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The Blow-up Dynamics for the L2-Critical Hartree
Equation with Harmonic Potential∗

Mao Zhang1, Jingjing Pan2 and Jian Zhang1,†

Abstract In this paper, we study the L2-critical Hartree equation with har-
monic potential which arises in quantum theory of large system of nonrela-
tivistic bosonic atoms and molecules. Firstly, by using the variational charac-
teristic of the nonlinear elliptic equation and the Hamilton conservations, we
get the sharp threshold for global existence and blow-up of the Cauchy prob-
lem. Then, in terms of a change of variables, we first find the relation between
the Hartree equation with and without harmonic potential. Furthermore, we
prove the upper bound of blow-up rate in R3 as well as the mass concentration
of blow-up solution for the Hartree equation with harmonic potential in RN .
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1. Introduction

In a non-relativistic setting where the number of boson is very large, the Hartree
equation with harmonic potential is a model describing a quantum mechanical boson
system, and arises from many-body quantum mechanics in a mean-field limit [7]
and in Bose-Einstein condensate (BEC) with long range interaction [8,16]. A Bose
condensate can be represented by a wave function that obeys the following Hartree
equation with harmonic potential

iut +∆u− ω2|x|2u+

(
1

|x|N−γ ∗ |u|p
)
|u|p−2

u = 0, (1.1)

where u = u(t, x) : [0, T )×RN → C is a complex-valued wave function, 2 ≤ p < 2∗

(2∗ = 1 + γ+2
N−2 if N ≥ 3 or 2∗ = ∞ if N = 1, 2), N is the space dimension,

0 < γ < N , 0 < T ≤ ∞, i =
√
−1, ∆ is the Laplace operator, ω > 0 and ∗ denotes

the convolution operator in RN .
When ω = 0, Eq.(1.1) reduces to the focusing Schrödinger-Hartree equation

iut +∆u+

(
1

|x|N−γ ∗ |u|p
)
|u|p−2

u = 0. (1.2)
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For p = 2, the above equation (1.2) becomes the well-known standard Hartree
equation, which can be considered as a model describing a quantum mechanical
boson system in non-relativistic setting where the number of boson is very large.
And it arises in the study of long range interaction between the molecules, which
goes back to the work of [3, 6, 10, 11]. The equation (1.2) can be written as the
Schrödinger-possion system of the form{

ivt +∆v +W |v|p−2
v = 0,

−∆W = (N − 2)|SN−1| |v|p ,

where |SN−1| denotes the surface of the unit sphere in RN . This can be viewed
as an electrostatic version of the Maxwell-Schrödinger system, it describing the
interaction between the electromagnetic field and the wave function related to a
quantum non-relativistic charged particle (see [15,17]).

In [5], Cazenave established the local well-posedness for (1.2) in H1(RN ) (also
see Ginibre and Velo [10] for p = 2). In [1], Arora and Roudenko studied the
global and finite time blow-up solution under the mass-energy assumption, and
obtained the sharp threshold for global existence and finite time blow-up in mass
super-critical and energy sub-critical regime. In [9], Genev and Venkov proved
the concentration properties and the existence of standing wave solutions, and got
conditions for formation of singularities in dependence of the values of p ≥ 2 and
γ = 2. In [13], Krieger, Lenzmann and Raphaël showed the existence of critical
mass finite time blowup solution u(t, x) that demonstrates the pseudo-conformal
blowup rate ||∇v(t)||L2 ∼ 1

|t| as t→ 0. In [24], Yang, Roudenko and Zhao obtained

that a generic blow-up has a self-similar structure and exhibited log-log blow-up
rate for γ = 2 and p = 1 + 4

N in N = 3 ∼ 7 by numerical simulations.In [2],
Arora, Roudenko and Yang showed the spectral property for γ = 2 and p = 1 + 4

N
in dimension N = 3. By using the spectral results above, Arora and Roudenko
showed the upper bounds on the blow-up rate for the blow-up solutions: there is a
constant C > 0 such that

||∇v(t, x)||L2 ≤ C

(
| ln(T − t)|
T − t

) 1
2

, as t→ T.

