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Consensus Control of the Multi-Agent Systems
under both Disturbances and Noises*

Fuchen Zhang1,† and Da Lin2

Abstract Consensus tracking control problem of the multi-agent systems
with both noise and disturbances is studied in this paper. A robust adaptive
control scheme is designed according to Lyapunov stability theory. The main
contribution of this paper is that the consensus is realized in multi-agent sys-
tems with both noise and external disturbances. Numerical simulations are
carried out for the proposed scheme to demonstrate the effectiveness of the
control strategy proposed in this paper.
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1. Introduction

In the era of big data, how to realize consensus in multi-agent systems has caused
wide concern due to wide applications of multi-agent systems in unmanned aerial
vehicles, mobile robots, etc [1–4]. Adaptive consensus control of multi-agent systems
with uncertainties is proposed in the paper [5]. Consensus problem of Brunovsky-
type nonlinear multi-agent systems is studied in [6]. Neural network-based adaptive
consensus control for a class of nonaffine nonlinear multi-agent systems is studied
in [7]. Therefore, consensus problem in multi-agent systems is a very important
research topic.

At the same time, event-triggered control is very important in control theory
because it can balance limited bandwidth with control system performance com-
pared to a periodic sampling control. The control signal is updated only at discrete
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time and the control input remains constant between events during event-triggered
control [8–13].

Recently, event-triggered control of multi-agent systems has made good progress
[14–20]. A particularly interesting topic is the leader-following consensus problem.
Wang et al. [21] investigated the leader-following consensus problem in a class of
multi-agent systems with directed communication topology. Liu and his collab-
orators [22] studied the leader-following attitude consensus problem of multiple
rigid-body systems. In [23], the leader-following problem was investigated in the
multi-agent system with unknown parameters and uncertain external disturbances.
Garcia et al. [24] studied the consensus tracking control for uncertain multi-agent
systems and proposed an adaptive event-triggered consensus control scheme.

However, the information exchange between multiple agents will be affected by
noises from communication channels and external environment in the real world.
So, it is important to study the multi-agent system with noises and switched topol-
ogy [25–29].

Based on the above discussion, this paper generalizes the existing research re-
sults and further studies the consensus tracking of multi-agent systems with noises
and external disturbances by means of event-triggered adaptive control.

The rest of this paper is organized as follows. Consensus tracking control prob-
lem of multi-agent system is described in Section 2. Main mathematical results
are given in Section 3. Numerical simulations are performed in Section 4. Finally,
conclusions are made in Section 5.

2. Problem description

The dynamical behavior of the leader is given by the equation

ẋ1(t) = a1x1(t) + r(t), (2.1)

where x1 ∈ R is the leader agent with the initial value x1(0) = x10, r(t) ∈ R is the
input of leader agent, and a1 < 0 is an unknown parameter. The input signal r(t)
is bounded, that is to say, there exists r̄ > 0, such that |r(t)| ≤ r̄ holds for all t ≥ 0.

In the following, we will consider the N − 1 follower agents. The ith follower
can be described by the following equation:

ẋi(t) = aixi(t) + ui(t) + σi(t), (2.2)

where i = 2, . . . , N, xi ∈ R represents agent i with the initial value xi(0) = xi0,
ui(t) ∈ R is the control input and σi(t) ∈ R is an unknown disturbance factor. Let
σ(t) = [σ2(t) . . . σN (t)]T and it is assumed that there exists a constant σ̄ > 0 such
that ∥σ(t)∥∞ ≤ σ̄. In this paper, the infinite norm is used, and the subscript ∞ will
be omitted next to the norm operators unless it is necessary. It is assumed that pa-
rameters ai (i = 2, . . . , N) are unknown. It is called non-identical or heterogeneous
agent dynamics because each agent may have its own distinct dynamics.

In this paper, each agent i can only get its own states and it can transmit these
states to agent j at some discrete time instants tki by using event-triggered strate-
gies to schedule broadcasting instants and to reduce communication among agents.
Fig. 1 gives a control block diagram of follower i.

Remark 2.1. It should be pointed out that the existing paper [24] considers the
event-triggered consensus problem without noise and external disturbances, but
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we will consider event-triggered consensus problem with noise and external distur-
bances here. It is important to study event-triggered consensus problem with noise
and external disturbances because noise and external disturbances are unavoidable
in the real world.
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Figure 1. The control block diagram of follower. 
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Figure 1. The control block diagram of follower.

