ω;V ) to
X and such that each {tnk}

mn

k=1 has empty intersection with the set of measure zero

N̂ where, in Lp
′
(Ω;V ′) , (BX) (t) ̸= B (X (t)) in Lq

′
(Ω;V ′). Thus for tk a generic

partition point,

BX (tk) = B (X (tk)) in Lq
′
(Ω;V ′) .

Hence there is an exceptional set of measure zero, N (tk) ⊆ Ω, such that for ω /∈
N (tk) ,

BX (tk) (ω) = B (X (tk, ω)) .

We define an exceptional set N ⊆ Ω to be the union of all these N (tk) . There
are countably many and so N is also a set of measure zero. Then for ω /∈ N and
tk any mesh point at all, BX (tk) (ω) = B (X (tk, ω)) . This will be important in
what follows. In addition to this, from the integral equation, for each of these
ω /∈ N, BX (t) (ω) = B (X (t, ω)) for all t /∈ Nω ⊆ [0, T ] where Nω is a set of
Lebesgue measure zero. Thus the tk from the various partitions are always in NC

ω .
By Proposition 2.5, there exists a countable set {ei} of vectors in V such that

⟨Bei, ej⟩ = δij

and for each x ∈W,

⟨Bx, x⟩ =
∞∑
i=0

|⟨Bx, ei⟩|2 , Bx =

∞∑
i=1

⟨Bx, ei⟩Bei.

Thus the conclusion of the above discussion is that at the mesh points, it is valid
to write

⟨(BX) (tk) , X (tk)⟩ = ⟨B (X (tk)) , X (tk)⟩
=
∑
i

⟨(BX) (tk) , ei⟩2 =
∑
i

⟨B (X (tk)) , ei⟩2

just as would be the case if (BX) (t) = B (X (t)) for every t.
In all which follows, the mesh points will be like this and an appropriate set of

measure zero which may be replaced with a larger set of measure zero finitely many
times is being neglected. Obviously, one can take a subsequence of the sequence
of partitions described above without disturbing the above observations. We will
denote these partitions as Pk. As a case of this, we obtain the following

Lemma 2.4. There exists a set of measure zero N ⊆ Ω and a dense subset of
[0, T ] , D such that for ω /∈ N, BX (t, ω) = B (X (t, ω)) for all t ∈ D.

Proposition 2.6. Let Z be progressively measurable and in

L2
(
[0, T ]× Ω,L2

(
Q1/2U,W

))
.
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Also suppose X is progressively measurable and in L2 ([0, T ]× Ω,W ). Let
{
tnj
}mn

j=0

be a sequence of partitions of the sort in Lemma 2.1 such that if

Xn (t) ≜
mn−1∑
j=0

X
(
tnj
)
X[tnj ,t

n
j+1)

(t) ≜ X l
n (t) ,

then Xn → X in Lp ([0, T ]× Ω,W ) . Also, it can be assumed that none of these
mesh points are in the exceptional set off which BX (t) = B (X (t)). (Thus it will
make no difference whether we write BX (t) or B (X (t)) in what follows for all t
one of these mesh points.) Then the function of t given by

mn−1∑
j=0

〈
B

∫ tnj+1∧t

tnj ∧t
ZdW,X

(
tnj
)〉

=

mn−1∑
j=0

〈
BX

(
tnj
)
,

∫ tnj+1∧t

tnj ∧t
ZdW

〉
(2.1)

is a local martingale which can be written in the form∫ t

0

(
Z ◦ J−1

)∗
BX l

n ◦ JdW

where

X l
n (t) =

mn−1∑
k=0

X (tnk )X[tnk ,t
n
k+1)

(t) .

Proof: The proof of this theorem amounts to a careful use of the definitions.
One first assumes that ⟨BX (tnk ) , X (tnk )⟩ ∈ L∞ (Ω). The next step is to verify that
(2.1) is a martingale using Lemma 2.3. Verification of the claimed formula follows
from the definition of the stochastic integral applied to each of the sub-intervals and
is mainly technical. The proof is completed using a stopping time argument.

The question of convergence as n→ ∞ is considered later.

2.3. The main estimate

The argument will be based on a formula which follows in the next lemma which is
a technical generalization of one in [21].

Lemma 2.5. Letting M (t) ≜
∫ t
0
Z (u) dW (u) , which has values in W , the follow-

ing formula holds for a.e. ω for 0 < s < t, where ⟨·, ·⟩ denotes the duality pairing
between V, V ′.

⟨BX (t) , X (t)⟩ = ⟨BX (s) , X (s)⟩+

+2

∫ t

s

⟨Y (u) , X (t)⟩ du+ ⟨B (M (t)−M (s)) ,M (t)−M (s)⟩

− ⟨BX (t)−BX (s)− (M (t)−M (s)) , X (t)−X (s)− (M (t)−M (s))⟩

+2 ⟨BX (s) ,M (t)−M (s)⟩ . (2.2)

Also for t > 0,

⟨BX (t) , X (t)⟩ = ⟨BX0, X0⟩+ 2

∫ t

0

⟨Y (u) , X (t)⟩ du+ 2 ⟨BX0,M (t)⟩+

⟨BM (t) ,M (t)⟩ − ⟨BX (t)−BX0 −BM (t) , X (t)−X0 −M (t)⟩ . (2.3)
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The following estimate is important in proving the Ito formula.

Lemma 2.6. For a.e. t,

E (⟨BX (t) , X (t)⟩)

< C
(
||Y ||K′ , ||X||K , ||Z||J , ∥⟨BX0, X0⟩∥L1(Ω)

)
<∞, (2.4)

where J = L2
(
[0, T ]× Ω;L2

(
Q1/2U ;W

))
. Or equivalently

E

(
sup
t∈[0,T ]

∑
i

⟨BX (t) , ei⟩2
)

≤ C
(
||Y ||K′ , ||X||K , ||Z||J , ∥⟨BX0, X0⟩∥L1(Ω)

)
,

where C is a continuous function of its arguments, increasing in each one, and
C (0, 0, 0, 0) = 0. Thus for a.e. ω,

sup
t/∈NC

ω

⟨BX (t, ω) , X (t, ω)⟩ ≤ C (ω) <∞.

Also for ω off a set of measure zero described earlier, t → BX (t) (ω) is weakly
continuous with values in W ′ on [0, T ] . Also, t → ⟨BX (t) , X (t)⟩ is lower semi-
continuous on NC

ω .

Proof: Consider the formula in Lemma 2.5.

⟨BX (t) , X (t)⟩ = ⟨BX (s) , X (s)⟩

+2

∫ t

s

⟨Y (u) , X (t)⟩ du+ ⟨B (M (t)−M (s)) ,M (t)−M (s)⟩

− ⟨B (X (t)−X (s)− (M (t)−M (s))) , X (t)−X (s)− (M (t)−M (s))⟩
+2 ⟨BX (s) ,M (t)−M (s)⟩ . (2.5)

Now let tj denote a point of Pk from Lemma 2.1. Then for tj > 0, X (tj) is just
the value of X at tj but when t = 0, the definition of X (0) in this step function is

X (0) ≜ 0. Thus

m−1∑
j=1

⟨BX (tj+1) , X (tj+1)⟩ − ⟨BX (tj) , X (tj)⟩

+ ⟨BX (t1) , X (t1)⟩ − ⟨BX0, X0⟩
= ⟨BX (tm) , X (tm)⟩ − ⟨BX0, X0⟩ .
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Using the formula in Lemma 2.5, for t = tm this yields

⟨BX (tm) , X (tm)⟩ − ⟨BX0, X0⟩ = 2

m−1∑
j=1

∫ tj+1

tj

⟨Y (u) , Xr
k (u)⟩ du

+2

m−1∑
j=1

〈
B

∫ tj+1

tj

Z (u) dW,X (tj)

〉

+

m−1∑
j=1

⟨B (M (tj+1)−M (tj)) ,M (tj+1)−M (tj)⟩

−
m−1∑
j=1

⟨B (X (tj+1)−X (tj)− (M (tj+1)−M (tj))) ,

X (tj+1)−X (tj)− (M (tj+1)−M (tj))⟩

+2

∫ t1

0

⟨Y (u) , X (t1)⟩ du+ 2

〈
BX0,

∫ t1

0

Z (u) dW

〉
+ ⟨BM (t1) ,M (t1)⟩

− ⟨B (X (t1)−X0 −M (t1)) , X (t1)−X0 −M (t1)⟩ .

(2.6)

First consider 2
∫ t1
0

⟨Y (u) , X (t1)⟩ du+2
〈
BX0,

∫ t1
0
Z (u) dW

〉
+⟨BM (t1) ,M (t1)⟩ .

Each term converges to 0 for a.e. ω as k → ∞ and in L1 (Ω). This follows right
away for the second two terms from the Ito isometry and continuity properties of
the stochastic integral. Consider the first term. This term is dominated by(∫ t1

0

∥Y (u)∥p
′
du

)1/p′
(∫ T

0

∥Xr
k (u)∥

p
du

)1/p

≤ C (ω)

(∫ t1

0

∥Y (u)∥p
′
du

)1/p′

,

(∫
Ω

C (ω)
p
dP

)1/p

<∞.

Hence this converges to 0 for a.e. ω and also converges to 0 in L1 (Ω).
Not much is known about the last term in (2.6), but it is negative and is about

to be neglected.
The term involving the stochastic integral equals

2

m−1∑
j=1

〈
B

∫ tj+1

tj

Z (u) dW,X (tj)

〉
.

By Proposition 2.6 this equals

2

∫ tm

t1

(
Z ◦ J−1

)∗
BX l

k ◦ JdW.

Also note that since ⟨BM (t1) ,M (t1)⟩ converges to 0 in L1 (Ω) and for a.e. ω, the
sum involving

⟨B (M (tj+1)−M (tj)) ,M (tj+1)−M (tj)⟩
can be started at 0 rather than 1 at the expense of adding in a term which converges
to 0 a.e. and in L1 (Ω). Thus (2.6) is of the form

⟨BX (tm) , X (tm)⟩ − ⟨BX0, X0⟩ = e (k) + 2

∫ tm

0

⟨Y (u) , Xr
k (u)⟩ du+
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+2

∫ tm

0

(
Z ◦ J−1

)∗
BX l

k ◦ JdW

+

m−1∑
j=0

⟨B (M (tj+1)−M (tj)) ,M (tj+1)−M (tj)⟩

−
m−1∑
j=1

⟨B (X (tj+1)−X (tj)− (M (tj+1)−M (tj))) ,

X (tj+1)−X (tj)− (M (tj+1)−M (tj))⟩

− ⟨B (X (t1)−X0 −M (t1)) , X (t1)−X0 −M (t1)⟩ , (2.7)

where e (k) → 0 for a.e. ω and also in L1 (Ω).

By definition, M (tj+1)−M (tj) =
∫ tj+1

tj
ZdW. Now it follows, on discarding the

negative terms,

⟨BX (tm) , X (tm)⟩ − ⟨BX0, X0⟩ ≤ e (k) + 2

∫ tm

0

⟨Y (u) , Xr
k (u)⟩ du+

+2

∫ tm

0

(
Z ◦ J−1

)∗
BX l

k ◦ JdW +

m−1∑
j=0

〈
B

∫ tj+1

tj

ZdW,

∫ tj+1

tj

ZdW

〉
.

Therefore,

sup
tm∈Pk

⟨BX (tm) , X (tm)⟩ ≤ ⟨BX0, X0⟩+ e (k) + 2

∫ T

0

|⟨Y (u) , Xr
k (u)⟩| du+

+2 sup
tm∈Pk

∣∣∣∣∫ tm

0

(
Z ◦ J−1

)∗
BX l

k ◦ JdW
∣∣∣∣

+

mk−1∑
j=0

〈
B

(∫ tj+1

tj

Z (u) dW

)
,

∫ tj+1

tj

Z (u) dW

〉
,

where there are mk + 1 points in Pk.
In order to take the expectation of both sides, let

τp = inf
{
t :
〈
BX l

k (t) , X
l
k (t)

〉
> p
}
.

By right continuity this is a well defined stopping time. Then one obtain the above
inequality for

(
X l
k

)τp
in place of X l

k. Take the expectation and use the Ito isometry
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to obtain∫
Ω

(
sup
tm∈Pk

〈
B
(
X l
k

)τp
(tm) ,

(
X l
k

)τp
(tm)

〉)
dP

≤E (⟨BX0, X0⟩) + 2 ||Y ||K′ ||Xr
k ||K

+ ∥B∥
mk−1∑
j=0

∫ tj+1

tj

∫
Ω

||Z (u)||2 dPdu

+2

∫
Ω

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

X[0,τp]

(
Z ◦ J−1

)∗
B
(
X l
k

)τp ◦ JdW
∣∣∣∣
)
dP + E (|e (k)|)

≤C + ∥B∥
∫ T

0

∫
Ω

∥Z (u)∥2 dPdu+ E (|e (k)|)

+2

∫
Ω

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B
(
X l
k

)τp ◦ JdW
∣∣∣∣
)
dP

≤C + E (|e (k)|) + 2

∫
Ω

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B
(
X l
k

)τp ◦ JdW
∣∣∣∣
)
dP,

(2.8)

where the convergence of Xr
k to X in K shows that the term 2 ||Y ||K′ ||Xr

k ||K is
bounded. Thus the constant C can be assumed to be a continuous function of

||Y ||K′ , ||X||K , ||Z||J , ∥⟨BX0, X0⟩∥L1(Ω) ,

which equals zero when all are equal to zero and is increasing in each.
Consider the term involving the stochastic integral.
Let M (t) =

∫ t
0

(
Z ◦ J−1

)∗
B
(
X l
k

)τp ◦ JdW. Then by Corollary 2.1

d [M] =
∥∥∥(Z ◦ J−1

)∗
B
(
X l
k

)τp ◦ J
∥∥∥2 ds.

