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Positive Solutions for a Stationary Prey-Predator
Model with Density-Dependent Diffusion and

Hunting Cooperation∗
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Abstract This paper concerns a stationary prey-predator model with density-
dependent diffusion and hunting cooperation under homogeneous Dirichlet
boundary conditions. Based on the spectral analysis, the asymptotic stabil-
ity of trivial and semi-trivial solutions is obtained. Moreover, the sufficient
conditions for the existence of positive solutions are established by using de-
gree theory in cones. Our analytical results suggest that density-dependent
diffusion and hunting cooperation obviously influence on the positive solutions.
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1. Introduction

The present paper is concerned with the following Dirichlet problem of quasilinear
elliptic equations:

−du∆u = ru− u2 − (1 + αv)uv, x ∈ Ω,

−∆
[(
dv +

β
1+γu

)
v
]
= mv − v2 + c(1 + αv)uv, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, the parameters
du, dv, β, γ, α, r, c are positive constants and m may change sign. System (1.1) is the
stationary problem of a prey-predator model in which unknown functions u = u(x)
and v = v(x) denote the stationary population densities of the prey and the predator
in the habitat Ω, respectively. In the reaction terms, r and m are the growth rates
of respective species; α describes predator cooperation in hunting; c accounts for
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the intrinsic predation rate. In the diffusion terms, du∆u and dv∆v denote the
linear diffusion driven by the dispersive force associated with random movement of

each species, while the nonlinear diffusion ∆
(

βv
1+γu

)
describes a situation in which

the predator chases the prey: β is the cross-diffusion pressures, and γ represents the
interference rate from the prey in the chase by the predator. For more details on
the backgrounds of density-dependent diffusion and hunting cooperation, we refer
to [1] and [11].

When α = 0 and γ = 0, (1.1) is reduced to the classical Lotka-Volterra prey-
predator model which has received extensive study in the last decade (see [2,8,9,16]
and references therein). When α = 0 and γ > 0, K. Kuto and his collaborators
established the existence of positive solutions by the bifurcation theory in [4,6] and
discussed the limiting behavior of positive solutions in [5, 7]. However, as far as
we know, there are few works on the positive solutions in the case where α > 0
and γ > 0. It is worth noting that, although the literature on hunting cooperation
is limited till now, some recent works can be found which address the effect of
cooperative hunting [3, 12,14,15,17] and the references therein.

The purpose of this paper is to establish the asymptotic stability of trivial and
semi-trivial solutions and provide the sufficient conditions for the existence of pos-
itive solutions. To present our main result, we introduce some notations. For any
given d > 0 and q(x) ∈ C(Ω), the eigenvalue problem

−d∆ϕ+ q(x)ϕ = λϕ, x ∈ Ω, ϕ = 0, x ∈ ∂Ω

has an infinite sequence of eigenvalues denoted by {λi(d, q(x))}∞i=1. Additionally,
for any given d > 0, the logistic equation

−d∆ϕ = aϕ− ϕ2, x ∈ Ω, ϕ = 0, x ∈ ∂Ω

admits a unique positive solution if and only if λ1(d,−a) < 0, which is denoted by
θd,a.

Our first theorem gives the asymptotic stability of trivial and semi-trivial solu-
tions.

Theorem 1.1. The following statements hold true.

(1) Trivial solution (0, 0) is asymptotically stable if λ1(du,−r) > 0 and λ1(dv +
β,−m) > 0, while it is unstable if λ1(du,−r) < 0 or λ1(dv + β,−m) < 0.

(2) Assume that λ1(dv + β,−m) < 0. Then (0, θdv+β,m) is asymptotically stable
if

λ1(du, (1 + αθdv+β,m)θdv+β,m − r) > 0;

while it is unstable if

λ1(du, (1 + αθdv+β,m)θdv+β,m − r) < 0.

(3) Assume that λ1(du,−r) < 0. Then (θdu,r, 0) is asymptotically stable if

λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
> 0;

while it is unstable if

λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
< 0.
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Our second theorem yields sufficient conditions for the existence of positive
solutions.

Theorem 1.2. Suppose that cαr < 1 and λ1(du,−r) < 0. Then the following
statements hold true.

(1) Assume that λ1(dv + β,−m) < 0. Then (1.1) has a positive solution if

λ1(du, (1 + αθdv+β,m)θdv+β,m − r) < 0.

(2) Assume that λ1(dv + β,−m) > 0. Then (1.1) has a positive solution if

λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
< 0.