Let u(t, x) = eitφ(x) be a standing wave solution of (1.2). Then φ(x) satisfies
the following nonlinear elliptic equation

∆φ+

(
1

|x|N−γ ∗ |φ|p
)
|φ|p−2

φ = φ. (1.3)

The equation (1.3) is also called the nonlinear Choquard or Choquard-pekar equa-
tion. In [14], Lieb first proved the existence and uniqueness of the minimizing
solution to (1.3) for p = 2 and γ = 2 in R3. In [19], Moroz and Van Schaftingen
proved the general existence of positive solutions along with regularity and radial
symmetry of solutions to (1.3) (also see [20]). In [13] , Krieger, Lenzmann and
Raphaël proved the uniqueness of the ground state solution in dimension N = 4 for
p = 2 and γ = 2. In [1], Arora and Roudenko proved the uniqueness of the ground
state solution in dimension 2 < N < 6 for p = 2 and γ = 2. In [23], Xiang proved
the uniqueness of ground state solution for p = 2 + ε and γ = 2. In the general
case, the uniqueness is still an open problem.
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In this paper, the blow-up dynamics of (1.1) is described by the variational
characteristics of the elliptic equation (1.3) without harmonic potential. We first
prove the existence of blow-up solution in a finite time of (1.1) and obtain the
sharp threshold of global existence and blow-up by using Hamilton conservation
and a Gagliardo-Nirenberg inequality with best constant. In the light of [4, 25, 26],
we next find that there exists a transform between the solutions of (1.1) and (1.2).
Moreover, by using the transform, we prove the upper bound on the blow-up rate
for the blow-up solution of (1.1) in R3. The result is as follows.

Theorem 1.1. Let N = 3 and γ = 2. Assume that u0 ∈ H and there exists an
universal constant C∗ > 0 and for some α > 0, such that

||Q||L2(R3) < ||u0||L2(R3) < ||Q||L2(R3) + α, E∗(u0) < 0. (1.4)

Let u(t, x) be the corresponding solution of the Cauchy problems (1.1)-(2.1) and
blow up in finite time 0 < T < 1

2ω . Then there holds:

||∇u||L2(R3) ≤ C∗
(
| ln 2ω(T − t)|
2ω(T − t)

) 1
2

as t→ T. (1.5)

Furthermore, we prove the concentration property for the blow-up solution of
(1.1) in RN .

Theorem 1.2. Assume u0 ∈ H. Let u(t, x) be the blow-up solution of the Cauchy
problems (1.1)-(2.1), and let λ(t) be a real-valued positive function in [0, T ) satisfy-
ing λ(t)· ∥ ∇u ∥L2→ +∞ as t→ T . Then, there exists x(t) in RN such that

lim inf
t→T

∫
|x−x(t)|≤λ(t)

|u(t, x)|2dx ≥∥ Q ∥2L2(RN ), (1.6)

where Q is the ground state solution of (1.3).

This paper is organized as follows. In section 2, we give some preliminaries. In
section 3, we prove the existence of blow-up solution in a finite time and obtain the
sharp threshold of global existence and blow-up for equation (3.1). In section 4,
we obtain a vital transform between the solutions of (1.1) and (1.2) in L2-critical
power, and prove the upper bound of blow-up rate of the blow-up solution for (3.1)
in R3. In section 5, we prove the concentration property in RN .

For simplicity, we denote for the remainder of this paper that
∫
RN ·dx by

∫
·dx,

|| · ||Lp(RN ) by || · ||Lp , and various positive constants are simply denoted by C.

2. Preliminaries

For the equation (1.1), we impose the initial data

u(0, x) = u0(x), (2.1)

and define the natural energy space

H := {u ∈ H1(RN ),

∫
|x|2 |u|2 dx <∞}. (2.2)
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Thus H becomes a Hilbert space, continuously embedded inH1(RN ), when endowed
with the inner product

< u, v >H=

∫ (
∇u∇v̄ + uv̄ + |x|2uv̄

)
dx, (2.3)

whose associated norm is denoted by || · ||H .