Applying the BDG inequality, Proposition 2.2 for F (r) = r in that stochastic
integral,

2

∫
Ω

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B
(
X l
k

)τp ◦ JdW
∣∣∣∣
)
dP

≤ C

∫
Ω

(∫ T

0

∥∥∥(Z ◦ J−1
)∗
B
(
X l
k

)τp ◦ J
∥∥∥2
L2(Q1/2U,R)

ds

)1/2

dP. (2.9)

So let {gi} be an orthonormal basis for Q1/2U and consider the integrand in the
above. It equals

∞∑
i=1

(((
Z ◦ J−1

)∗
B
(
X l
k

)τp)
(J (gi))

)2
=

∞∑
i=1

〈
B
(
X l
k

)τp
, Z (gi)

〉2

≤
∞∑
i=1

〈
B
(
X l
k

)τp
,
(
X l
k

)τp〉 ⟨BZ (gi) , Z (gi)⟩

≤
(

sup
tm∈Pk

〈
B
(
X l
k

)τp
(tm) ,

(
X l
k

)τp
(tm)

〉)
∥B∥ ∥Z∥2L2

.
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It follows that the integral in (2.9) is dominated by

C

∫
Ω

sup
tm∈Pk

〈
B
(
X l
k

)τp
(tm) ,

(
X l
k

)τp
(tm)

〉1/2
∥B∥1/2

(∫ T

0

∥Z∥2L2
ds

)1/2

dP.

Now return to (2.8). From what was just shown,

E

(
sup
tm∈Pk

〈
B
(
X l
k

)τp
(tm) ,

(
X l
k

)τp
(tm)

〉)
≤C + E (|e (k)|) + 2

∫
Ω

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B
(
X l
k

)τp ◦ JdW
∣∣∣∣
)
dP

≤C + C

∫
Ω

sup
tm∈Pk

〈
B
(
X l
k

)τp
(tm) ,

(
X l
k

)τp
(tm)

〉1/2
·

∥B∥1/2
(∫ T

0

∥Z∥2L2
ds

)1/2

dP + E (|e (k)|)

≤C +
1

2
E

(
sup
tm∈Pk

〈
B
(
X l
k

)τp
(tm) ,

(
X l
k

)τp
(tm)

〉)
+ C ∥Z∥2L2([0,T ]×Ω,L2)

+ E (|e (k)|) .

It follows that

1

2
E

(
sup
tm∈Pk

〈
B
(
X l
k

)τp
(tm) ,

(
X l
k

)τp
(tm)

〉)
≤ C + E (|e (k)|) .

Now let p→ ∞ and use the monotone convergence theorem to obtain

E

(
sup
tm∈Pk

〈
BX l

k (tm) , X l
k (tm)

〉)
= E

(
sup
tm∈Pk

⟨BX (tm) , X (tm)⟩
)

≤ C+E (|e (k)|) .

(2.10)
As mentioned above, this constant C is a continuous function of

||Y ||K′ , ||X||K , ||Z||J , ∥⟨BX0, X0⟩∥L1(Ω,H)

and equals zero when all of these quantities equal 0 and is increasing with respect
to each of the above quantities. Also, for each ε > 0,

E

(
sup
tm∈Pk

⟨BX (tm) , X (tm)⟩
)

≤ C + ε

whenever k is large enough.

Let D denote the union of all the Pk. Thus, D is a dense subset of [0, T ] and
it has just been shown, since the Pk are nested, that for a constant C, dependent
only on the above quantities which is independent of Pk,

E

(
sup
t∈D

⟨BX (t) , X (t)⟩
)

≤ C + ε.
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Since ε > 0 is arbitrary,

E

(
sup
t∈D

⟨BX (t) , X (t)⟩
)

≤ C. (2.11)

Thus, enlarging N, for ω /∈ N,

sup
t∈D

⟨BX (t) , X (t)⟩ = C (ω) <∞, (2.12)

where
∫
Ω
C (ω) dP < ∞. By Proposition 2.5, there exists a countable set {ei} of

vectors in V such that

⟨Bei, ej⟩ = δij

and for each x ∈W,

⟨Bx, x⟩ =
∞∑
i=0

⟨Bx, ei⟩2 , Bx =

∞∑
i=1

⟨Bx, ei⟩Bei.

Thus, for t not in a set of measure zero off which BX (t) = B (X (t)) ,

⟨BX (t) , X (t)⟩ =
∞∑
i=0

⟨BX (t) , ei⟩2 = sup
m

m∑
k=1

⟨BX (t) , ei⟩2 .

Now from the formula for BX (t) , it follows that BX is continuous into V ′. For
any t /∈ N̂ , a set of measure zero, so that (BX) (t) = B (X (t)) in Lq

′
(Ω;V ′) and

letting tk → t where tk ∈ D, Fatou’s lemma implies

E (⟨BX (t) , X (t)⟩) =
∑
i

E
(
⟨BX (t) , ei⟩2

)
=
∑
i

lim inf
k→∞

E
(
⟨BX (tk) , ei⟩2

)

≤ lim inf
k→∞

∑
i

E
(
⟨BX (tk) , ei⟩2

)
= lim inf

k→∞
E (⟨BX (tk) , X (tk)⟩)

≤ C
(
||Y ||K′ , ||X||K , ||Z||J , ∥⟨BX0, X0⟩∥L1(Ω)

)
.

In addition to this, for arbitrary t ∈ [0, T ] , and tk → t from D,∑
i

⟨BX (t) , ei⟩2 ≤ lim inf
k→∞

∑
i

⟨BX (tk) , ei⟩2 ≤ sup
s∈D

⟨BX (s) , X (s)⟩ .

Hence

sup
t∈[0,T ]

∑
i

⟨BX (t) , ei⟩2 ≤ sup
s∈D

⟨BX (s) , X (s)⟩

= sup
s∈D

∑
i

⟨BX (s) , ei⟩2 ≤ sup
t∈[0,T ]

∑
i

⟨BX (t) , ei⟩2 .

It follows that

sup
t∈[0,T ]

∑
i

⟨BX (t) , ei⟩2
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is measurable and for ω off a set of measure zero, supt∈[0,T ]

∑
i ⟨BX (t) , ei⟩2 is

bounded above.
Also for t /∈ Nω and a given ω /∈ N, letting tk → t for tk ∈ D,

⟨BX (t) , X (t)⟩ =
∑
i

⟨BX (t) , ei⟩2 ≤ lim inf
k→∞

∑
i

⟨BX (tk) , ei⟩2

= lim inf
k→∞

⟨BX (tk) , X (tk)⟩ ≤ sup
t∈D

⟨BX (t) , X (t)⟩

and so

sup
t/∈Nω

⟨BX (t) , X (t)⟩ ≤ sup
t∈D

⟨BX (t) , X (t)⟩ ≤ sup
t/∈Nω

⟨BX (t) , X (t)⟩ .

From (2.12),
sup
t/∈Nω

⟨BX (t) , X (t)⟩ = C (ω) a.e. ω,

where
∫
Ω
C (ω) dP < ∞. In particular, supt/∈Nω

⟨BX (t) , X (t)⟩ is bounded for a.e.
ω say for ω /∈ N where N includes the earlier sets of measure zero. This shows that
BX (t) is bounded in W ′ for t ∈ NC

ω .
If v ∈ V, then for ω /∈ N,

lim
t→s

⟨BX (t) , v⟩ = ⟨BX (s) , v⟩ .

Therefore, since for such ω, ∥BX (t)∥W ′ is bounded for t /∈ Nω, the above holds
for all v ∈ W also. Therefore, for a.e. ω, t → BX (t, ω) is weakly continuous with
values in W ′ for t /∈ Nω.

Note also that

∥BX∥2W ′ ≜

(
sup

∥y∥W≤1

⟨BX, y⟩

)2

≤ sup
∥y∥≤1

(
⟨BX,X⟩1/2 ⟨By, y⟩1/2

)2
≤ ⟨BX,X⟩ ∥B∥∫ T

0

∫
Ω

∥BX (t)∥2 dPdt ≤
∫
Ω

∫ T

0

∥B∥ ⟨BX (t) , X (t)⟩ dtdP

≤ C
(
||Y ||K′ , ||X||K , ||Z||J , ∥⟨BX0, X0⟩∥L1(Ω)

)
∥B∥T. (2.13)

Eventually, it is shown that in fact, the function t → BX (t, ω) is continuous
with values in W ′. The above shows that BX ∈ L2 ([0, T ]× Ω,W ′).

With the last lemma, we can simplify one of the formulas derived earlier in the
case that X0 ∈ Lp (Ω, V ) so that X −X0 ∈ Lp ([0, T ]× Ω, V ). Refer to (2.7). One
term there is

⟨B (X (t1)−X0 −M (t1)) , X (t1)−X0 −M (t1)⟩

≤ 2 ⟨B (X (t1)−X0) , X (t1)−X0⟩+ 2 ⟨BM (t1) ,M (t1)⟩ .

It was observed above that 2 ⟨BM (t1) ,M (t1)⟩ → 0 a.e. and also in L1 (Ω) as
k → ∞. Apply the above lemma to ⟨B (X (t1)−X0) , X (t1)−X0⟩ using [0, t1]
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instead of [0, T ] . The new X0 equals 0. Then from the estimate (2.4), it follows
that

E (⟨B (X (t1)−X0) , X (t1)−X0⟩) → 0

as k → ∞. Taking a subsequence, we could also assume that

⟨B (X (t1)−X0) , X (t1)−X0⟩ → 0

a.e. ω as k → ∞. Then, using this subsequence, it would follow from (2.7),

⟨BX (tm) , X (tm)⟩ − ⟨BX0, X0⟩ = e (k) + 2

∫ tm

0

⟨Y (u) , Xr
k (u)⟩ du+

+2

∫ tm

0

(
Z ◦ J−1

)∗
BX l

k ◦ JdW

+

m−1∑
j=0

⟨B (M (tj+1)−M (tj)) ,M (tj+1)−M (tj)⟩

−
m−1∑
j=1

⟨B (∆X (tj)−∆M (tj)) ,∆X (tj)−∆M (tj)⟩ (2.14)

where e (k) → 0 in L1 (Ω) and a.e. ω and

∆X (tj) ≜ X (tj+1)−X (tj) ,

∆M (tj) being defined similarly. Note how this eliminated the need to consider the
term

⟨B (X (t1)−X0 −M (t1)) , X (t1)−X0 −M (t1)⟩

in passing to a limit.

In the case that X0 is not assumed to be in Lp (Ω, V ) , let Z0k ∈ Lp (Ω, V ) ∩
L2 (Ω,W ) , Z0k → X0 in L2 (Ω,W ) . Then from the usual arguments involving the
Cauchy Schwarz inequality,

⟨B (X (t1)−X0) , X (t1)−X0⟩1/2 ≤ ⟨B (X (t1)− Z0k) , X (t1)− Z0k⟩1/2

+ ⟨B (Z0k −X0) , Z0k −X0⟩1/2 .

Also, restoring the superscript to identify the parition,

B
(
X
(
tk1
)
− Z0k

)
= B (X0 − Z0k) +

∫ tk1

0

Y (s) ds+B

∫ tk1

0

Z (s) dW.

Of course ∥X − Z0k∥K is not bounded, but for each k it is finite. There is a
sequence of partitions Pk, ∥Pk∥ → 0 such that all the above holds. In the definitions
of K,K ′, J replace [0, T ] with [0, t] and let the resulting spaces be denoted by
Kt,K

′
t, Jt. Let nk denote a subsequence of {k} such that

∥X − Z0k∥K
t
nk
1

< 1/k.
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Then from the above lemma,

E (⟨B (X (tnk
1 )− Z0k) , X (tnk

1 )− Z0k⟩)

≤ C

(
||Y ||K′

t
nk
1

, ∥X − Z0k∥K
t
nk
1

, ||Z||J
t
nk
1

, ⟨B (X0 − Z0k) , X0 − Z0k⟩L1(Ω)

)
≤ C

(
||Y ||K′

t
nk
1

,
1

k
, ||Z||J

t
nk
1

, ⟨B (X0 − Z0k) , X0 − Z0k⟩L1(Ω)

)
.