(3) Assume that λ1(dv + β,−m) = 0. Then (1.1) always has a positive solution.

Remark 1.1. Theorem 1.1 and Theorem 1.2 imply that the fixed point index of
a trivial or semi-trivial solution is 1 if it is stable and 0 if it is unstable, where the
stability means the linearized stability of any non-negative solution of (1.1).

2. Proof of main results

2.1. Proof of Theorem 1.1

In this subsection we will complete the proof of Theorem 1.1 by analysing the spec-
trum of the linearized operator around some non-negative solution of (1.1). Since
these three cases in Theorem 1.1 can be studied in a similar manner, we only prove
(3).

Proof of Theorem 1.1(3). The linearized system of (1.1) with respect to (u, v)
at (θdu,r, 0) is given by

−du∆ϕ− (r − 2θdu,r)ϕ+ θdu,rψ = λϕ, x ∈ Ω,

−∆
[(
dv +

β
1+γθdu,r

)
ψ
]
− (m+ cθdu,r)ψ = λψ, x ∈ Ω,

ϕ = ψ = 0, x ∈ ∂Ω.

(2.1)

Let

Ψ =

(
dv +

β

1 + γθdu,r

)
ψ.

Then (2.1) can be expressed as
−du∆ϕ− (r − 2θdu,r)ϕ+

θdu,r(1+γθdu,r)
dv+dvγθdu,r+βΨ = λϕ, x ∈ Ω,

−∆Ψ− (m+cθdu,r)(1+γθdu,r)
dv+dvγθdu,r+β Ψ = λ

1+γθdu,r

dv+dvγθdu,r+βΨ, x ∈ Ω,

ϕ = Ψ = 0, x ∈ ∂Ω.

(2.2)

If Ψ = 0, then
λ = λi(du,−r + 2θdu,r) ≥ λ1(du,−r + 2θdu,r)
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for some i ≥ 1. Since θdu,r is stable, it follows from the monotonicity of the first
eigenvalue with respect to the potential that λ > λ1(du,−r + θdu,r) = 0. On the

other hand, if Ψ ̸= 0, then λ ≥ λ̃, where λ̃ is the first eigenvalue for the second
equation of (2.2). Moreover, λ̃ is given by the following variational characterization:

λ̃ = inf
ϕ∈H1

0 (Ω),ϕ̸=0


∫
Ω
|∇ϕ|2dx−

∫
Ω

(m+cθdu,r)(1+γθdu,r)
dv+dvγθdu,r+β ϕ2dx∫

Ω
1+γθdu,r

dv+dvγθdu,r+βϕ
2dx

 .

We now decide the sign of λ̃. Let ϕ be the positive eigenfunction associated to

λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
.

Then it follows from the variational characterization of the first eigenvalue that

λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
=

∫
Ω
|∇ϕ|2dx−

∫
Ω

(m+cθdu,r)(1+γθdu,r)
dv+dvγθdu,r+β ϕ

2
dx∫

Ω
ϕ
2
dx

.

When λ1

(
1,− (m+cθdu,r)(1+γθdu,r)

dv+dvγθdu,r+β

)
< 0, we have∫

Ω

|∇ϕ|2dx−
∫
Ω

(m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β
ϕ
2
dx < 0.

Hence, we deduce from the fact that θdu,r < r that

λ̃ ⩽

∫
Ω
|∇ϕ|2dx−

∫
Ω

(m+cθdu,r)(1+γθdu,r)
dv+dvγθdu,r+β ϕ

2
dx∫

Ω
1+γθdu,r

dv+dvγθdu,r+βϕ
2
dx

<
dv + dvγr + β

1 + γr
λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
< 0.

When λ1

(
1,− (m+cθdu,r)(1+γθdu,r)

dv+dvγθdu,r+β

)
> 0, we have∫

Ω

|∇ϕ|2dx−
∫
Ω

(m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β
ϕ2dx > 0

for any ϕ ∈ H1
0 (Ω) and ϕ ̸= 0. Let ϕ̃ be the positive eigenfunction associated to λ̃,

where ϕ̃ ∈ H1
0 and ϕ̃ > 0. Then

λ̃ =

∫
Ω
|∇ϕ̃|2dx−

∫
Ω

(m+cθdu,r)(1+γθdu,r)
dv+dvγθdu,r+β ϕ̃2dx∫

Ω
1+γθdu,r

dv+dvγθdu,r+β ϕ̃
2dx

>
dv + dvγr + β

1 + γr
λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
> 0.