In [5], Cazenave established the local well-posedness for the Cauchy problems
(1.1)-(2.1) and (1.2)-(2.1) in the corresponding energy space.

Proposition 2.1. Assume 2 ≤ p < 2∗ and u0 ∈ H. Then there exists a unique
solution u(t, x) for the Cauchy problems (1.1)-(2.1) in C([0, T );H) for some T ∈
(0,∞] (maximal existence time). At the same time, we have the alternatives T = ∞
(global existence) or else T < ∞ and limt→T ∥u∥H = ∞ (blow-up). Moreover, for
all t ∈ [0, T ), the solution u satisfies the following two conservation laws of mass
and energy: ∫

|u|2 dx =

∫
|u0|2 dx, (2.4)

E(u) :=

∫ (
|∇u|2 + ω2|x|2 |u|2 − 1

p

(
1

|x|N−γ ∗ |u|p
)
|u|p

)
dx = E(u0). (2.5)

Let v(t, x) be the corresponding solution of the following Cauchy problems (1.2)-
(2.1) in C[(0, τ);H), for some τ ∈ (0,+∞](maximal existence time), then for all
t ∈ [0, τ), v(t, x) satisfies the following two conservation:∫

|v|2 dx =

∫
|u0|2 dx, (2.6)

E∗(v) :=

∫ (
|∇v|2 − 1

p

(
1

|x|N−γ ∗ |v|p
)
|v|p
)
dx = E∗(u0). (2.7)

The equation (1.2) admits several invariances: if v(t, x) solves (1.2), then so does
ṽ(t, x).

• Time translatioin invariance : ṽ(t, x) = v(t+ t0, x), for ∀t0 ∈ R.
• Space translatioin invariance : ṽ(t, x) = v(t, x+ x0), for ∀x0 ∈ RN .
• Time reversal invariance : ṽ(t, x) = v̄(−t, x).
• Phase invariance : ṽ(t, x) = eiθv(t, x), for ∀θ ∈ R.

• Galilean invariance : ṽ(t, x) = ei(x·ξ0−t|ξ0|
2)v(t, x− ξ0t), for ∀ξ ∈ RN .

• Scaling invariance : ṽ(t, x) = λ
γ+2

2(p−1) v(λ2t, λx), for ∀λ > 0.

• conformal invariance : If p = 1 +
γ + 2

N
, then ṽ(t, x) =

1

|t|N2
v(−1

t
,
x

t
)e

i|x|2
4t .

Equation (1.1) only admits time translation, time reversal and phase invariance.
Next, we state the Gagliardo-Nirenberg inequality of convolution from [1]. Define
the Weinstein-type functional for ψ ∈ H\{0}

I(ψ) =
∥∇ψ∥Np−(N+γ)

L2 ∥ψ∥N+γ−(N−2)p
L2∫ (

1
|x|N−γ ∗ |ψ(t, x)|p

)
|ψ|p dx

. (2.8)
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Lemma 2.1. Assume that 2 ≤ p < 1 + γ+2
N−2 and 0 < γ < N . Then

inf
ψ∈H

I(ψ) = CGN∥Q∥2(p−1)
L2 , (2.9)

where CGN = σ−pσ(1 − σ)1−pσ, σ = N(p−1)+γ
2p , and Q is the positive radial of

nonlinear elliptic equation (1.3)

∆φ+

(
1

|x|N−γ ∗ |φ|p
)
|φ|p−2

φ = φ.

Remark 2.1. For Lemma 2.1, we can get the following Gagliardo-Nirenberg in-
equality with a best constant,∫ (

1

|x|N−γ ∗ |ψ|p
)
|ψ|p dx ≤ CGN∥Q∥−2(p−1)

L2 ∥∇ψ∥Np−(N+γ)
L2 ∥ψ∥N+γ−(N−2)p

L2 .