Hence
E (⟨B (X (tnk

1 )−X0) , X (tnk
1 )−X0⟩)

≤ 2E (⟨B (X (tnk
1 )− Z0k) , X (tnk

1 )− Z0k⟩) + 2E (⟨B (Z0k −X0) , Z0k −X0⟩)

≤ 2C

(
||Y ||K′

t
nk
1

,
1

k
, ||Z||J

t
nk
1

, ⟨B (X0 − Z0k) , X0 − Z0k⟩L1(Ω)

)
+2 ∥B∥ ∥Z0k −X0∥2L2(Ω,W ) ,

which converges to 0 as k → ∞. It follows that there exists a suitable subsequence
such that (2.14) holds even in the case that X0 is only known to be in L2 (Ω,W ).
From now on, assume this subsequence for the partitions Pk. Thus k will really be
nk and it suffices to consider the limit as k → ∞ of the equation of (2.14).

Remark 2.1. The reason for the above observations is to argue that, even when
X0 is only in L2 (Ω,W ) , one can neglect

⟨B (X (t1)−X0 −M (t1)) , X (t1)−X0 −M (t1)⟩

in passing to the limit as k → ∞ provided a suitable subsequence is used.

2.4. Convergence

We prove next that the stochastic integral
∫ t
0

(
Z ◦ J−1

)∗
BX l

n ◦ JdW converges as
n→ ∞ in some sense to ∫ t

0

(
Z ◦ J−1

)∗
BX ◦ JdW, (2.15)

which is also a local martingale.

Notice that Z◦J−1 maps JQ1/2U toW and so
(
Z ◦ J−1

)∗
mapsW ′ to

(
JQ1/2U

)′
.

Thus(
Z ◦ J−1

)∗
BX ∈

(
JQ1/2U

)′
, so

(
Z ◦ J−1

)∗
BX◦J ∈ Q1/2 (U)

′
= L2

(
Q1/2U,R

)
.

Thus it has values in the right space. The problem is that the integrand is not in
L2
(
[0, T ]× Ω;L2

(
Q1/2U,R

))
.

By assumption, t→ BX (t) is continuous into V ′ thanks to the integral equation
solved, and also BX (t) = B (X (t)) for t /∈ Nω a set of measure zero. For such t, it
follows from Proposition 2.5,

⟨BX (t) , X (t)⟩ =
∑
i

⟨BX (t) , ei⟩2V ′,V a.e. ω
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and so t→
∑
i ⟨BX (t) , ei⟩2 is lower semicontinuous and as just explained, it equals

⟨BX (t) , X (t)⟩ for a.e. t, this for each ω /∈ N, a single set of measure zero. Also,

t→
∑
i ⟨BX (t) , ei⟩2V ′,V is progressively measurable and lower semicontinuous in t

so by Proposition 2.4, one can define a stopping time

τp ≜ inf

{
t :
∑
i

⟨BX (t) , ei⟩2V ′,V > p

}
, τ0 ≜ 0. (2.16)

Instead of referring to this Proposition, consider

τmp ≜ inf

{
t :

m∑
i=1

⟨BX (t) , ei⟩2V ′,V > p

}

which is clearly a stopping time because t→
∑m
i=1 ⟨BX (t) , ei⟩2V ′,V is a continuous

process. Then observe that τp = supm τ
m
p . Then

[τp ≤ t] = ∪m
[
τmp ≤ t

]
∈ Ft.

That τp = ∞ for all p large enough follows from Lemma 2.6.

Lemma 2.7. τp = ∞ for all p large enough off a set of measure zero for τp defined
above. Moreover,

P

(∫ T

0

∣∣∣(Z ◦ J−1
)∗
BX ◦ J

∣∣∣2 dt <∞

)
= 1,

so that
∫ t
0

(
Z ◦ J−1

)∗
BX ◦ JdW can be defined as a local martingale.

Proof: Let

A ≜

{
ω :

∫ T

0

∣∣∣(Z ◦ J−1
)∗
BX ◦ J

∣∣∣2 dt = ∞

}
.

Then from the assumption that τp = ∞ for all p large enough, it follows that

A = ∪∞
m=1A ∩ ([τm = ∞] \ [τm−1 <∞]) .

Now

P (A ∩ [τm = ∞]) ≤ P

(
ω :

∫ T

0

X[0,τm]

∣∣∣(Z ◦ J−1
)∗
BX ◦ J

∣∣∣2 dt = ∞

)
. (2.17)

Consider the integrand. Letting {gi} be an orthonormal basis for Q1/2U, the∣∣∣(Z ◦ J−1
)∗
BX ◦ J

∣∣∣2
is defined as∑

i

[((
Z ◦ J−1

)∗
BX ◦ J

)
(gi)

]2
≜
∑
i

[(
Z ◦ J−1

)∗
BX (Jgi)

]2
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≜
∑
i

[
BX

(
Z ◦ J−1 (Jgi)

)]2
=
∑
i

[(BX) (Zgi)]
2

≤
∑
i

∥BX∥2 ∥Zgi∥2W .

Incorporating the stopping time, for a.e. t,

⟨BX,X⟩ (t) = ⟨BX (t) , X (t)⟩ ≤ m

and

|⟨B (X (t)) , w⟩| ≤ ⟨B (X (t)) , X (t)⟩1/2 ∥B∥1/2 ∥w∥W

=

(∑
i

⟨BX (t) , ei⟩2V ′,V

)1/2

∥B∥1/2 ∥w∥W

≤
√
m ∥B∥1/2 ∥w∥W , so ∥BX (t)∥ ≤ m ∥B∥1/2 .

Thus the integrand satisfies for a.e. t

X[0,τm]

∣∣∣(Z ◦ J−1
)∗
BX ◦ J

∣∣∣2 ≤ m ∥B∥ ∥Z∥2L2
.

Hence, from (2.17),

P (A ∩ [τm = ∞]) ≤ P

(
ω :

∫ T

0

∥Z∥2L2
m ∥B∥ dt = ∞

)
.

However, ∫
Ω

∫ T

0

∥Z∥2L2
m ∥B∥ dtdP <∞

by the assumptions on Z. Therefore, P (A ∩ [τm = ∞]) = 0. It follows that

P (A) =
∑
m

P (A ∩ ([τm = ∞] \ [τm−1 <∞])) =
∑
m

0 = 0.

It follows that P

(∫ T
0

∣∣∣(Z ◦ J−1
)∗
BX ◦ J

∣∣∣2 dt <∞
)

= 1 and
∫ t
0

(
Z ◦ J−1

)∗
BX ◦

JdW a local martingale.
As part of Lemma 2.6, see (2.13), it was shown that BX ∈ L2 ([0, T ]× Ω,W ′).

Therefore, there exist partitions of [0, T ] like the above such that

BXr
k , BX

l
k → BX in L2 ([0, T ]× Ω,W ′)

in addition to the convergence of X l
k, X

r
k to X in K. From now on, the argument

will involve a subsequence of these.

Lemma 2.8. There exists a subsequence still denoted with the subscript k and an
enlarged set of measure zero N including the earlier one such that BX l

k (t) , BX
r
k (t)

also converges pointwise a.e. t to BX (t) inW ′ and X l
k (t) , X

r
k (t) converge pointwise

a.e. in V to X (t) for ω /∈ N as well as having convergence of X l
k (·, ω) to X (·, ω)

in Lp ([0, T ] ;V ) and BX l
k (·, ω) to BX (·, ω) in L2 ([0, T ] ;W ).
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Proof: Consider a subsequence such that∫
Ω

∫ T

0

∥∥BXr
nk

(t)−BX (t)
∥∥2
W ′ dtdP +

∫
Ω

∫ T

0

∥∥Xr
nk

(t)−X (t)
∥∥p
V
dtdP+

∫
Ω

∫ T

0

∥∥BX l
nk

(t)−BX (t)
∥∥2
W ′ dtdP +

∫
Ω

∫ T

0

∥∥X l
nk

(t)−X (t)
∥∥p
V
dtdP < 4−k.

Then use a Borel Cantelli argument to obtain the desired pointwise convergence.

We denote these subsequences as {Xr
k}

∞
k=1 ,

{
X l
k

}∞
k=1

, and prove

Lemma 2.9. In the above context, let X (s)−X l
k (s) ≜ ∆k (s) . Then the integral∫ t

0

(
Z ◦ J−1

)∗
BX ◦ JdW

exists as a local martingale and the following limit is valid for the subsequence of
Lemma 2.8

lim
k→∞

P

([
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B∆k ◦ JdW

∣∣∣∣ ≥ ε

])
= 0.

That is,

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B∆k ◦ JdW

∣∣∣∣
converges to 0 in probability.

Proof: Let τm be as in (2.16) and

Ak ≜

{
ω : sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B∆k ◦ JdW

∣∣∣∣ ≥ ε

}
.

Then

Ak ∩ {ω : τm = ∞} ⊆

{
ω : sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B∆τm

k ◦ JdW
∣∣∣∣ ≥ ε

}
.

By BDG inequality,

P (Ak ∩ {ω : τm = ∞}) ≤ C

ε

∫
Ω

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B∆τm

k ◦ JdW
∣∣∣∣ dP

≤ C

ε

∫
Ω

(∫ T

0

∥Z∥2L2
∥B∆τm

k ∥2 dt

)1/2

dP

≤ C

ε

(∫
Ω

∫ T

0

∥Z∥2L2
∥B∆τm

k ∥2 dtdP

)1/2

.

Recall that if ⟨Bx, x⟩ ≤ m, then ∥Bx∥W ′ ≤ m1/2 ∥B∥1/2. Then the integrand

is bounded for a.e. t by ∥Z∥2L2
4m ∥B∥ . Use the result of Lemma 2.8 and the
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dominated convergence theorem to conclude that the above converges to 0 as k →
∞. Then from the fact that τm = ∞ for all m large enough,

P (Ak) =

∞∑
m=1

P (Ak ∩ ([τm = ∞] \ [τm−1 <∞])) .

Now
∑
m P ([τm = ∞] \ [τm−1 <∞]) = 1 and so, one can apply the dominated

convergence theorem to conclude that

lim
k→∞

P (Ak) =

∞∑
m=1

lim
k→∞

P (Ak ∩ ([τm = ∞] \ [τm−1 <∞])) = 0.

Lemma 2.10. Let X l
k be as in Lemma 2.1 corresponding to X above. Let X l

k and
Xr
k both converge to X in K and also

BX l
k, BX

r
k → BX in L2 ([0, T ]× Ω,W ′) .

Say

X l
k (t) =

mk∑
j=0

X (tj)X[tj ,tj+1) (t) , (2.18)

BX l
k (t) =

mk∑
j=0

BX (tj)X[tj ,tj+1) (t) . (2.19)

Then the sum in (2.19) is progressively measurable into W ′. As mentioned earlier,
we can take X (0) ≜ 0 in the definition of the “left step function”.

Proof: This follows right away from the definition of progressively measurable.

We shall take a further subsequence.

Lemma 2.11. Let X (s)−X l
k (s) ≜ ∆k (s) . Then the following limit occurs.

lim
k→∞

P

([
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B∆k ◦ JdW

∣∣∣∣ ≥ ε

])
= 0.

The stochastic integral ∫ t

0

(
Z ◦ J−1

)∗
BX ◦ JdW

makes sense because BX isW ′ progressively measurable and is in L2 ([0, T ]× Ω;W ′).
Also, there exists a further subsequence, still denoted as k such that∫ t

0

(
Z ◦ J−1

)∗
BX l

k ◦ JdW →
∫ t

0

(
Z ◦ J−1

)∗
BX ◦ JdW

uniformly on [0, T ] for a.e. ω.

Proof: This follows from Lemma 2.9. The last conclusion follows from the usual
use of the Borel Cantelli lemma. We obtain a further subsequence, still denoted
with k such that

P

([
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B∆k ◦ JdW

∣∣∣∣ ≥ 1

k

])
< 2−k.

From now on, the sequence will either be this subsequence or a further subse-
quence.
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2.5. The implicit Ito formula

First, the Ito formula is valid on the partition points:

Lemma 2.12. Let D be the union of all the positive mesh points for all the Pk.
Also assume X0 ∈ L2 (Ω;W ) . Then for ω /∈ N the exceptional set of measure zero
in Ω and every t ∈ D,

⟨BX (t) , X (t)⟩ = ⟨BX0, X0⟩+
∫ t

0

(
2 ⟨Y (s) , X (s)⟩+ ⟨BZ,Z⟩L2

)
ds

+2

∫ t

0

(
Z ◦ J−1

)∗
BX ◦ JdW, (2.20)

where ⟨BZ,Z⟩L2
≜
(
R−1BZ,Z

)
L2(Q1/2U,W) for R the Riesz map from W to W ′.

Proof: Note first that for {gi} an orthonormal basis for Q1/2 (U) ,(
R−1BZ,Z

)
L2

≜
∑
i

(
R−1BZ (gi) , Z (gi)

)
W

=
∑
i

⟨BZ (gi) , Z (gi)⟩W ′W ≥ 0.