Therefore, we use the linearization principle developed by Potier-Ferry [13] to con-

clude that all eigenvalues of (2.1) are positive if λ1

(
1,− (m+cθdu,r)(1+γθdu,r)

dv+dvγθdu,r+β

)
> 0,
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and hence, (θdu,r, 0) is asymptotically stable; while (2.1) has at least one negative

eigenvalue if λ1

(
1,− (m+cθdu,r)(1+γθdu,r)

dv+dvγθdu,r+β

)
< 0, and hence, (θdu,r, 0) is unstable.

This completes the proof of Theorem 1.1(3).

2.2. Proof of Theorem 1.2

In this subsection we would complete the proof of Theorem 1.2 by using the theory
of fixed point index in positive cones. Let

V =

(
dv +

β

1 + γu

)
v.

Then (1.1) can be expressed as
−du∆u = ru− u2 −

(
1 + α (1+γu)V

dv+dvγu+β

)
(1+γu)uV
dv+dvγu+β , x ∈ Ω,

−∆V = (1+γu)V
dv+dvγu+β

(
m− (1+γu)V

dv+dvγu+β + c
(
1 + α (1+γu)V

dv+dvγu+β

)
u
)
, x ∈ Ω,

u = V = 0, x ∈ ∂Ω.

(2.3)

Particularly, if u = 0, then V satisfies

−∆V =
V

dv + β

(
m− V

dv + β

)
, x ∈ Ω, V = 0, x ∈ ∂Ω.

Under the homogeneous Dirichlet boundary condition, this logistic equation has a
unique positive solution (dv + β)θdv+β,m if and only if λ1(dv + β,−m) < 0. Thus,
(2.3) has a semi-trivial solution (0, (dv+β)θdv+β,m) if λ1(dv+β,−m) < 0. Likewise,
(2.3) has another semi-trivial solution (θdu,r, 0) if λ1(du,−r) < 0.

We first give a priori estimates of any positive solution.

Lemma 2.1. Assume that cαr < 1 and (u, V ) is any positive solution of (2.3).
Then

0 ⩽ u(x) ⩽ r and 0 ⩽ V (x) ⩽ (dv + β)
m+ cr

1− cαr

for all x ∈ Ω.

Proof. Suppose that ∥u∥∞ = maxx∈Ω u(x) = u(x0) > 0 for some x0 ∈ Ω. It
follows from the first equation of (2.3) that

0 ≤ −du∆u(x0) ≤ ru(x0)− u2(x0),

and hence, u(x0) ≤ r. This means that 0 ⩽ u(x) ⩽ r for all x ∈ Ω.
Suppose that ∥V ∥∞ = maxx∈Ω V (x) = V (x1) > 0 for some x1 ∈ Ω. It follows

from the second equation of (2.3) that

0 ≤ −∆V (x1) = v(x1)(m− v(x1) + c(1 + αv(x1))u(x1))

≤ v(x1)(m+ cr − (1− cαr)v(x1)),

and hence, v(x1) <
m+cr
1−cαr . Thus,

V (x) ⩽ V (x1) =

(
dv +

β

1 + γu(x1)

)
v(x1) ⩽ (dv + β)

m+ cr

1− cαr
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for all x ∈ Ω.
We next introduce some functional spaces and operators. Let C0(Ω) = {ϕ(x) ∈

C(Ω) : ϕ(x) = 0 on ∂Ω} and K(Ω) = {ϕ(x) ∈ C0(Ω) : ϕ(x) ≥ 0 in Ω}. Set
E = C0(Ω) ⊕ C0(Ω) and W = K(Ω) ⊕ K(Ω). Clearly, W ⊂ E. For any ϕ =
(ϕ1, ϕ2) ∈ W and some ι > 0, we define Wϕ = {φ ∈ E : ϕ + ιφ ∈ W} and
Sϕ =Wϕ∩(−Wϕ). Suppose that T : E → E is a compact linear operator satisfying
T (Wϕ) ⊆Wϕ. Then for any ψ ∈ Sϕ, Tψ ∈ Sϕ, and so T maps Sϕ into itself. Thus,

T induces a compact linear mapping T̃ of S̃ϕ into itself, where S̃ϕ is the quotient

space E\Sϕ. Let W̃ϕ be the image of Wϕ under the quotient mapping E → E\Sϕ.