(2.10)
Moreover, we can get the Pohozaev’s identities related to (1.3) by a direct calculation

∥∇Q∥2L2 =
1

p

∫ (
1

|x|N−γ ∗ |Q|p
)
|Q|p dx, (2.11)

∥Q∥2L2 =
p− 1

p

∫ (
1

|x|N−γ ∗ |Q|p
)
|Q|p dx. (2.12)

Remark 2.2. The existence of the positive solution along with the regularity and
radial symmetry of solution to Eq (1.3) has been proved by Moroz and Van Schafin-
gen [19]. But the uniqueness problem of the positive radial solution is still an open
problem. Genev and Venkov [9] showed that all the positive radial solutions have
the same mass. We denote the same mass by ||Q||L2 , and denote the positive radial
solutions by Q (ground state solution).

In addition, by a direct calculation ( [5]), we have the following result.

Proposition 2.2. Assume u0 ∈ H. Let u(t, x) be a solution of the Cauchy problems
(1.1)-(2.1) in C([0, T ), H), and put J(t) :=

∫
|x|2|u|2dx. Then J ′(t) = 4ℑ

∫
xū∇udx

and

J ′′(t) = 8

∫
|∇u|2 − ω2|x|2|u|2 − N(p− 1)− γ

2p

(
1

|x|N−γ ∗ |u|p
)
|u|p dx. (2.13)

Frommass conservation (2.4), energy conservation (2.5) and Gagliardo-Nirenberg
inequality (2.10), H(RN ) solution of the Cauchy problems (1.1)-(2.1) with 2 ≤ p <
1+ 2+γ

N (L2-subcritical case) is global and bounded in H(RN ) for any initial value.

The solution of the Cauchy problems (1.1)-(2.1) with 1 + 2+γ
N < p < 2∗ (L2-

supercritical case) may blow-up in a finite time for any initial value. Then we are
interested in investigating blow-up dynamics in L2-critical case p = 1 + 2+γ

N ≥ 2.
Spectral Property. We define two real schrödinger operators L1 and L2 as

L1ε1 =
1

2
[L+(Λε1)− Λ(L+ε1)] ; L2ε2 =

1

2
[L−(Λε2)− Λ(L−ε2)] ,
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where

L+ := −∆+ 1− 4

N

(
1

|y|(N−2)
∗Q1+ 4

N

)
Q

4
N −1

−
(
1 +

4

N

)(
1

|y|(N−2)
∗
(
Q

4
N (·)

))
Q

4
N ,

L− := −∆+ 1−
(

1

|y|(N−2)
∗Q1+ 4

N

)
Q

4
N −1,

and Λf := N
2 f + x · ∇f. Define the real valued quadratic form as

B(ε, ε) = (L1ε1, ε1) + (L2ε2, ε2), for ε = ε1 + iε2 ∈ H1.

The Spectral property has been proved in [2] only for N=3, as follows.

Lemma 2.2. Let N = 3. If (ε1, Q) = (ε1,ΛQ+ Λ2Q) = (ε2,ΛQ) = (ε2,Λ
2Q) = 0

under the radial symmetric assumption, then there exists a universal constant δ0 > 0
such that

B(ε, ε) ≥ δ0

∫ (
|∇ε|2 + |ε|2e−2−|y|

)
dy, ∀ε ∈ H1(R3).

By using the spectral property, Arora, Roudenko and Yang [2] obtained the
upper bound of the blow-up solutions for the Cauchy problems (1.2)-(2.1) in the
spirit of [18].

Lemma 2.3. Let N = 3 and the spectral property holds true. Then there exists
α > 0 and a positive constant C > 0 such that the following is true. Let u0 ∈ H
such that

||Q||L2 < ||u0||L2 < ||Q||L2 + α, E∗(u0) < 0.