Let t ∈ D. Then t ∈ Pk for all k large enough. Consider (2.14),

⟨BX (t) , X (t)⟩ − ⟨BX0, X0⟩ = e (k) + 2

∫ t

0

⟨Y (u) , Xr
k (u)⟩ du

+2

∫ t

0

(
Z ◦ J−1

)∗
BX l

k ◦ JdW +

qk−1∑
j=0

⟨B (M (tj+1)−M (tj)) ,M (tj+1)−M (tj)⟩

−
qk−1∑
j=1

⟨B (∆X (tj)−∆M (tj)) ,∆X (tj)−∆M (tj)⟩ (2.21)

where tqk = t, ∆X (tj) = X (tj+1)−X (tj) and e (k) → 0 in probability. By Lemma
2.11 the stochastic integral on the right converges uniformly for t ∈ [0, T ] to

2

∫ t

0

(
Z ◦ J−1

)∗
BX ◦ JdW

for ω off a set of measure zero. The deterministic integral on the right converges
uniformly for t ∈ [0, T ] to

2

∫ t

0

⟨Y (u) , X (u)⟩ du

thanks to Lemma 2.8.∣∣∣∣∫ t

0

⟨Y (u) , X (u)⟩ du−
∫ t

0

⟨Y (u) , Xr
k (u)⟩ du

∣∣∣∣ ≤ ∫ T

0

∥Y (u)∥V ′ ∥X (u)−Xr
k (u)∥V

≤ ∥Y ∥Lp′ ([0,T ]) 2
−k

for all k large enough. Consider the fourth term. It equals

qk−1∑
j=0

(
R−1B (M (tj+1)−M (tj)) ,M (tj+1)−M (tj)

)
W
, (2.22)
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where R−1 is the Riesz map from W to W ′. This equals

1

4

qk−1∑
j=0

∥∥R−1BM (tj+1) +M (tj+1)−
(
R−1BM (tj) +M (tj)

)∥∥2
−

qk−1∑
j=0

∥∥R−1BM (tj+1)−M (tj+1)−
(
R−1BM (tj)−M (tj)

)∥∥2 .

From Proposition 2.3, as k → ∞, the above converges in probability to (tqk = t)

1

4

([
R−1BM +M

]
(t)−

[
R−1BM −M

]
(t)
)
.

However, from the description of the quadratic variation of M, the above equals

1

4

(∫ t

0

∥∥R−1BZ + Z
∥∥2
L2
ds−

∫ t

0

∥∥R−1BZ − Z
∥∥2
L2
ds

)
,

which equals ∫ t

0

(
R−1BZ,Z

)
L2
ds ≜

∫ t

0

⟨BZ,Z⟩L2
ds.

This is what was desired.
Note that in the case of a Gelfand triple, whenW = H = H ′, the term ⟨BZ,Z⟩L2

will end up reducing to nothing more than ∥Z∥2L2
.

Thus all the terms in (2.21) converge in probability except for the last term
which also must converge in probability because it equals the sum of terms which
do. It remains to find what this last term converges to. Thus

⟨BX (t) , X (t)⟩ − ⟨BX0, X0⟩ = 2

∫ t

0

⟨Y (u) , X (u)⟩ du

+2

∫ t

0

(
Z ◦ J−1

)∗
BX ◦ JdW +

∫ t

0

⟨BZ,Z⟩L2
ds− a

where a is the limit in probability of the term

qk−1∑
j=1

⟨B (∆X (tj)−∆M (tj)) ,∆X (tj)−∆M (tj)⟩ . (2.23)

Let Pn be the projection onto span (e1, · · · , en) where {ek} is an orthonormal basis
for W with each ek ∈ V . Then using

BX (tj+1)−BX (tj)− (BM (tj+1)−BM (tj)) =

∫ tj+1

tj

Y (s) ds,

the troublesome term of (2.23) above is of the form

qk−1∑
j=1

∫ tj+1

tj

⟨Y (s) ,∆X (tj)−∆M (tj)⟩ ds
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=

qk−1∑
j=1

∫ tj+1

tj

⟨Y (s) ,∆X (tj)− Pn∆M (tj)⟩ ds

+

qk−1∑
j=1

∫ tj+1

tj

⟨Y (s) ,− (I − Pn)∆M (tj)⟩ ds,

which equals

qk−1∑
j=1

∫ tj+1

tj

⟨Y (s) , X (tj+1)−X (tj)− Pn (M (tj+1)−M (tj))⟩ ds (2.24)

+

qk−1∑
j=1

⟨B (∆X (tj)−∆M (tj)) ,− ( I − Pn) (M (tj+1)−M (tj))⟩ . (2.25)

The reason for the Pn is to get Pn (M (tj+1)−M (tj)) in V . The sum in (2.25) is
dominated byqk−1∑

j=1

⟨B (∆X (tj)−∆M (tj)) , (∆X (tj)−∆M (tj))⟩

1/2

·

qk−1∑
j=1

|⟨B ( I − Pn)∆M (tj) , ( I − Pn)∆M (tj)⟩|2
1/2

. (2.26)

Now it is known from the above that

qk−1∑
j=1

⟨B (∆X (tj)−∆M (tj)) , (∆X (tj)−∆M (tj))⟩

converges in probability to a ≥ 0. Taking expectation of the square of the other
factor, it is no larger than

∥B∥E

qk−1∑
j=1

∥( I − Pn)∆M (tj)∥2W



= ∥B∥E

qk−1∑
j=1

∥∥∥∥∥( I − Pn)

∫ tj+1

tj

Z (s) dW (s)

∥∥∥∥∥
2

W


= ∥B∥

qk−1∑
j=1

E

∥∥∥∥∥
∫ tj+1

tj

( I − Pn)Z (s) dW (s)

∥∥∥∥∥
2


= ∥B∥
qk−1∑
j=1

E

(∫ tj+1

tj

∥( I − Pn)Z (s)∥2L2(Q1/2U,W) ds

)

≤ ∥B∥E

(∫ T

0

∥( I − Pn)Z (s)∥2L2(Q1/2U,H) ds

)
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letting {gi} be an orthonormal basis for Q1/2U,

= ∥B∥
∫
Ω

∫ T

0

∞∑
i=1

∥( I − Pn)Z (s) (gi)∥2W dsdP. (2.27)

The integrand
∑∞
i=1 ∥( I − Pn)Z (s) (gi)∥2W converges to 0 as n → ∞. Also, it is

dominated by
∞∑
i=1

∥Z (s) (gi)∥2W ≜ ∥Z∥2L2(Q1/2U,W) ,

which is given to be in L1 ([0, T ]× Ω) . Therefore, from the dominated convergence
theorem, the expression in (2.27) converges to 0 as n→ ∞.

Thus the expression in (2.26) is of the form fkgnk where fk converges in probabil-
ity to a1/2 as k → ∞ and gnk converges in probability to 0 as n→ ∞ independently
of k. Now this implies that fkgnk converges in probability to 0.

Now consider the other term (2.24) using the n just determined. This term is
of the form

qk−1∑
j=1

∫ tj+1

tj

⟨Y (s) , X (tj+1)−X (tj)− Pn (M (tj+1)−M (tj))⟩ ds

=

qk−1∑
j=1

∫ tj+1

tj

〈
Y (s) , Xr

k (s)−X l
k (s)− Pn

(
Mr
k (s)−M l

k (s)
)〉
ds

=

∫ t

t1

〈
Y (s) , Xr

k (s)−X l
k (s)− Pn

(
Mr
k (s)−M l

k (s)
)〉
ds,

where Mr
k denotes the step function Mr

k (t) =
∑mk−1
i=0 M (ti+1)X(ti,ti+1] (t) and M

l
k

is defined similarly. The term
∫ t
t1

〈
Y (s) , Pn

(
Mr
k (s)−M l

k (s)
)〉
ds converges to 0

for a.e. ω as k → ∞ thanks to continuity of t → M (t). However, more is needed
than this. Define the stopping time

τp = inf {t > 0 : ∥M (t)∥W > p} .

Then τp = ∞ for all p large enough, this for a.e. ω. Let

Ak =

[∣∣∣∣∫ t

t1

〈
Y (s) , Pn

(
Mr
k (s)−M l

k (s)
)〉
ds

∣∣∣∣ > ε

]
,

P (Ak) =

∞∑
p=0

P (Ak ∩ ([τp = ∞] \ [τp−1 <∞])) . (2.28)

Now

P (Ak ∩ ([τp = ∞] \ [τp−1 <∞])) ≤ P (Ak ∩ ([τp = ∞]))

≤ P

([∣∣∣∣∫ t

t1

〈
Y (s) , Pn

(
(Mτp)

r
k (s)− (Mτp)

l
k (s)

)〉
ds

∣∣∣∣ > ε

])
.
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This is so because if τp = ∞, then it has no effect but also it could happen that the
defining inequality may hold even if τp <∞ hence the inequality. This is no larger
than an expression of the form

Cn
ε

∫
Ω

∫ T

0

∥Y (s)∥V ′

∥∥∥(Mτp)
r
k (s)− (Mτp)

l
k (s)

∥∥∥
W
dsdP. (2.29)

The inside integral converges to 0 by continuity of M . Also, thanks to the stopping
time, the inside integral is dominated by an expression of the form∫ T

0

∥Y (s)∥V ′ 2pds

and this is a function in L1 (Ω) by assumption on Y . It follows that the integral in
(2.29) converges to 0 as k → ∞ by the dominated convergence theorem. Hence

lim
k→∞

P (Ak ∩ ([τp = ∞])) = 0.

Since the sets [τp = ∞] \ [τp−1 <∞] are disjoint, the sum of their probabilities is
finite. Hence there is a dominating function in (2.28) and so, by the dominated
convergence theorem applied to the sum,

lim
k→∞

P (Ak) =

∞∑
p=0

lim
k→∞

P (Ak ∩ ([τp = ∞] \ [τp−1 <∞])) = 0.

Thus
∫ t
t1

〈
Y (s) , Pn

(
Mr
k (s)−M l

k (s)
)〉
ds converges to 0 in probability as k → ∞.

Now consider∣∣∣∣∫ t

t1

〈
Y (s) , Xr

k (s)−X l
k (s)

〉
ds

∣∣∣∣ ≤ ∫ T

0

|⟨Y (s) , Xr
k (s)−X (s)⟩| ds

+

∫ T

0

∣∣〈Y (s) , X l
k (s)−X (s)

〉∣∣ ds
≤ 2 ∥Y (·, ω)∥Lp′ (0,T ) 2

−k

for all k large enough, this by Lemma 2.8. Therefore,

qk−1∑
j=1

⟨B (∆X (tj)−∆M (tj)) ,∆X (tj)−∆M (tj)⟩

converges to 0 in probability. This establishes the desired formula for t ∈ D.

Finally, we prove that the formula (2.20) is valid for all t ∈ NC
ω and complete

Proof. [Proof of Theorem 1.1] Let t ∈ NC
ω \ D. For t > 0, let t (k) denote the

largest point of Pk which is less than t. Suppose t (m) < t (k). Hence m ≤ k. Then

BX (t (m)) = BX0 +

∫ t(m)

0

Y (s) ds+B

∫ t(m)

0

Z (s) dW (s) ,
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a similar formula holding for X (t (k)) . Thus for t > t (m) , t /∈ Nω,

B (X (t)−X (t (m))) =

∫ t

t(m)

Y (s) ds+B

∫ t

t(m)

Z (s) dW (s)

which is the same sort of thing studied so far except that it starts at t (m) rather
than at 0 and BX0 = 0. Therefore, from Lemma 2.12 it follows

⟨B (X (t (k))−X (t (m))) , X (t (k))−X (t (m))⟩

=

∫ t(k)

t(m)

(
2 ⟨Y (s) , X (s)−X (t (m))⟩+ ⟨BZ,Z⟩L2

)
ds

+2

∫ t(k)

t(m)

(
Z ◦ J−1

)∗
B (X (s)−X (t (m))) ◦ JdW. (2.30)

Consider that last term. It equals

2

∫ t(k)

t(m)

(
Z ◦ J−1

)∗
B
(
X (s)−X l

m (s)
)
◦ JdW. (2.31)

This is dominated by

2

∣∣∣∣∣
∫ t(k)

0

(
Z ◦ J−1

)∗
B
(
X (s)−X l

m (s)
)
◦ JdW

−
∫ t(m)

0

(
Z ◦ J−1

)∗
B
(
X (s)−X l

m (s)
)
◦ JdW

∣∣∣∣∣
≤ 4 sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
Z ◦ J−1

)∗
B
(
X (s)−X l

m (s)
)
◦ JdW

∣∣∣∣ .
In Lemma 2.11 the above expression was shown to converge to 0 in probability.
Therefore, by the usual appeal to the Borel Canteli lemma, there is a subsequence
still referred to as {m} , such that it converges to 0 pointwise in ω for all ω off some
set of measure 0 as m → ∞. It follows that there is a set of measure 0 including
the earlier one such that for ω not in that set, (2.31) converges to 0 in R. Similar
reasoning shows that the first term on the right in the non stochastic integral of
(2.30) is dominated by an expression of the form

4

∫ T

0

∣∣〈Y (s) , X (s)−X l
m (s)

〉∣∣ ds,
which clearly converges to 0 thanks to Lemma 2.8. Finally, it is obvious that

lim
m→∞

∫ t(k)

t(m)

⟨BZ,Z⟩L2
ds = 0 for a.e. ω

due to the assumptions on Z. For {gi} an orthonormal basis of Q1/2 (U) ,

⟨BZ,Z⟩L2
≜
∑
i

(
R−1BZ (gi) , Z (gi)

)
=
∑
i

⟨BZ (gi) , Z (gi)⟩
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≤ ∥B∥
∑
i

∥Z (gi)∥2W ∈ L1 (0, T ) a.e.