Then T̃ (W̃ϕ) ⊆ W̃ϕ, since T (Wϕ) ⊆ Wϕ. One can refer to [10] for the fixed point
index with respect to the positive cone.

Define

O :=

{
(u, V ) ∈W : u(x) ≤ r + 1, V (x) ≤ (dv + β)

m+ cr

1− cαr
+ 1, x ∈ Ω

}
.

It follows from Lemma 2.1 that all non-negative solutions of (2.3) lie in the interior
of O, denoted by int O, with respect toW . By selecting a sufficiently large constant
M > 0, we have

ru− u2 − (1 + αv)uv +Mu > 0 and mv − v2 + c(1 + αv)uv +MV > 0,

where v = (1+γu)V
dv+dvγu+β . For any s ∈ (0,∞), we consider a parameter of operators by

Ts

u

V

 = (−∆+M)−1

Ts,1 +Mu

Ts,2 +MV

 ,

where

Ts,1 =
s

du

(
ru− u2 −

(
1 + α

(1 + γu)V

dv + dvγu+ β

)
(1 + γu)uV

dv + dvγu+ β

)
,

and

Ts,2 =
s(1 + γu)V

dv + dvγu+ β

(
m− (1 + γu)V

dv + dvγu+ β
+ c

(
1 + α

(1 + γu)V

dv + dvγu+ β

)
u

)
.

By virtue of the regularity theory for elliptic operators, Ts is a completely continuous
operator in E.

Let r(T ) be the spectral radius of some operator T and degW (I − Ts, int O) be
the Leray-Schauder degree for I − Ts in the interior of O with respect to W . We
can prove the following lemmas.

Lemma 2.2. Assume that cαr < 1. Then degW (I − T1, int O) = 1.

Proof. By using a procedure similar to that in the proof of Lemma 2.1, we can
prove that 0 ⩽ us(x) ⩽ r and 0 ⩽ Vs(x) ⩽ (dv + β) m+cr

1−cαr for all x ∈ Ω, where
(us, Vs) is any fixed point of Ts. Thus, for any s ∈ (0,∞), Ts has no fixed point on
∂O with respect to W , where ∂O denotes the boundary of O. Hence, the homotopy
invariance of the degree ensures that degW (I−Ts, int O) is independent of s. More-
over, a standard comparison argument implies that (0, 0) is the only fixed point of
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Ts in W , provided 0 < s < min{duλ1(1, 0)/r, (dv + β)λ1(1, 0)/m}. Consequently,
the excision property shows that degW (I − Ts, int O) = indexW (Ts, (0, 0)) for any
0 < s < min{duλ1(1, 0)/r, (dv + β)λ1(1, 0)/m}.

We now calculate the index of (0, 0). The Fréchet derivative of Ts at (0, 0) is
given by

DTs(0, 0) = (−∆+M)−1

 sr
du

+M 0

0 sm
dv+β +M

 .

When 0 < s < min{duλ1(1, 0)/r, (dv + β)λ1(1, 0)/m}, it is easy to check that
1 is not an eigenvalue of DTs(0, 0) in W (0,0)\{(0, 0)}, where W (0,0) = K(Ω) ⊕
K(Ω). Because S(0,0) = {(0, 0)}, D̃T s(0, 0) is identified with DTs(0, 0). When
λ1(du,−sr) > 0 and λ1(dv + β,−sm) > 0, Lemmas 2.3 and 2.4 in [9] ensure that
r[(−∆+M)−1(sr/du+M)] < 1 and r[(−∆+M)−1(sm/(dv + β)+M)] < 1. Thus,
r(DTs(0, 0)) < 1, and so Proposition 2 in [10] yields that indexW (Ts, (0, 0)) = 1.
The desired result is obtained.

Lemma 2.3. Assume that cαr < 1 and λ1(du,−r) < 0. If λ1(dv + β,−m) ̸= 0,
then indexW (T1, (0, 0)) = 0.

Proof. If λ1(du,−r) < 0 and λ1(dv + β,−m) ̸= 0, then it is easy to check that 1
is not an eigenvalue of DT1(0, 0) in W (0,0)\{(0, 0)}. Moreover, when λ1(du,−r) <
0, Lemmas 2.3 and 2.4 in [9] ensure that r[(−∆ + M)−1(r/du + M)] > 1. As

mentioned above, we identify D̃T s(0, 0) with DTs(0, 0), and hence, r(D̃T 1(0, 0)) =
r(DT1(0, 0)) > 1. Therefore, Proposition 2 in [10] yields that indexW (T1, (0, 0)) = 0.