3. Main results

In this section, we will consider the modified MAS system according to [24],

ϕ̇i(t) = −
N∑
j=2

aij [ϕi(t)− (ϕj(tkj) + δ(t))]− ai1[ϕi(t)− x1(t)], (3.1)

where ϕi ∈ R is the state variable of the MAS controller of follower i, i = 2, . . . , N.
ϕi(0) = ϕi0 is the initial value and δ(t) ∈ R is channel noises. Let∆=[δ(t) . . . δ(t)]T∈
RN−1, ∥∆∥ ≤ ∆̄. When an event is triggered at node i, the state ϕi(tki) is trans-
mitted to its neighbor agents. The index tki is the sequence of time instant at
which agent i generates its own events. Thus, the information that is exchanged
by the followers is ϕi(tki). Fig.1 shows that each follower has the MAS con-
troller, adaptive controller and event detector. The discontinuous arrows out-
side the large block represent the agents capabilities of receiving ϕj(tkj) for j
such that aij > 0 and transmitting ϕi(tki) which are generated by events. Let
ξi(t) = ϕi(t) − x1(t) be the error that will be used to detect events and to decide
when to broadcast the MAS controller state ϕi. Let z(t) = [z2(t) . . . zN (t)]T. Let
ξi(t) = ϕi(t)−x1(t) be the error between the state of the MAS controller of agent i
and the leaders state. Let ξ(t)=[ξ2(t) . . . ξN (t)]T, ξ̄ = ∥ξ(0)∥ . The tracking error is

ςi(t) = xi(t) − x1(t), ς(t)=[ς2(t) . . . ςN (t)]T. There exist positive numbers β̂ and λ̂,

such that
∥∥∥e−L̂t

∥∥∥ ≤ β̂e−λ̂t according to Lemma 1 in the paper [30,31]. The adaptive
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controller is designed as

ui(t) = kxixi(t) + kϕiϕi(t) + kφiφi(t)− sign(εi(t))σ̄, (3.2)

with the adaptive tuning laws

k̇xi(t) = −gxixi(t)εi(t),

k̇ϕi(t) = −gϕiϕi(t)εi(t),

k̇φi(t) = −gφiφi(t)εi(t),

(3.3)

where sign() denotes the signal function, gxi, gϕi and gφi are three designed positive
parameters, and εi(t) = xi(t)− ϕi(t).

The event-triggered instant is defined as

tki+1 = min{ t > tki| |zi(t)| ≥ βe−λt + γ, β > 0, λ > 0, γ > 0}. (3.4)

Theorem 3.1. The tracking error of the MAS system (2.2) under conditions (3.2)-
(3.4) is defined as follows

lim
t→+∞

∥ς(t)∥ ≤ β̂

λ̂
[d̄i(γ + ∆̄) + 2r̄].

Proof. The error zi is reset to zero when an event is triggered by agent i. That is
to say, zi(tki) = 0 when an event is triggered by agent i. Thus, zi satisfies |zi(t)| ≤
βe−λt + γ according to (3.4), for i = 2, . . . , N. So, we have ∥z(t)∥ ≤ βe−λt + γ. The
derivative of ξi(t) is

ξ̇i(t) = −
N∑
j=2

aij [ϕi(t)− (ϕj(tkj) + δ(t))]− ai1[ϕi(t)− x1(t)]− ẋ1(t)

= −
N∑
j=2

aij [x1(t) + ξi(t)− ϕj(t)− zj(t)− δ(t)]− ai1ξi(t)− ẋ1(t)

= −
N∑
j=2

aij [ξi(t)− ξj(t)] +
N∑
j=2

aij [zj(t)+δ(t)]− ai1ξi(t)− ẋ1(t),

(3.5)

for i = 2, . . . , N. And (3.5) can be written as follows

ξ̇ = −L̂ξ + Â(z +∆)− ẋ1 · 1N−1, (3.6)

where Â ∈ R(N−1)×(N−1) is the adjacency matrix of followers. L̂ is the matrix
defined in Lemma 1 in the paper [30,31]. From (3.6), we can get

∥ξ(t)∥ =

∥∥∥∥e−L̂tξ(0) +

∫ t

0

e−L̂(t−s)[Â(z(s) + ∆(s))− x1(s) · 1N−1]ds

∥∥∥∥ . (3.7)

So, we have

|x1(t)| ≤ ea1t |x1(0)|+
r̄(1− ea1t)

|a1|
. (3.8)
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Meanwhile, we can obtain

|ẋ1(t)| ≤ |a1| |x1(t)|+ r̄

≤ |a1| |x1(0)| ea1t + 2r̄ − r̄ea1t.
(3.9)

From (3.7)-(3.9), we can get

∥ξ(t)∥ ≤ β̂ξ̄e−λ̂t + ββ̂d̄i
∫ t

0
e−λ̂(t−s)e−λsds+ β̂(d̄i(γ + ∆̄) + 2r̄)

∫ t

0
e−λ̂(t−s)ds

+β̂(|a1| x̄10 − r̄)
∫ t

0
e−λ̂(t−s)ea1sds

≤ β̂ξ̄e−λ̂t + ββ̂d̄i

λ̂−λ
(e−λt − e−λ̂t) + β̂

λ̂
(d̄i(γ + ∆̄) + 2r̄)(1− e−λ̂t)

+ β̂

λ̂+a1
(|a1| x̄10 − r̄)(ea1t − e−λ̂t).