This shows that for ω off a set of measure 0

lim
m,k→∞

⟨B (X (t (k))−X (t (m))) , X (t (k))−X (t (m))⟩ = 0.

Then for x ∈W,

|⟨B (X (t (k))−X (t (m))) , x⟩|
≤ ⟨B (X (t (k))−X (t (m))) , X (t (k))−X (t (m))⟩1/2 ⟨Bx, x⟩1/2

≤ ⟨B (X (t (k))−X (t (m))) , X (t (k))−X (t (m))⟩1/2 ∥B∥1/2 ∥x∥W

and so
lim

m,k→∞
∥BX (t (k))−BX (t (m))∥W ′ = 0.

Recall t is arbitrary in NC
ω and {t (k)} is a sequence converging to t. Then the above

has shown that {BX (t (k))}∞k=1 is a convergent sequence in W ′. Does it converge
to BX (t)? Let ξ (t) ∈ W ′ be what it converges to. Letting v ∈ V then, since the
integral equation shows that t→ BX (t) is continuous into V ′,

⟨ξ (t) , v⟩ = lim
k→∞

⟨BX (t (k)) , v⟩ = ⟨BX (t) , v⟩ ,

and now, since V is dense in W, this implies ξ (t) = BX (t) = B (X (t)). Recall also
that it was shown earlier that BX is weakly continuous into W ′. Hence, the strong
convergence of {BX (t (k))}∞k=1 in W ′ implies that it converges to BX (t), this for
any t ∈ NC

ω .
For every t ∈ D and for ω off the exceptional set of measure zero described

earlier,

⟨B (X (t)) , X (t)⟩ = ⟨BX0, X0⟩+
∫ t

0

(
2 ⟨Y (s) , X (s)⟩+ ⟨BZ,Z⟩L2

ds
)
ds

+2

∫ t

0

(
Z ◦ J−1

)∗
BX ◦ JdW. (2.32)

Does this formula hold for all t ∈ [0, T ]? Maybe not. However, it will hold for
t /∈ Nω. Indeed, let t /∈ Nω.

|⟨BX (t (k)) , X (t (k))⟩ − ⟨BX (t) , X (t)⟩|

≤ |⟨BX (t (k)) , X (t (k))⟩ − ⟨BX (t) , X (t (k))⟩|
+ |⟨BX (t) , X (t (k))⟩ − ⟨BX (t) , X (t)⟩|

= |⟨B (X (t (k))−X (t)) , X (t (k))⟩|+ |⟨B (X (t (k))−X (t)) , X (t)⟩|

using the Cauchy Schwarz inequality on each term,

≤ ⟨B (X (t (k))−X (t)) , X (t (k))−X (t)⟩1/2

·
(
⟨BX (t (k)) , X (t (k))⟩1/2 + ⟨BX (t) , X (t)⟩1/2

)
.
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As before, one can use the lower semicontinuity of

t→ ⟨B (X (t (k))−X (t)) , X (t (k))−X (t)⟩

on NC
ω along with the boundedness of ⟨BX (t) , X (t)⟩ also shown earlier off Nω to

conclude

|⟨BX (t (k)) , X (t (k))⟩ − ⟨BX (t) , X (t)⟩|
≤ C ⟨B (X (t (k))−X (t)) , X (t (k))−X (t)⟩1/2

≤ C lim inf
m→∞

⟨B (X (t (k))−X (t (m))) , X (t (k))−X (t (m))⟩1/2 < ε

provided k is sufficiently large. Since ε is arbitrary,

lim
k→∞

⟨BX (t (k)) , X (t (k))⟩ = ⟨BX (t) , X (t)⟩ .

It follows that the formula (2.32) is valid for all t /∈ Nω. Now define the function
⟨BX,X⟩ (t) as

⟨BX,X⟩ (t) ≜

 ⟨B (X (t)) , X (t)⟩ , t /∈ Nω,

The right side of (2.32) if t ∈ Nω.

Then in short, ⟨BX,X⟩ (t) equals the right side of (2.32) for all t ∈ [0, T ] and is
consequently progressively measurable and continuous. Furthermore, for a.e. t, this
function equals ⟨B (X (t)) , X (t)⟩. Since it is known on a dense subset, it must be
unique.

This implies that t→ BX (t) is continuous with values in W ′ for t /∈ Nω, which
we justify next.

The fact that the formula (2.32) holds for all t /∈ Nω implies that
t→ ⟨BX (t) , X (t)⟩ is continuous on NC

ω . Then for x ∈W,

|⟨BX (t)−BX (s) , x⟩| ≤ ⟨B (X (t)−X (s)) , X (t)−X (s)⟩1/2 ∥B∥1/2 ∥x∥W .
(2.33)

Also

⟨B (X (t)−X (s)) , X (t)−X (s)⟩
= ⟨BX (t) , X (t)⟩+ ⟨BX (s) , X (s)⟩ − 2 ⟨BX (t) , X (s)⟩ .

By weak continuity of t→ BX (t) shown earlier,

lim
t→s

⟨BX (t) , X (s)⟩ = ⟨BX (s) , X (s)⟩ .

Therefore,
lim
t→s

⟨B (X (t)−X (s)) , X (t)−X (s)⟩ = 0

and so the inequality (2.33) implies the continuity of t→ BX (t) intoW ′ for t /∈ Nω.
Note that by assumption, this function is continuous into V ′ for all t. It was also
shown that it is weakly continuous into W ′ on [0, T ] and hence it is bounded in W ′.

Now consider the claim about the expectation. Since the stochastic integral

2

∫ t

0

(
Z ◦ J−1

)∗
BX ◦ JdW
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is only a local martingale, it is necessary to employ a stopping time. We use the
function ⟨BX,X⟩ to define this stopping time as

τp ≜ inf {t > 0 : ⟨BX,X⟩ (t) > p} .

This is the first hitting time of a continuous process and so it is a valid stopping
time. Using this, leads to

⟨BX,X⟩τp (t) = ⟨BX0, X0⟩+
∫ t

0

X[0,τp] (s)
(
2 ⟨Y (s) , X (s)⟩+ ⟨BZ,Z⟩L2

ds
)
ds

+2

∫ t

0

X[0,τp] (s)
(
Z ◦ J−1

)∗
BXτp ◦ JdW. (2.34)

By continuity of ⟨BX,X⟩ , τp = ∞ for all p large enough. Take expectation of both
sides of the above. In the integrand of the last term, BX refers to the function
BX (t, ω) ≜ B (X (t, ω)) and so it is progressively measurable because X is assumed
to be so. Hence BXτp is also progressively measurable and for a.e. Also, for a.e.
s, ∥BX (s ∧ τp)∥W ′ ≤

√
p
√

∥B∥. Therefore, one can take expectations and get

E (⟨BX,X⟩τp (t)) = E (⟨BX0, X0⟩)

+E

(∫ t

0

X[0,τp] (s)
(
2 ⟨Y (s) , X (s)⟩+ ⟨BZ,Z⟩L2

ds
)
ds

)
.

Now let p → ∞ and use the monotone convergence theorem on the left and the
dominated convergence theorem on the right to obtain the desired result (1.6). The
claim about the quadratic variation follows from Corollary 2.1.

3. Application to a stochastic evolution inclusions

We apply our Ito formula to study a specific stochastic inclusion. We arrange this
section as follows. In the first subsection 3.1, we explain the set up and our results.
In subsection 3.2, we provide and prove some preliminaries. In the final subsection
3.3, we prove our main theorems.

3.1. Setup and background

Let U be dense in V with the embedding compact, U being a separable Hilbert
space. It is always possible to get such a space. We will let r > max (2, p̂) where
p̂ ≥ p and p̂ will be involved in a growth estimate below, and Ur = Lr ([0, T ] ;U) .

Also, for I =
[
0, T̂

]
, T̂ < T, we will denote as VI the space Lp (I;V ) with a similar

usage of this notation in other situations. If u ∈ V the symbol for Lp ([0, T ] ;V )
, then we will always consider u ∈ VI also by simply considering its restriction to
I. With this convention, it is clear that if u is measurable into V then it is also
measurable into VI .

Next are conditions on the evolutionary set-valued operator A : VI → P (V ′
I) for

A (u, ω) a convex closed set in V ′
I .
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1. growth estimate
Assume the specific estimate for u ∈ VI .

sup
{
∥u∗∥V′

I
: u∗ ∈ A (u, ω)

}
≤ a (ω) + b (ω) ∥u∥p̂−1

VI
(3.1)

where a (ω) , b (ω) are nonnegative, p̂ ≥ p.

2. coercivity estimate
Also assume the coercivity condition: valid for each t ≤ T and for some
λ (ω) ≥ 0,

inf

(∫ t

0

⟨u∗, u⟩+ λ (ω) ⟨Bu, u⟩ ds : u∗ ∈ A (u, ω)

)

≥ δ (ω)

∫ t

0

∥u∥pV ds−m (ω) , (3.2)

where m (ω) is some nonnegative constant for fixed ω, and δ (ω) > 0. No
uniformity in ω is necessary.

3. limit conditions
Let U be as before a Banach space dense and compact in V and that if ui ⇀ u
in VI and u∗i ∈ A (ui, ω) with (Bun)

′ → (Bu)
′
weakly in U ′

rI , (r > max (p, 2)),
then if

lim sup
i→∞

⟨u∗i , ui − u⟩V′
I ,VI

≤ 0, (3.3)

it follows that for all v ∈ VI , there exists u∗(v) ∈ Au such that

lim inf
i→∞

⟨u∗i , ui − v⟩V′
I ,VI

≥ ⟨u∗ (v) , u− v⟩V′
I ,VI

. (3.4)

Typically one obtains this kind of thing from Proposition 3.5 applied to lower
order terms along with some sort of compactness of the embedding of V into
W .

4. measurability condition
For ω → u (·, ω) measurable into V,

ω → A (XIu (·, ω) , ω) has a measurable selection into V ′
I . (3.5)

In some of the results to be stated, the following condition on measurability is
also assumed.

Condition 3.1. For each t ≤ T, if ω → u (·, ω) is Ft measurable into V[0,t], then

there exists a Ft measurable selection of A
(
X[0,t]u (·, ω) , ω

)
into V ′

[0,t].

First of all, one has the following existence of measurable solutions.

Proposition 3.1. Suppose p > 1 and the conditions on A,1 - 4. Also let u0 be
measurable into W and f measurable into V ′. Let B ∈ L (W,W ′) be nonnegative
and self adjoint as described above. Let σ > 0 be small. Then there exist functions
u, u∗ measurable into V[0,T−σ]×V ′

[0,T−σ] such that u∗ (ω) ∈ A
(
X[0,T−σ]u (ω) , ω

)
for

each ω and for t ≤ T − σ, for each ω,

Bu (t)−Bu0 +

∫ t

0

u∗ (s) ds =

∫ t

0

f (s) ds.
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In case p ≥ 2, the proof of this theorem can be obtained from the same arguments
given in [15] applied to the special sequence of Lemma 3.1.

For the details of p < 2, see [2].
Proposition 3.1 gives an existence theorem for an evolution inclusion for each ω

such that the resulting solution (u, u∗) is measurable into V ×V ′. From Lemma 3.2,
this means that these functions have representatives which are product measurable.
The next theorem says that in fact, the unique solution is progressively measurable
in the case of the progressive measurability condition 3.1.

Theorem 3.1. Assume the above conditions, 1 - 4, and Condition 3.1. Let u0 be
F0 measurable and (t, ω) → X[0,t] (t) f (t, ω) is B ([0, t])×Ft product measurable into
V ′ for each t. Also assume that for each ω, there is at most one solution (u, u∗) to
the evolution equation

Bu (ω) (t)−Bu0 (ω) +

∫ t

0

u∗ (·, ω) ds =
∫ t

0

f (s, ω) ds, (3.6)

u∗ (·, ω) ∈ A (u (·, ω) , ω) ,

for t ∈ [0, T ]. Then there exists a unique solution (u (·, ω) , u∗ (·, ω)) in V[0,T ]×V ′
[0,T ]

to the above integral equation for each ω with t ∈ (0, T ) . This solution satisfies that
(t, ω) → (u (t, ω) , u∗ (t, ω)) is progressively measurable into V × V ′.

We prove this theorem in the last subsection. Using a routine stopping time
argument, we can give an extension of this to the following proposition, the proof
of which we omit. obtain the following

Proposition 3.2. Assume the above conditions, 1 - 4, and Condition 3.1. Let u0 be
F0 measurable and (t, ω) → X[0,t] (t) f (t, ω) is B ([0, t])×Ft product measurable into
V ′ for each t. Also let t → q (t, ω) be continuous and q is progressively measurable
into V, q (0, ω) = 0. Suppose that there is at most one solution to

Bu (t, ω) +

∫ t

0

z (s, ω) ds =

∫ t

0

f (s, ω) ds+Bu0 (ω) +Bq (t, ω) , (3.7)

for each ω. Then there exists a unique solution u to the above integral equation and
it is progressively measurable and so is z. Moreover, for each ω, both Bu (t, ω) =
B (u (t, ω)) a.e. t and z (·, ω) ∈ A (u (·, ω) , ω). Also, for each a ∈ [0, T ] ,

Bu (t, ω) +

∫ t

a

z (s, ω) ds =

∫ t

a

f (s, ω) ds+Bu (a, ω) +Bq (t, ω)−Bq (a, ω)

Remark 3.1. In this proposition, an additive noise term involves, which, however,
has values in V . The proof proceeds by using the last theorem on a modified
operator A which is not possible unless q has values in V . Eventually, we want to
consider the case where we have a stochastic integral with values in W . This is
where it is important to have the Ito formula.