Let v(t, x) be the corresponding solution of (1.2)-(2.1) in R3. Then v(t, x) blows up
in a finite time 0 < T < +∞ and there holds:

||∇v(t, x)||L2 ≤ C

(
| ln(T − t)|
T − t

) 1
2

as t→ T.

3. The sharp threshold of global existence

In this section, we study the global existence and blow-up for the Cauchy problems
(1.1)-(2.1) in L2-critical case p = 1 + 2+γ

N ≥ 2,

iut +∆u− ω2|x|2u+

(
1

|x|N−γ ∗ |u|1+
2+γ
N

)
|u|

2+γ
N −1

u = 0. (3.1)

Firstly, we prove the threshold of global existence for the Cauchy problems (3.1)-
(2.1) by using the Hamilton conservations and the sharp Gagliardo-Nirenberg in-
equality (2.10). We obtain a threshold by using the positive solution of the elliptic
equation (1.3) without harmonic potential in spirit of Zhang [25].

Theorem 3.1. Let N − 2 ≤ γ < N . Assume that u0 ∈ H and

||u0||L2 < ||Q||L2 . (3.2)

Then the solution u(t, x) of the Cauchy problems (3.1)-(2.1) exists globally in time.
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Proof. Let u(t, x) be a solution for the Cauchy problems (3.1)-(2.1), and u(t, x) ∈
C([0, T );H). By the mass conservation (2.4), energy conservation (2.5) and the
critical Gagliardo-Nirenberg inequality (2.10), we deduce that(

1−
(
||u0||L2

||Q||L2

) 4+2γ
N

)
||∇u||2L2 + ω2∥xu∥2L2 ≤ E(u0).

Furthermore, by the condition (3.2), ω2∥xu∥L2 < +∞ and

||∇u||L2 < +∞, for ∀t > 0.

Thus we can get ||∇u||L2 and ∥xu∥L2 are bounded for any T < ∞ and t ∈ [0, T ).
By Proposition 2.1, the solution u(t, x) exists globally in time.

Next, by a direct calculation, we prove the sufficient condition of the existence
of blow-up solution in a finite time.

Proposition 3.1. Let N−2 ≤ γ < N , and let u(t, x) be the solutions of the Cauchy
problems (3.1)-(2.1). If the initial value u0 ∈ H satisfies

(i)E(u0) < 0;

(ii)E(u0) = 0, and Im

∫
xū0∇u0dx < 0;

(iii)E(u0) > 0, and Im

∫
xū0∇u0dx ≤ −

√
E(u0)J(0).

Then u(t, x) blows up in a finite time 0 < T <∞.

Proof. Let u be a solution for the Cauchy problems (3.1)-(2.1) in C([0, T );H).
By Proposition 2.2, we see that J

′′
(t) ≤ 8E(u0). Then we have

J(t) = J(0) + J ′(0)t+

∫ t

0

(t− s)J ′′(s)ds

≤ J(0) + J ′(0)t+ 4E(u0)t
2, 0 ≤ t <∞

under hypothesis (i), (ii), (iii), which implies that there is a 0 < T <∞ such that

lim
t→T

∫
|x|2|u|2dx = 0.

And we know that −N
∫
|u|2dx = 2Re

∫
x · ∇uūdx. By calculation and using the

Cauchy-Schwarz inequality, the following estimate holds:∫
|u|2dx ⩽

2

N

(∫
|∇u|2dx

) 1
2
(∫

|x|2|u|2dx
) 1

2

.

Thus limt→T ∥∇u(t)∥L2 = +∞, and the solution u(t, x) blows up in finite positive
time.

Last, we show a blow-up result in ||u0||L2 > ||Q||L2 for the Cauchy problems
(3.1)-(2.1). The following result will show that the threshold of global existence in
Theorem 3.1 is sharp.
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Theorem 3.2. Let N − 2 ≤ γ < N . Assuming u0 ∈ H, there exists the initial
value u0, such that

||u0||L2 = ||Q||L2 + ε, for ∀ε > 0. (3.3)

Then the solution u(t, x) for the Cauchy problems (3.1)-(2.1) blows up in finite time.
Here Q is the positive radial solution of Eq.(1.3) with p = 1 + 2+γ

N .