Lemma 2.4. Assume that cαr < 1 and λ1(du,−r) < 0. If

λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
< 0 (resp. > 0),

then indexW (T1, (θdu,r, 0)) = 0 (resp. = 1).

Proof. The Fréchet derivative of T1 at (θdu,r, 0) is given by

DT1(θdu,r, 0) = (−∆+M)−1

 1
du

(r − 2θdu,r) +M − 1
du

θdu,r(1+γθdu,r)
dv+dvγθdu,r+β

0
(m+cθdu,r)(1+γθdu,r)

dv+dvγθdu,r+β +M

 .

Let

T1 = (−∆+M)−1

(
1

du
(r − 2θdu,r) +M

)
and

T2 = (−∆+M)−1

(
(m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β
+M

)
.

In view of the definitions of Wϕ and Sϕ, it is clear that W (θdu,r,0) = C0(Ω)⊕K(Ω)

and S(θdu,r,0) = C0(Ω)⊕ {0}. We identify D̃T 1(θdu,r, 0) with T2.

We claim that (I −DT1(θdu,r, 0))(h, k) ̸= 0 for any (h, k) ∈ W (θdu,r,0)\{(0, 0)}
if

λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
̸= 0.
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Otherwise, we assume that there exists some (h, k) ∈ W (θdu,r,0)\{(0, 0)} such that
(I −DT1(θdu,r, 0))(h, k) = 0. Thus, we have

(−∆+M)−1
[(

1
du

(r − 2θdu,r) +M
)
h− 1

du

θdu,r(1+γθdu,r)
dv+dvγθdu,r+β k

]
= h, x ∈ Ω,

(−∆+M)−1
(

(m+cθdu,r)(1+γθdu,r)
dv+dvγθdu,r+β +M

)
k = k, x ∈ Ω,

h = k = 0, x ∈ ∂Ω.

If k ≡ 0 in Ω, then the first equation implies that T1h = h in Ω, where h ̸≡ 0 in
Ω, and hence, 1 is an eigenvalue of T1. Thus, we have r(T1) ≥ 1. On the other
hand, because θdu,r is the unique positive solution of −du∆ϕ = rϕ − ϕ2 with the
homogeneous Dirichlet boundary condition, the monotonicity of the first eigenvalue
with respect to the potential shows that λ1(du, 2θdu,r − r) > λ1(du, θdu,r − r) = 0.
As a result, Lemmas 2.3 and 2.4 in [9] yield that r(T1) < 1. This is a contradiction,
and hence, k ̸≡ 0 in Ω. Therefore, in view of the second equation, it follows from the
Krein-Rutman theorem that r(T2) = 1 since k ∈ K(Ω)\{0}. However, by virtue of

Lemmas 2.3 and 2.4 in [9], λ1

(
1,− (m+cθdu,r)(1+γθdu,r)

dv+dvγθdu,r+β

)
̸= 0 implies that r(T2) ̸= 1.

This contradiction yields the desired result.
We now apply Proposition 2 in [10] to calculate the index of (θdu,r, 0). Suppose

λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
< 0.

Then Lemmas 2.3 and 2.4 in [9] show that r(T2) > 1, and hence, r(D̃T 1(θdu,r, 0)) >
1. Consequently, it follows from Proposition 2 in [10] that indexW (T1, (θdu,r, 0)) = 0.
Suppose

λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
> 0.

Then Lemmas 2.3 and 2.4 in [9] show that r(T2) < 1, and hence, r(D̃T 1(θdu,r, 0)) <
1. To obtain the desired result, we need to discuss the spectral radius ofDT1(θdu,r, 0).
Assume that (h, k) ∈ E is the corresponding eigenfunction associated to λ, where
λ is an eigenvalue of DT1(θdu,r, 0). Then we have

(−∆+M)−1
[(

1
du

(r − 2θdu,r) +M
)
h− 1

du

θdu,r(1+γθdu,r)
dv+dvγθdu,r+β k

]
= λh, x ∈ Ω,

(−∆+M)−1
(

(m+cθdu,r)(1+γθdu,r)
dv+dvγθdu,r+β +M

)
k = λk, x ∈ Ω,

h = k = 0, x ∈ ∂Ω.