Taking q (t, ω) =
∫ t
0
ΦndW , we obtain the following

Proposition 3.3. Assume 1 - 4, and the progressively measurable condition 3.1.
Also assume there is at most one solution to the integral equation (3.8). Then there
exists a P measurable un such that also zn is progressively measurable

Bun (t, ω)−Bu0 (ω) +

∫ t

0

zn (s, ω) ds =

∫ t

0

f (s, ω) ds+B

∫ t

0

ΦndW, (3.8)
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where for each ω, zn (·, ω) ∈ A (un (·, ω) , ω). The function Bun (t, ω) = B (un (t, ω))
for a.e. t.

To pass to a limit as n→ ∞, we make an assumption of monotonicity. This will
also ensure uniqueness assumed above. For zi (·, ω) ∈ A (ui, ω) and for all λ large
enough,

⟨λBu1 (t)+!z1 (t)− (λBu2 (t) + z2 (t)) , u1 (t)− u2 (t)⟩ ≥ δ ∥u1 (t)− u2 (t)∥αV̂ , α ≥ 1
(3.9)

where V̂ will be a Banach space such that V is dense in V̂ and the embedding is
continuous. As mentioned, this is not surprising in the case of most interest where
there is a Gelfand triple, V ⊆ H = H ′ ⊆ V ′, B = I, and A does not involve memory
terms. One simply takes V̂ = H and assumes that λI+ A (·, ω) is monotone. Then
if this extra monotonicity holds, we can pass to a limit and obtain the following
theorem in which we specialize the growth condition to

sup
{
∥u∗∥V′

I
: u∗ ∈ A (u, ω)

}
≤ a (ω) + b (ω) ∥u∥p−1

VI
. (3.10)

Our main result on stochastic inclusion is the following

Theorem 3.2. Assume 1 - 4, in which 1 is replaced with (3.10). Also assume
Condition 3.1, and monotonicity condition (3.9). Then there exists a P measurable
u such that also z is progressively measurable and

Bu (t, ω)−Bu0 (ω) +

∫ t

0

z (s, ω) ds =

∫ t

0

f (s, ω) ds+B

∫ t

0

ΦdW (3.11)

where for each ω, z (·, ω) ∈ A (u (·, ω) , ω). The function Bu (t, ω) = B (u (t, ω)) for
a.e. t. Here

Φ ∈ Lα
(
Ω;L∞

(
[0, T ] ,L2

(
Q1/2U,W

)))
∩ L2

(
[0, T ]× Ω,L2

(
Q1/2U,W

))
.

Remark 3.2. We could include the more general one used earlier by introducing a
regularizing term εF where F is a duality map from U to U ′ for a suitable Hilbert
space U which imbedds into V . Take a limit as ε → 0 and use some of the same
arguments.

A stopping time argument and uniqueness for fixed ω yield

Corollary 3.1. Instead of letting

Φ ∈ Lα
(
Ω;L∞

(
[0, T ] ,L2

(
Q1/2U,W

)))
∩L2

(
[0, T ]× Ω,L2

(
Q1/2U,W

))
, α > 2,

assume that Φ ∈ L2
(
[0, T ]× Ω;L2

(
Q1/2U,W

))
and that t→ Φ (t, ω) is continuous

into L2

(
Q1/2U,W

)
. Then there exists a unique solution to the integral equation

(3.11).

Remark 3.3. One can replace Φ with σ (u) provided B maps W one to one onto
W ′. This includes the most common case of a Gelfand triple in which B = I and
V ⊆ H = H ′ ⊆ V ′. Taking into consideration of the length of the current paper,
we choose not to include this generality.
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3.2. Preliminaries

The main difficulty in dealing with stochastic inclusions is retaining progressive
measurability of limits. The following two lemmas on measurable selection was
proved in [14].

Lemma 3.1. Let V be a reflexive separable Banach space with dual V ′, and let p, p′

be such that p > 1 and 1
p +

1
p′ = 1. Let the functions t→ un (t, ω), for n ∈ N, be in

Lp ([0, T ] ;V ) ≜ V and (t, ω) → un (t, ω) be B ([0, T ]) × F ≜ P measurable into V .
Suppose

∥un (·, ω)∥V ≤ C (ω) ,

for all n. Then, there exists a product measurable function u such that t→ u (t, ω)
is in V and for each ω a subsequence un(ω) such that un(ω) (·, ω) → u (·, ω) weakly
in V.

Lemma 3.2. Let f (·, ω) ∈ V ′ and assume that ω → f (·, ω) is measurable into V ′.

Then, for each ω, there exists a representative f̂ (·, ω) ∈ V ′, f̂ (·, ω) = f (·, ω) in

V ′, such that (t, ω) → f̂ (t, ω) is B ([0, T ]) × F product measurable. If f (·, ω) ∈ V ′

and (t, ω) → f (t, ω) is product measurable, then ω → f (·, ω) is measurable into V ′.
The same statement holds true when V ′ is replaced with V.

The following two compact embedding theorems will be used. The first one is
due to Simon [22] and the second is in Lions [16].

Proposition 3.4. Let q > 1 and let E ⊆ W ⊆ X where the injection map is
continuous from W to X and compact from E to W . Let S be defined by{
u such that ||u (t)||E ≤ R for all t ∈ [a, b] , and ∥u (s)− u (t)∥X ≤ R |t− s|1/q

}
.

Thus S is bounded in L∞ (a, b, E) and in addition, the functions are uniformly
Holder continuous into X. Then S ⊆ C ([a, b] ;W ) and if {un} ⊆ S, there exists a
subsequence {unk

} which converges to a function u ∈ C ([a, b] ;W ) in the following
way.

lim
k→∞

||unk
− u||∞,W = 0.

Proposition 3.5. Let E ⊆W ⊆ X where the injection map is continuous from W
to X and compact from E to W . Let p ≥ 1, let q > 1, and define

S ≜ {u ∈ Lp ([a, b] ;E) : for some C, ∥u (t)− u (s)∥X ≤ C |t− s|1/q

and ||u||Lp([a,b];E) ≤ R}.

Thus S is bounded in Lp ([a, b] ;E) and Holder continuous into X. Then S is pre-
compact in Lp ([a, b] ;W ). This means that if {un}∞n=1 ⊆ S, it has a subsequence
{unk

} which converges in Lp ([a, b] ;W ) .

These results are usually stated for a condition on the weak derivative, but
here we use appropriate bounds in a Holder space. This is because the stochastic
integrals typically are nowhere differentiable although a Holder condition will be
available under suitable assumptions. The proofs work the same way.

Adding in stochastic integrals with values in W , now let

Φ ∈ L2
(
[0, T ]× Ω;L2

(
Q1/2U,W

))
,
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where U is some Hilbert space. Let an orthonormal basis for Q1/2U be {gi} and
an orthonormal basis for W be {fi}. Then {fi ⊗ gi} is an orthonormal basis for
L2

(
Q1/2U,W

)
. Hence,

Φ =
∑
i

∑
j

Φijfi ⊗ gj ,

where fi⊗ gj (y) ≜ (gj , y)Q1/2U fi. Let E be a separable real Hilbert space which is
dense in V. Then without loss of generality, one can assume that the orthonormal
basis for W are all vectors in E. Thus for the orthogonal projection of Φ onto the
closed subspace span ({fi ⊗ gi} , i, j ≤ n) , given by

Φn ≜
n∑
i=1

n∑
j=1

Φijfi ⊗ gj ,

Φn ∈ L2
(
[0, T ]× Ω;L2

(
Q1/2U,E

))
and also

lim
n→∞

∥Φn − Φ∥L2([0,T ]×Ω;L2(Q1/2U,W)) = 0

and
∫ t
0
ΦndW is continuous and progressively measurable into E hence into V . We

can take a subsequence such that ∥Φn − Φ∥L2([0,T ]×Ω;L2(Q1/2U,W)) < 2−n and this

will be assumed.
Note that if Pn is the orthogonal projection onto span (f1, · · · , fn) , then

|PnΦ (y)|W =

∣∣∣∣∣∣Pn
∑
i

∑
j

Φijfi ⊗ gj (y)

∣∣∣∣∣∣
W

=

∣∣∣∣∣∣Pn
∑
i

∑
j

Φijfi (y, gj)

∣∣∣∣∣∣
W

=

∣∣∣∣∣∣
n∑
i=1

∑
j

Φijfi (y, gj)

∣∣∣∣∣∣
W

≥

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

Φijfi (y, gj)

∣∣∣∣∣∣
W

= |Φn (y)|W .

Thus ∣∣∣∣∫ t

s

ΦndW

∣∣∣∣
W

≤
∣∣∣∣∫ t

s

PnΦdW

∣∣∣∣
W

=

∣∣∣∣Pn ∫ t

s

ΦdW

∣∣∣∣
W

≤
∣∣∣∣∫ t

s

ΦdW

∣∣∣∣
W

.

The following corollary will be useful.

Corollary 3.2. Let Φn be as described above. Then

∥Φn (t, ω)∥L2(Q1/2U,W) ≤ ∥Φ (t, ω)∥L2(Q1/2U,W) ,

where ∥Φn (t, ω)∥L2(Q1/2U,W) ↑ ∥Φ (t, ω)∥L2(Q1/2U,W) . Let

Φ ∈ Lα
(
Ω;L∞

(
[0, T ] ,L2

(
Q1/2U,W

)))
∩ L2

(
[0, T ]× Ω,L2

(
Q1/2U,W

))
,
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where α > 2. Here U is some Hilbert space. Then off a set of measure zero, the
stochastic integrals

∫ t
0
ΦndW satisfy

sup
n

sup
t ̸=s

∥∥∥∫ ts ΦndW∥∥∥
|t− s|γ

< C (ω) , γ < 1/2, γ =
(α/2)− 1

α
.

Proof: Let, α > 2. As explained above,
∣∣∫ r
s
ΦndW

∣∣ ≤ ∣∣∫ r
s
ΦdW

∣∣. Thus by the
BDG inequality:

sup
n

∣∣∣∣∫ r

s

ΦndW

∣∣∣∣ ≤ ∣∣∣∣∫ r

s

ΦdW

∣∣∣∣ ,
∫
Ω

(∣∣∣∣∫ t

s

ΦdW

∣∣∣∣)α dP ≤ C

∫
Ω

(∫ t

s

∥Φ∥2 dτ
)α/2

dP

≤ C

∫
Ω

∥Φ∥αL∞([0,T ],L2(Q1/2U,H)) |t− s|α/2

≤ C ∥Φ∥αLα(Ω;L∞([0,T ],L2(Q1/2U,W))) |t− s|α/2

≜ C |t− s|α/2 .

Then by the Kolmogorov Čentsov theorem, for γ as given,

E

 sup
0≤s<t≤T

sup
n

∣∣∣∫ ts ΦndW ∣∣∣
(t− s)

γ

 ≤ E

 sup
0≤s<t≤T

∣∣∣∫ ts ΦdW ∣∣∣
(t− s)

γ

 ≤ C,

where γ < β/α, β + 1 = α/2. Thus for γ < (α/2)−1
α ,

sup
n

sup
0≤s<t≤T

∣∣∣∫ ts ΦndW ∣∣∣
(t− s)

γ ≤ C (ω)

for all ω off a set of measure zero.

We will also need the following lemma about measurability.

Lemma 3.3. Suppose that fn is progressively measurable and converges weakly to
f̄ in

Lα ([0, T ]× Ω, X,B ([0, T ])×FT ) , α > 1,

where X is a reflexive separable Banach space. Also suppose that for each ω /∈ N a
set of measure zero,

fn (·, ω) → f (·, ω) weakly in Lα (0, T,X) .

Then there is an enlarged set of measure zero, still denoted as N such that for
ω /∈ N,

f̄ (·, ω) = f (·, ω) in Lα (0, T,X) .

Also f̄ is progressively measurable.
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Proof: By the Pettis theorem, f̄ is progressively measurable. Letting

ϕ ∈ Lα
′
([0, T ]× Ω, X ′,B ([0, T ])×FT ) ,

it is known that for a.e. ω,∫ T

0

⟨ϕ (t, ω) , fn (t, ω)⟩ dt→
∫ T

0

⟨ϕ (t, ω) , f (t, ω)⟩ dt.