Proof. For arbitrary λ > 0 and µ > 0, we set Qλ,µ(x) = µλ
N
2 Q(λx) by scaling

and F (Q) =
∫ (

1
|x|N−γ ∗ |Q|1+

2+γ
N

)
|Q|1+

2+γ
N dx. Then we have∫

[Qλ,µ(x)]
2
dx = µ2

∫
Q2dx, (3.4)∫

|x|2[Qλ,µ(x)]2dx = µ2λ−2

∫
|x|2Q2dx, (3.5)

F (Qλ,µ(x)) = µ2(1+ 2+γ
N )λ2F (Q), (3.6)∫

|∇Qλ,µ(x)|2dx = µ2λ2
∫

|∇Q|2dx. (3.7)

By Pohozaev’s identities (2.11) and (2.12), we have∫
|∇Q|2 dx =

N

N + 2 + γ

∫ (
1

|x|N−γ ∗ |Q|1+
2+γ
N

)
|Q|1+

2+γ
N dx =

N

2 + γ

∫
|Q|2 dx.

(3.8)

Now, we take that u0(x) = µλ
N
2 Q(λx), and

µ =

[
(
∫
Q2dx+ ε)∫
Q2dx

] 1
2

, λ >

[ ∫
ω2|x|2Q2dx

(µ
4+2γ

N − 1)
∫
|∇Q|2dx

] 1
4

.

Then it is obvious that u0 ∈ H and
∫
|x|2|u0|2dx < ∞ (see [21]). From equation

(3.4), it follows that
∥u0∥2 = ∥Q∥2 + ε.

From energy conservation (2.5) and (3.4)−(3.7), we have

E(u0) = µ2λ2
∫ [

(1− µ
4+2γ

N )|∇Q|2 + λ−4ω2|x|2Q2
]
dx < 0. (3.9)

By Proposition 3.1, one obtains that there exists 0 < T < ∞ such that limt→T

||∇u(t)||2 = +∞, then the solution u(t, x) for the Cauchy problems (3.1)-(2.1)
blows up in a finite time. This proof is completed.

Remark 3.1. From Theorem 3.1 and Theorem 3.2, we can know that“∥u0∥2 =
∥Q∥2” is a sharp threshold of global existence and blow-up in finite time for the
Cauchy problems (3.1)-(2.1).

4. The upper bound for blow-up rate

In this section, we prove the upper bound of the blow-up solutions for the Cauchy
problems (3.1)-(2.1). Firstly, in the spirit of Carles [4] we discuss the following trans-
form between the Cauchy problems (3.1)-(2.1) and (1.2)-(2.1) , which is necessary
to prove the rate of blow-up and concentration result.
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Theorem 4.1. Let p = 1 + 2+γ
N and N − 2 ≤ γ < N . Assume that v is a solution

of the Cauchy problems (1.2)-(2.1) in C([0, T );H). For any ω > 0, define

u(t, x) = (cos(2ωt))−
N
2 e−i

ω
2 |x|2 tan(2ωt)v

(
tan(2ωt)

2ω
,

x

cos(2ωt)

)
. (4.1)

Then u(t, x) ∈ C([0, arctan(2ωT )/2ω);H) is a solution of the Cauchy problems
(3.1)-(2.1). Reciprocally, if u is a solution of the Cauchy problems (3.1)-(2.1), then
v defined by

v(t, x) =
(
1 + (2ωt)2

)−N
4 e

i ω2t
1+(2ωt)2

|x|2
u

(
arctan(2ωt)

2ω
,

x√
1 + (2ωt)2

)
(4.2)

solves (1.2)-(2.1).