(3.10)

From (3.10), we obtain

lim
t→+∞

∥ξ(t)∥ ≤ β̂

λ̂
[d̄i(γ + ∆̄) + 2r̄]. (3.11)

The “ideal gains” of the controller are given by

k∗ϕi = −(ai + k∗xi), k
∗
φi = 1. (3.12)

Let k̃xi(t) = kxi(t)− k∗xi, k̃ϕi(t) = kϕi(t)− k∗ϕi, k̃φi(t) = kφi(t)− k∗φi be the adaptive
gain errors. Using (3.2)-(3.12), we can obtain

ε̇i(t) = aixi(t) + kxixi(t) + kϕiϕi(t) + kφiφi(t)− sign(εi(t))σ̄ + σi(t)− φi(t)

= aixi(t) + (k∗xi + k̃xi(t))xi(t) + (k∗ϕi + k̃ϕi(t))ϕi(t) + (k∗φi + k̃φi(t))φi(t)

−sign(εi(t))σ̄ + σi(t)− φi(t)

= (ai + k∗xi) εi(t) + k̃xixi(t) + k̃ϕi(t)ϕi(t) + k̃φi(t)φi(t) + σi(t)− sign(εi(t))σ̄.

(3.13)

Construct the following Lyapunov function

Vi =
1

2
ε2i (t) +

1

2gxi
k̃2xi(t) +

1

2gϕi
k̃2ϕi(t) +

1

2gφi
k̃2φi(t). (3.14)

The derivative of Vi is

V̇i = εi(t)ε̇i(t) +
1

gxi
k̃xi(t)̇̃kxi(t) +

1
gϕi

k̃ϕi(t)̇̃kϕi(t) +
1

gφi
k̃φi(t)̇̃kφi(t)

= εi(t)[a
∗
i εi(t) + k̃xi(t)xi(t) + k̃ϕi(t)ϕi(t) + k̃φi(t)φi(t)− sign(εi(t))σ̄ + σi(t)]

− k̃xi(t)xi(t)εi(t)− k̃ϕi(t)ϕi(t)εi(t)− k̃φi(t)φi(t)εi(t)

= a∗i ε
2
i (t)− εi(t)sign(εi(t))σ̄ + εi(t)σi(t)

≤ a∗i ε
2
i (t)− εi(t)sign(εi(t))σ̄ + |εi(t)| |σi(t)|

= a∗i ε
2
i (t) ≤ 0,

(3.15)
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where ˙̃kxi(t) = k̇xi(t),˙̃kϕi(t) = k̇ϕi(t) and ˙̃kφi(t) = k̇φi(t). Then, we can get

lim
t→+∞

∥ε(t)∥ = 0,

according to Barbalat’s lemma, where ε(t) = [ε2(t) . . . εN (t)]T. Also, we have

ς(t) = x(t)− x1(t) · 1N−1,

= ε(t) + ϕ(t)− x1(t) · 1N−1,

= ε(t) + ξ(t).

(3.16)

Hence,

lim
t→+∞

∥ς(t)∥ ≤ lim
t→∞

∥ε(t)∥+ lim
t→∞

∥ξ(t)∥

≤ β̂

λ̂
[d̄i(γ + ∆̄) + 2r̄].

(3.17)

Hence, Theorem 3.1 holds. This completes the proof.

4. Numerical simulations

In this section, numerical simulations are given in order to demonstrate the effec-
tiveness of the control strategy proposed in this paper. The behaviors of the leader
are

ẋ1(t) = a1x1(t) + r(t). (4.1)

The behaviors of the followers are given by

ẋi(t) = aixi(t) + ui(t) + σi(t) (4.2)

for i = 2, . . . , 9. The communication graph is described by Fig. 2, where the leader
is agent 1.

Figure 2. Communication graph.
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The initial values of the leader and the followers are x1(0) = 10, r(t) = 15, and
xi = [4, 4, 2, 6,−1,−3,−7,−5], respectively. The parameter a1 is chosen as a1 = −3.
The parameter ai is chosen as ai = [3, 1, 2,−2, 7, 4, 5, 6]. Random disturbances are
given at the ith follower by σi(t) = rand(1) ∗ cos(t) and rand() denotes the random
function. Channel noise is chosen as δ(t) = 0.5∗rand(1)∗cos(t). The event-triggered
control parameters are chosen as β = 0.5, λ = 0.2 and γ = 0.05 according to
Theorem 3.1. Fig. 3 shows that the agent states can reach consensus. Fig. 4 shows
the norm of error ς. The triggered events are shown in Fig. 5.
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Figure 5. The graphic of triggered events.

5. Conclusions

The event-triggered adaptive consensus tracking control problem of multi-agents
with noise and disturbances is studied in this paper. Finally, numerical simulations
are carried out to demonstrate the effectiveness of the protocol. In the future,
we will study the consensus conditions of multi-agent systems under time-varying
topology or switching topology.
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