Therefore, the function of ω on the right is at least FT measurable. Now let g ∈
L∞ (Ω, X ′,FT ) and let ψ ∈ C ([0, T ]). Then for 1 < p ≤ α,∫

Ω

∣∣∣∣∣
∫ T

0

⟨g (ω)ψ (t) , fn (t, ω)⟩ dt

∣∣∣∣∣
p

dP

≤ C (T )

∫
Ω

∥g∥pL∞(Ω,X′)

∫ T

0

|ψ (t)|p ∥fn (t, ω)∥pX dtdP

≤ C (T, g, ψ)

∫
Ω

∫ T

0

∥fn (t, ω)∥pX dtdP ≤ C <∞

for some C. Since
∫ T
0

⟨g (ω)ψ (t) , fn (t, ω)⟩ dt is bounded in Lp (Ω) independent

of n because
∫
Ω

∫ T
0
∥fn (t, ω)∥pX dtdP is given to be bounded, it follows that the

functions

ω →
∫ T

0

⟨g (ω)ψ (t) , fn (t, ω)⟩ dt

are uniformly integrable and so it follows from the Vitali convergence theorem that∫
Ω

∫ T

0

⟨g (ω)ψ (t) , fn (t, ω)⟩ dtdP →
∫
Ω

∫ T

0

⟨g (ω)ψ (t) , f (t, ω)⟩ dtdP.

But also from the assumed weak convergence to f̄∫
Ω

∫ T

0

⟨g (ω)ψ (t) , fn (t, ω)⟩ dtdP →
∫
Ω

∫ T

0

〈
g (ω)ψ (t) , f̄ (t, ω)

〉
dtdP.

It follows that ∫
Ω

〈
g (ω) ,

∫ T

0

(
f − f̄

)
ψ (t) dt

〉
dP = 0.

This is true for every such g ∈ L∞ (Ω, X ′) , and so for a fixed ψ ∈ C ([0, T ]) and the
Riesz representation theorem,∫

Ω

∥∥∥∥∥
∫ T

0

(
f − f̄

)
ψ (t) dt

∥∥∥∥∥
X

dP = 0.

Therefore, there exists Nψ such that if ω /∈ Nψ, then∫ T

0

(
f − f̄

)
ψ (t) dt = 0.

Enlarge N, the exceptional set to also include ∪ψ∈DNψ where D is a countable dense
subset of C ([0, T ]). Therefore, if ω /∈ N, then the above holds for all ψ ∈ C ([0, T ]).
It follows that for such ω, f (t, ω) = f̄ (t, ω) for a.e. t thanks to density of C ([0, T ]).
Therefore, f (·, ω) = f̄ (·, ω) in Lα (0, T,X) for all ω /∈ N.
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3.3. Proof of theorems

Proof. [Proof of Theorem 3.1] First note that by Proposition 3.1, there exists a
solution on [0, T − σ] for each small σ > 0. Then by uniqueness, there exists a
solution on (0, T ). Let T denote subsets of (0, T −σ] which contain T −σ such that
for S ∈ T , there exists a solution uS for each ω to the above integral equation on
[0, T − σ] such that (t, ω) → X[0,s] (t)uS (t, ω) is B ([0, s])×Fs measurable for each
s ∈ S. Then {T − σ} ∈ T . If S, S′ are in T , then S ≤ S′ will mean that S ⊆ S′

and also uS (t, ω) = uS′ (t, ω) in V for all t ∈ S, similar for u∗S and u∗S′ . Note how
we are considering a particular representative of a function in V[0,T−σ] and V ′

[0,T−σ]
because of the pointwise condition. Now let C denote a maximal chain. Is ∪C ≜ S∞
all of (0, T − σ]? What is uS∞? Define uS∞ (t, ω) the common value of uS (t, ω) for
all S in C, which contain t ∈ S∞. If s ∈ S∞, then it is in some S ∈ C and so the
product measurability condition holds for this s. Thus S∞ is a maximal element of
the partially ordered set. Is S∞ all of (0, T − σ]? Suppose ŝ /∈ S∞, T − σ > ŝ > 0.

From Theorem 3.1 there exists a solution to the integral equation 3.6 on [0, ŝ]
called u1 such that (t, ω) → u1 (t, ω) is B ([0, ŝ]) × Fŝ measurable, similar for u∗1.
By the same theorem, there is a solution on [0, T − σ], u2 which is B ([0, T − σ])×
F[0,T−σ] measurable. Now by uniqueness, u2 (·, ω) = u1 (·, ω) in V[0,ŝ], similar for u∗i .
Therefore, no harm is done in re-defining u2, u

∗
2 on [0, ŝ] so that u2 (t, ω) = u1 (t, ω) ,

for all t ∈ [0, ŝ] , similar for u∗. Denote these functions as û, û∗. By uniqueness,
uS∞ (·, ω) = û (·, ω) in Lp ([0, ŝ] , V ). Thus no harm is done by re-defining û (s, ω)
to equal uS∞ (s, ω) for s < ŝ and u1 (ŝ, ω) at ŝ. As to s > ŝ also redefine û (s, ω) ≜
uS∞ (s, ω) for such s. By uniqueness, the two are equal in V[ŝ,T−σ] and so no change
occurs in the solution of the integral equation. Now S∞ was not maximal after all.
S∞ ∪ {ŝ} is larger. This contradiction shows that in fact, S∞ = (0, T − σ]. Thus
there exists a unique progressively measurable solution to 3.6 on [0, T − σ] for each
small σ. Thus we can simply use uniqueness to conclude the existence of a unique
progressively measurable solution on [0, T ).

Proof. [Proof of Theorem 3.2] Now apply this Ito formula to Theorem 3.3 in
which we make the assumptions on ∥u0∥ ∈ L2 (Ω) and that f ∈ Lp

′
([0, T ]× Ω;V ′)

where the σ algebra is P the progressively measurable σ algebra, and

Φ ∈ L2
(
Ω, L2

(
[0, T ] ,L2

(
Q1/2U,W

)))
,

which implies that the same is true of Φn. This yields, from the assumed estimates,
an expression of the form where δ > 0 is a suitable constant.

1

2
⟨Bun, un⟩ (t)−

1

2
⟨Bu0, u0⟩+ δ

∫ t

0

∥un (s)∥pV ds

≤ λ

∫ t

0

⟨Bun, un⟩ (s) ds+
∫ t

0

⟨f, un⟩V ′,V ds+

∫ t

0

c (s, ω) ds

+

∫ t

0

⟨BΦn,Φn⟩L2
ds+Mn (t) (3.12)

where c ∈ L1 ([0, T ]× Ω). Then taking expectations or using that part of the Ito
formula,

1

2
E (⟨Bun, un⟩ (t)) + δE

(∫ T

0

∥un (s)∥pV ds

)
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≤ λ

∫ t

0

E (⟨Bun, un⟩ (s)) ds+
∫ t

0

E
(
⟨f, un⟩V ′,V

)
ds+ C (Φ, u0) .

Then by Gronwall’s inequality and some simple manipulations,

E (⟨Bun, un⟩ (t)) + E

(∫ T

0

∥un (s)∥pV ds

)
≤ C (T, f, u0,Φ) .

Then using obvious estimates and Gronwall’s inequality in (3.12), this yields an
inequality of the form

⟨Bun, un⟩ (t)−⟨Bu0, u0⟩+
∫ t

0

∥un (s)∥pV ds ≤ C (f, λ, c)+∥B∥
∫ t

0

∥Φn∥2L2
ds+M∗

n (t) ,

where the random variable C (f, λ, c) is nonnegative and is integrable. Now t →
M∗
n (t) is increasing as is the integral on the right. Hence it follows that, modifying

the constants,

sup
s∈[0,t]

⟨Bun, un⟩ (s) +
∫ t

0

∥un (s)∥pV ds

≤ C (f, λ, c, u0) + 2 ∥B∥
∫ t

0

∥Φn∥2L2
ds+ 2M∗

n (t) . (3.13)

Next take the expectation of both sides and use the BDG inequality along with the
description of the quadratic variation of the martingale Mn (t). This yields

E

(
sup
s∈[0,t]

⟨Bun, un⟩ (s)

)
+ E

(∫ t

0

∥un (s)∥pV ds
)

≤ C + 2 ∥B∥E
(∫ t

0

∥Φn∥2L2
ds

)
+ C

∫
Ω

(∫ t

0

∥Bun∥2W ∥Φn∥2L2
ds

)1/2

dP.

Now ∥Bw∥ = sup∥v∥≤1 ⟨Bw, v⟩ ≤ ⟨Bw,w⟩1/2. Also
∫ t
0
∥Φn∥2L2

ds ≤
∫ T
0
∥Φ∥2L2

ds
and so the above inequality implies

E

(
sup
s∈[0,t]

⟨Bun, un⟩ (s)

)
+ E

(∫ t

0

∥un (s)∥pV ds
)

≤ C (f, λ, c,Φ) + C

∫
Ω

sup
s∈[0,t]

⟨Bun, un⟩1/2 (s)
(∫ t

0

∥Φ∥2L2

)1/2

dP.

Then adjusting the constants yields

1

2
E

(
sup

s∈[0,T ]

⟨Bun, un⟩ (s)

)
+ E

(∫ T

0

∥un (s)∥pV ds

)

≤ C + C

∫
Ω

∫ T

0

∥Φ∥2L2
dtdP = C. (3.14)

If needed, you could use a stopping time to be sure that

E

(
sup

s∈[0,T ]

⟨Bun, un⟩ (s)

)
<∞



Ito Formula and Sto-Inclusions 565

and then let it converge to ∞.
From the integral equation,

Bun (t)−Bum (t) +

∫ t

0

zn − zmds = B

∫ t

0

(Φn − Φm) dW.

Then using the monotonicity assumption and the Ito formula,

1

2
⟨Bun −Bum, un − um⟩ (t) ≤ λ

∫ t

0

⟨Bun −Bum, un − um⟩ dss

+

∫ t

0

⟨B (Φn − Φm) ,Φn − Φm⟩ d+
∫ t

0

(
(Φn − Φm) ◦ J−1

)∗
B (un − um) ◦ JdW

and so, from Gronwall’s inequality, there is a constant C which is independent of
m,n such that

⟨Bun −Bum, un − um⟩ (t) ≤ CMnm (t) ≤ CM∗
nm (T ) + C

∫ t

0

∥Φn − Φm∥2L2
ds,

where Mnm refers to that local martingale on the right. Thus also

sup
t∈[0,T ]

⟨Bun −Bum, un − um⟩ (t) ≤ CMnm (t) ≤ CM∗
nm (T ) +C

∫ T

0

∥Φn − Φm∥2L2
.

(3.15)
Taking the expectation and using the BDG inequality again in a similar manner to
the above,

E

(
sup
t∈[0,T ]

⟨Bun −Bum, un − um⟩ (t)

)
≤ C

∫
Ω

∫ T

0

∥Φn − Φm∥2L2
dtdP.

Now the right side converges to 0 as m,n → ∞ and so there is a subsequence,
denoted with the index k such that whenever m > k,

E

(
sup
t∈[0,T ]

⟨Buk −Bum, uk − um⟩ (t)

)
≤ 1

2k
.

Note how this implies∫
Ω

∫ T

0

⟨Buk −Bum, uk − um⟩ dtdP ≤ T

2k
. (3.16)

Then consider the martingales Mk (t) considered earlier. One of these is of the
form

Mk =

∫ t

0

(
Φk ◦ J−1

)∗
Buk ◦ JdW.

Then by the Burkholder Davis Gundy inequality and modifying constants as ap-
propriate,

E
(
(Mk −Mk+1)

∗)
≤ C

∫
Ω

(∫ T

0

∥∥∥(Φk ◦ J−1
)∗
Buk −

(
Φk+1 ◦ J−1

)∗
Buk+1

∥∥∥2 dt)1/2

dP
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≤ C

∫
Ω

 ∫ T
0
∥Φk − Φk+1∥2 ⟨Buk, uk⟩

+ ∥Φk+1∥2 ⟨Buk −Buk+1, uk − uk+1⟩ dt

1/2

dP

≤ C

∫
Ω

(∫ T

0

∥Φk − Φk+1∥2 ⟨Buk, uk⟩ dt

)1/2

+C

∫
Ω

(∫ T

0

∥Φk+1∥2 ⟨Buk −Buk+1, uk − uk+1⟩ dt

)1/2

dP

≤ C

∫
Ω

sup
t

⟨Buk, uk⟩1/2
(∫ T

0

∥Φk − Φk+1∥2 dt

)1/2

dP

+C

∫
Ω

sup
t

⟨Buk −Buk+1, uk − uk+1⟩1/2
(∫ T

0

∥Φk+1∥2 dt

)1/2

dP

≤ C

(∫
Ω

sup
t

⟨Buk, uk⟩ dP
)1/2

(∫
Ω

∫ T

0

∥Φk − Φk+1∥2 dtdP

)1/2

+C

(∫
Ω

sup
t

⟨Buk −Buk+1, uk − uk+1⟩ dP
)1/2

(∫
Ω

∫ T

0

∥Φk+1∥2 dtdP

)1/2

.

From the above inequality, (3.14) and after adjusting the constants, the above

is no larger than an expression of the form C
(
1
2

)k/2
which is a summable sequence.

Then ∑
k

∫
Ω

sup
t∈[0,T ]

|Mk (t)−Mk+1 (t)| dP <∞.