Proof. For simplicity, let s := tan(2ωt)
2ω and y := x

cos(2ωt) . Then by a direct calcu-

lation, we have

iut +∆u− ω2|x|2u+

(
1

|x|N−γ ∗ |u|
2+γ
N +1

)
|u|

2+γ
N −1

u

=(cos(2ωt))−
N
2 −2e−i

ω
2 |x|2 tan(2ωt)

[
ivs +∆v +

(
1

|y|N−γ ∗ |v|
2+γ
N +1

)
|v|

2+γ
N −1

v

]
.

If v(s, y) ∈ C([0, T ), H) is a solution of the Cauchy problems (1.2)-(2.1), then

iut +∆xu− ω2|x|2u+

(
1

|x|N−γ ∗ |u|1+
2+γ
N

)
|u|

2+γ
N −1u = 0,

and the initial
u(0, x) = v(0, x) = u0.

In the progress of the above calculation, we know

s =
tan(2ωt)

2ω
∈ [0, T ),

then one has

t ∈
[
0,

arctan(2ωT )

2ω

)
.

We conclude the proof of the transform (4.1). The proof of (4.2) follows by a similar
argument.

Combining with the transform (4.1) and Lemma 2.3, we give the proof of The-
orem 1.1.
Proof. Letting u(t, x) be a solution to the Cauchy problems (1.1)-(2.1) and blow
up in finite time 0 < T < 1

2ω , and using the transform (4.1), then v(t, x) ∈
C([0, tan(2ω)2ω );H) is a blow-up solution of the Cauchy problems (1.2)-(2.1), and

u(t, x) = (cos(2ωt))−
N
2 e−i

ω
2 |x|2 tan(2ωt)v(

tan(2ωt)

2ω
,

x

cos(2ωt)
), t ∈ [0, T ).

For simplicity, let s := tan(2ωt)
2ω and y := x

cos(2ωt) . Then for t ∈ [0, T ) and T ∈ (0, 1
2ω ),

we have

||∇xu(t, x)||L2 ≤ ω sin(2ωt)||yv(s, y)||L2 +
1

cos(2ωt)
||∇yv(s, y)||L2 . (4.3)
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Let J(s) =
∫
|yv|2dy. Then J ′(s) = 4ℑ

∫
yv̄∇vdy and

J ′′(s) = 8E∗(u0).

From E∗(u0) < 0, there exists a constant C > 0, such that

|J(s)| = J(0) + J ′(0)s+

∫ s

0

J ′′(t)(s− t)dt < C ∀s ∈ [0,
tan(ωT )

ω
). (4.4)

By using Lemma 2.3, there exist two constants C1, C2 > 0, such that

||∇xu(t, x)||L2 ≤ C1 + C2


∣∣∣ln( tan(2ωT )−tan(2ωt)

ω )
∣∣∣

tan(2ωT )−tan(2ωt)
2ω


1
2

.

Since tan(2ωT ) − tan(2ωt) = sin(2ω(T−t))
cos(2ωT ) cos(2ωt) ≥ sin(2ω(T − t)), there is a constant

C∗ > 0, such that

||∇xu(t, x)||L2 ≤ C∗
(
|ln sin(2ω(T − t))|
sin(2ω(T − t))

) 1
2

as t→ T.

As t→ T , we have sin(2ω(T − t)) ∼ 2ω(T − t), then(
|ln sin(2ω(T − t))|
sin(2ω(T − t))

) 1
2

∼
(
|ln(2ω(T − t))|

2ω(T − t)

) 1
2

as t→ T,

which concludes the proof.

Remark 4.1. For the Cauchy problems (1.2)-(2.1) with N = 3, there exists a
stable blow-up solution v with the log-log blow-up rate by numerical simulations
(see Yang, Roudenko and Zhao [24])

||∇v||L2 ∼
(
ln | ln(T − t)|

T − t

) 1
2

as t→ T.

By using the transform (4.1), we can obtain the existence of blow-up solutions with
log-log blow-up rate

||∇u||L2 ∼
(
ln | ln 2ω(T − t)|

T − t

) 1
2

as t→ T,

which can be proved by the similar proof of Theorem 1.1.