Thus {Mk} is a Cauchy sequence inM1
T , a space of continuous martingales such

that the norm is ∥M∥ ≜ E (M∗ (T )) and so there is a continuous martingale M
such that

lim
k→∞

E

(
sup
t

|Mk (t)−M (t)|
)

= 0.

Taking a further subsequence if needed, one can also have

P

(
sup
t

|Mk (t)−M (t)| > 1

k

)
≤ 1

2k

and so by the Borel Cantelli lemma, there is a set of measure zero such that off
this set, supt |Mk (t)−M (t)| converges to 0. Hence for such ω,M∗

k (T ) is bounded
independent of k. Thus for ω off a set of measure zero, (3.13) implies that for such
ω,

sup
s∈[0,T ]

⟨Buk, uk⟩ (s) +
∫ T

0

∥uk (s)∥pV ds ≤ C (ω) ,

where C (ω) does not depend on the index k, this for the subsequence just described
which will be the sequence of interest in what follows. Using the boundedness
assumption for A, one also obtains an estimate of the form

sup
s∈[0,T ]

⟨Bur, ur⟩ (s) +
∫ T

0

∥ur (s)∥pV ds+
∫ T

0

∥zr∥p
′

V ′ ≤ C (ω) . (3.17)
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The idea here is to take weak limits converging to a function u and then identify
z (·, ω) as being in A (u, ω) but this will involve a difficulty. It will require a use
of the above Ito formula and this will need u to be progressively measurable. By
uniqueness, it would seem that this could be concluded by arguing that one does
not need to take a subsequence due to uniqueness but the problem is that we won’t
know the limit of the sequence is a solution unless we use the Ito formula. This is
why we make the extra assumption that for zi (·, ω) ∈ A (ui, ω) and for all λ large
enough,

⟨λBu1 + z1 − (λBu2 + z2) , u1 − u2⟩ ≥ δ ∥u1 − u2∥αV̂ , α ≥ 1 (3.18)

where here V̂ will be a Banach space such that V is dense in V̂ and the embedding
is continuous. As mentioned, this is automatic in the case of most interest where
there is a Gelfand triple and B = I but here, since B is not one to one, we assume
it. Then using the integral equation with the conclusion of the Ito formula above,

E (⟨B (un − um) , un − um⟩ (t)) + E

(∫ t

0

∥un − um∥αV̂ ds
)

≤ E

(∫ t

0

∥B∥ ∥Φn − Φm∥2L2
ds

)
≜ e (m,n) .

Hence, the right side converges to 0 as m,n→ ∞ from the dominated convergence
theorem. In particular,

E

(∫ T

0

∥un − um∥αV̂ ds

)
≤ E

(∫ T

0

∥B∥ ∥Φn − Φm∥2L2
ds

)
≜ e (m,n) . (3.19)

Then also

P

(∫ T

0

∥un − um∥αV̂ ds > λ

)
≤ e (m,n)

λ

and so there exists a subsequence, denoted by r such that

P

(∫ T

0

∥ur − ur+1∥αV̂ ds ≤ 2−r

)
< 2−r.

Thus, by the Borel Cantelli lemma, there is a further enlarged set of measure zero,
still denoted as N such that for ω /∈ N ,∫ T

0

∥ur − ur+1∥αV̂ ds ≤ 2−r

for all r large enough. Hence, by the usual proof of completeness, for these ω,

{ur (·, ω)}

is Cauchy in Lα
(
[0, T ] , V̂

)
and also ur (t, ω) converges to some u (t, ω) pointwise

in V̂ for a.e. t. In addition, from (3.19) these functions are a Cauchy sequence in

Lα
(
[0, T ]× Ω; V̂

)
with respect to the σ algebra of progressively measurable sets.

Thus from Lemma 3.3, it can be assumed that for ω off the set of measure zero,
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(t, ω) → u (t, ω) is progressively measurable. From now on, this will be the sequence
or a further subsequence. For ω /∈ N, a set of measure zero and (3.17), there is a
further subsequence for which the following convergences occur as r → ∞.

ur → u weakly in V, (3.20)

B (ur) → B (u) weakly in V ′, (3.21)

zr → z weakly in V ′, (3.22)(
B

(
ur −

∫ (·)

0

ΦrdW

))′

→

(
B

(
u−

∫ (·)

0

ΦdW

))′

weakly in V ′, (3.23)

∫ (·)

0

ΦrdW →
∫ (·)

0

ΦdW uniformly in C ([0, T ] ;W ) , (3.24)

Bur (t) → Bu (t) weakly in V ′, (3.25)

Bu (0) = Bu0, (3.26)

Bu (t) = B (u (t)) a.e. t. (3.27)

In addition to this, we can choose the subsequence such that

sup
r

sup
t̸=s

∥∥∥∫ ts ΦrdW∥∥∥
|t− s|γ

< C (ω) <∞. (3.28)

This is thanks to Corollary 3.2. The boundedness of the operator A, in particular the
given estimates, imply that zr is bounded in Lp

′
([0, T ]× Ω, V ′) . Thus a subsequence

can be obtained which yields weak convergence of zr in Lp
′
([0, T ]× Ω, V ′) and

then Lemma 3.3 may be applied to conclude that off a set of measure zero, z is
progressively measurable.

The claim (3.25) and (3.26) follow from the continuity of the evaluation map
defined on X. The claim in (3.27) follows from (3.21) and the convergence (3.25).
To see this, let ψ ∈ C∞

c (0, T ) .∫ T

0

Bu (t)ψ (t) dt = lim
r→∞

∫ T

0

Bur (t)ψ (t) dt

= lim
r→∞

∫ T

0

B (ur (t))ψ (t) dt =

∫ T

0

B (u (t))ψ (t) dt.

Since this is true for all such ψ, it follows that Bu (t) = B (u (t)) for a.e. t. Passing
to a limit in the integral equation yields the following for ω off a set of measure
zero,

Bu (t, ω)−Bu0 (ω) +

∫ t

0

z (s, ω) ds =

∫ t

0

f (s, ω) ds+B

∫ t

0

ΦndW.

In the following claim, we use that Φ ∈ L2
(
Ω, L∞ ([0, T ] ,L2

(
Q1/2U,W

)))
.

Claim: limr→∞
∫ T
0

(
Φr ◦ J−1

)∗
Bur ◦JdW =

∫ T
0

(
Φ ◦ J−1

)∗
Bu◦JdW off a set

of measure zero.
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Proof of claim:

E

(∣∣∣∣∣
∫ T

0

(
Φr ◦ J−1

)∗
Bur ◦ JdW −

∫ T

0

(
Φ ◦ J−1

)∗
Bu ◦ JdW

∣∣∣∣∣
)

≤ E

(∣∣∣∣∣
∫ T

0

(
Φr ◦ J−1

)∗
Bur ◦ JdW −

∫ T

0

(
Φ ◦ J−1

)∗
Bur ◦ JdW

∣∣∣∣∣
)

+E

(∣∣∣∣∣
∫ T

0

(
Φ ◦ J−1

)∗
Bur ◦ JdW −

∫ T

0

(
Φ ◦ J−1

)∗
Bu ◦ JdW

∣∣∣∣∣
)
.

By the BDG inequality,

≤
∫
Ω

(∫ T

0

∥Φr − Φ∥2 ⟨Bur, ur⟩

)1/2

dP +

∫
Ω

(∫ T

0

∥Φ∥2 ⟨Bur −Bu, ur − u⟩

)1/2

≤
∫
Ω

sup
t

⟨Bur (t) , ur (t)⟩1/2
(∫ T

0

∥Φr − Φ∥2 dt

)1/2

dP

+

∫
Ω

∥Φn∥L∞([0,T ],L2)

(∫ T

0

⟨Bur −Bu, ur − u⟩

)1/2

dP

≤
(∫

Ω

sup
t

⟨Bur (t) , ur (t)⟩ dP
)1/2

(∫
Ω

∫ T

0

∥Φr − Φ∥2 dt

)1/2

+

(∫
Ω

∥Φn∥2L∞([0,T ],L2)

)1/2
(∫

Ω

∫ T

0

⟨Bur −Bu, ur − u⟩ dtdP

)1/2

. (3.29)

Letting the ei be the special vectors of Proposition 2.5,∫
Ω

∫ T

0

⟨Bur −Bu, ur − u⟩ dtdP =

∫
Ω

∫ T

0

∑
i

⟨Bur −Bu, ei⟩2 dtdP

=

∫
Ω

∫ T

0

∑
i

lim inf
p→∞

⟨Bur −Bup, ei⟩2 dtdP

≤ lim inf
p→∞

∫
Ω

∫ T

0

∑
i

⟨Bur −Bup, ei⟩2 dtdP

= lim inf
p→∞

∫
Ω

∫ T

0

∑
i

⟨Bur −Bup, ei⟩2 dtdP

= lim inf
p→∞

∫
Ω

∫ T

0

⟨Bur −Bup, ur − up⟩ dtdP.

Now by (3.16), the last expression is no larger than T/2r and so∫
Ω

∫ T

0

⟨Bur −Bu, ur − u⟩ dtdP ≤ T

2r
.
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Then, from (3.29),

E

(∣∣∣∣∣
∫ T

0

(
Φr ◦ J−1

)∗
Bur ◦ JdW −

∫ T

0

(
Φ ◦ J−1

)∗
Bu ◦ JdW

∣∣∣∣∣
)

≤
(∫

Ω

sup
t

⟨Bur (t) , ur (t)⟩ dP
)1/2

(∫
Ω

∫ T

0

∥Φr − Φ∥2 dt

)1/2

+ C

(
T

2r

)1/2

≤ C

(∫
Ω

∫ T

0

∥Φr − Φ∥2 dt

)1/2

+ C

(
T

2r

)1/2

< C2−r + C

(
T

2r

)1/2

,

which clearly converges to 0 as r → ∞. Since the right side is summable, one
obtains also pointwise convergence. This proves the claim.

From the above considerations using the space V̂ , it follows that this u is the
same as the one just obtained in the sense that for ω off N, the two are equal
for a.e. t. Thus we take u to be this common function. Hence there is a set of
measure zero such that (t, ω) → XNCu (t, ω) is progressively measurable in the above
convergences. From the measurability of ur, u, we can obtain a dense countable
subset {tk} and an enlarged set of measure zero N such that for ω /∈ N,Bu (tk, ω) =
B (u (tk, ω)) and Bur (tk, ω) = B (ur (tk, ω)) for all tk and r. This uses the same
argument as in Lemma 2.4.

It remains to verify that z (·, ω) ∈ A (u (·, ω) , ω). It follows from the above
considerations that the Ito formula above can be used at will. Assume that for a
given ω /∈ N, Bu (T, ω) = B (u (T, ω)) , similar for Bur. If not, just do the following
argument for all T ′ close to T , letting T ′ be in the dense subset just described. Then
from the integral equation solved, and letting {ei} be the special set described in
Proposition 2.5 and suppressing the dependence on ω,

∞∑
i=1

⟨Bur (T ) , ei⟩2 −
∞∑
i=1

⟨Bu0, ei⟩+ 2

∫ T

0

⟨zr, ur⟩ ds

= 2

∫ T

0

⟨f, ur⟩ ds+ 2

∫ T

0

(
Φr ◦ J−1

)∗
Bur ◦ JdW.

Thus also

2

∫ T

0

⟨zr, ur⟩ ds = −
∞∑
i=1

⟨Bur (T ) , ei⟩2 +
∞∑
i=1

⟨Bu0, ei⟩

+2

∫ T

0

⟨f, ur⟩ ds+ 2

∫ T

0

(
Φr ◦ J−1

)∗
Bur ◦ JdW. (3.30)

A similar formula to (3.30) holds for u. Thus

2

∫ T

0

⟨z, u⟩ ds = −
∞∑
i=1

⟨Bu (T ) , ei⟩2 +
∞∑
i=1

⟨Bu0, ei⟩

+2

∫ T

0

⟨f, u⟩ ds+ 2

∫ T

0

(
Φ ◦ J−1

)∗
Bu ◦ JdW.
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It follows from (3.24) and the other convergences that

lim sup
r→∞

∫ T

0

⟨zr, ur⟩ ds ≤
∫ T

0

⟨z, u⟩ ds.

Hence

lim sup
r→∞

⟨zr, ur − u⟩V′,V ≤ 0.

Now from the limit condition, for any v ∈ V, there exists a z (v) ∈ A (u (·, ω) , ω)
such that

⟨z, u− v⟩V′,V ≥ lim inf
r→∞

(⟨zr, ur − u⟩+ ⟨zr, u− v⟩)

≥ lim inf
r→∞

⟨zr, ur − v⟩ ≥ ⟨z (v) , u− v⟩ .

The reason the limit condition applies is the estimate (3.28) and the convergence
(3.23) which shows that

B

(
ur −

∫ (·)

0

ΦrdW

)
satisfy a Holder condition into V ′. Then the estimate (3.28) implies that the

B
∫ (·)
0

ΦrdW are bounded in a Holder norm and so the same is true of the Bur.
Thus the situation of the lim inf limit condition is obtained. Then it follows from
separation theorems and the fact that A (u (·, ω) , ω) is closed and convex that
z (·, ω) ∈ A (u (·, ω) , ω).
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