5. The concentration of blow-up solution

In this section, we prove the concentration property of blow-up solution for the
Cauchy problems (1.1)-(2.1). In [9], Genev and Venkov showed a compactness
result adapted to the analysis of the mass concentration property for the Hartree
equation (1.2). In the spirit of Hmidi and Keraani [12], we also can prove the
mass concentration property for the blow-up solution to the Cauchy problems (1.1)-
(2.1). However, we prove the mass concentration property by applying the vital
transform (4.1), which exhibits the relationship between the Hartree equation (1.2)
and the Hartree equation with harmonic potential (1.1). Firstly, we give the known
concentration result to Eq.(1.2) as follows ( [9]).
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Lemma 5.1. Let v be a solution of the Cauchy problems (1.2)-(2.1) which blows
up in a finite time T1, and let λ1(t) > 0 be a real-valued positive function in [0, T1)
such that λ1(t)||∇v||L2 → +∞ as t→ T1. Then there exists x1(t) ∈ RN such that

lim inf
t→T

∫
|x−x1(t)|≤λ1(t)

|v(t, x)|2dx ≥ ||Q||2L2 . (5.1)

Next, by using Lemma 5.1 and the transform (4.1), we give the proof of The-
orem 1.2.
Proof. Let u(t, x) be a blow-up solution for the Cauchy problems (1.1)-(2.1) in
[0, T ) (we assume that 0 < T < π

2 by time translation invariance), and let λ(t) be
a real-valued positive function satisfying

λ(t)||∇u||L2 → +∞ as t→ T.

For simplicity, we set s := tan(ωt)
ω and y := x

cos(ωt) . By (4.3) and (4.4), we get

||∇xu(t, x)||L2 ≤ C +
1

cos(ωt)
||∇yv(s, y)||L2 .

Then the solution v is a blow-up solution of the Cauchy problems (1.2)-(2.1) in

[0, tan(ωT )
ω ) and

λ(t)

cos(ωt)
||∇yv(s, y)||L2 → +∞ as t→ T.

Let λ1(s) :=
λ(t)

cos(ωt) , where t =
arctan(ωs)

ω , such that

λ1(s)||∇yv(s, y)||L2 → +∞ as s→ tan(ωT )

ω
.

From the argument above, the solution v(s, y) satisfies the condition of Lemma 5.1,
then there exists x1(s) ∈ RN , such that

lim inf
s→ tan(ωT )

ω

∫
|y−x1(s)|≤λ1(s)

|v(s, y)|2dy ≥ ||Q||2L2 . (5.2)

Moreover, we have

lim inf
s→ tan(ωT )

ω

∫
|y−x1(t)|≤λ1(s)

|v(s, y)|2dy = lim inf
t→T

∫
|x−x1(s)cos(ωt)|≤λ(t)

|u(t, x)|2dx.

(5.3)

Let x(t) = x1(
tan(ωt)
ω )cos(ωt). From (5.2) and (5.3), there exists x(t) ∈ RN , such

that

lim inf
t→T

∫
|x−x(t)|≤λ(t)

|u(t, x)|2dx ≥ ||Q||2L2 .

We complete the proof.

Remark 5.1. From the result of Theorem 1.2, we can obtain that for every A > 0,
there exists a function x(t) ∈ RN , such that the blow-up solution in a finite time
T > 0 satisfies

lim inf
t→T

∫
|x−x(t)|≤A

|u(t, x)|2dx ≥∥ Q ∥2L2 . (5.4)
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Indeed, if we take 0 < σ < 1 and constant C > 0, it is apparent that C
||∇u||1−σ

L2

satisfies the hypothesis of Theorem 1.2 and limt→T
C

||∇u||1−σ

L2

→ 0. For every A > 0,

A > C
||∇u||1−σ

L2

as t→ T . Then the concentration result (5.4) holds.
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