If k ̸≡ 0 in Ω, then λ is an eigenvalue of T2, so |λ| < 1. If k ≡ 0 in Ω, then
λ must be an eigenvalue of T1, and hence, we derive from Lemmas 2.3 and 2.4
in [9] that r(T1) < 1 since λ1(du, 2θdu,r − r) > 0, which means that |λ| < 1. As a
result, r(DT1(θdu,r, 0)) < 1. Therefore, it follows from Proposition 2 in [10] that
indexW (T1, (θdu,r, 0)) = 1.

Lemma 2.5. Assume that cαr < 1, λ1(du,−r) < 0 and λ1(dv + β,−m) < 0.
If λ1(du, (1 + αθdv+β,m)θdv+β,m − r) < 0 (resp. > 0), then indexW (T1, (0, (dv +
β)θdv+β,m)) = 0 (resp. = 1).
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Proof. The proof is similar to that of Lemma 2.4, so we omit it.

Proof of Theorem 1.2. In the case λ1(dv + β,−m) < 0. Assume that (2.3)
has no non-negative solutions other than (0, 0), (0, (dv + β)θdv+β,m) and (θdu,r, 0).
Thus, (0, 0), (0, (dv + β)θdv+β,m) and (θdu,r, 0) are only fixed points of T1. In view
of Lemma 2.3, indexW (T1, (0, 0)) = 0. Moreover, since

λ1

(
1,− (m+ cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
< λ1

(
1,− m

dv + β

)
=
λ1(dv + β,−m)

dv + β
< 0,

Lemma 2.4 gives indexW (T1, (θdu,r, 0)) = 0. Hence, when

λ1(du, (1 + αθdv+β,m)θdv+β,m − r) < 0,

it follows from the excision property that

1 = degW (I − T1, int O)

= indexW (T1, (0, 0)) + indexW (T1, (0, (dv + β)θdv+β,m))

+ indexW (T1, (θdu,r, 0))

= 0,

a contradiction. This completes the proof of part (1).

In the case λ1(dv + β,−m) > 0. We repeat the same argument as the above.
Note that (0, (dv + β)θdv+β,m) does not exist for λ1(dv + β,−m) > 0. Assume that
(2.3) has no non-negative solutions except for (0, 0) and (θdu,r, 0). Thus, (0, 0) and
(θdu,r, 0) are only fixed points of T1. Hence, the excision property of fixed point
index gives

1 = degW (I − T1, int O)

= indexW (T1, (0, 0)) + indexW (T1, (θdu,r, 0))

= 0,

a contradiction. This completes the proof of part (2).

In the case λ1(dv + β,−m) = 0. Select a sequence {mi} such that λ1(dv +
β,−mi) ̸= 0 and λ1(dv + β,−m∞) = 0, where limi→∞mi = m∞. Then we may
assume (ui, Vi) is a positive solution of (2.3) with m = mi. Moreover, by using a
procedure similar to that in the proof of Lemma 2.1, we can prove that 0 ⩽ ui(x) ⩽ r
and 0 ⩽ Vi(x) ⩽ (dv + β)mi+cr

1−cαr for all x ∈ Ω. Hence, it follows from the regularity
theory for elliptic operators that we may assume limi→∞(ui, Vi) = (u∞, V∞) in
C1(Ω)× C1(Ω), where (u∞, V∞) is a non-negative solution of (2.3) with m = m∞.
We next prove by contradiction that (u∞, V∞) is a positive solution of (2.3) with
m = m∞.

Assume that u∞ ≡ 0 in Ω. Let ûi = ui/∥ui∥∞. Then ûi satisfies−du∆ûi = ûi

(
r − ui −

(
1 + α (1+γui)Vi

dv+dvγui+β

)
(1+γui)Vi

dv+dvγui+β

)
, x ∈ Ω,

ûi = 0, x ∈ ∂Ω.

The elliptic regularity theory enables us to extract a subsequence such that ûi →
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û∞ ≥ (̸≡)0 in C1(Ω). Then (û∞, V∞) satisfies
−du∆û∞ = û∞

(
r −

(
1 + α V∞

dv+β

)
V∞

dv+β

)
, x ∈ Ω,

−∆V∞ = V∞
dv+β

(
m∞ − V∞

dv+β

)
, x ∈ Ω,

û∞ = V∞ = 0, x ∈ ∂Ω.

Since λ1(dv+β,−m∞) = 0, we deduce from the equation for V∞ that V∞ ≡ 0 in Ω.
Thus, we have û∞ ≡ 0 in Ω since λ1(du,−r) < 0. This is a contradiction to û∞ ̸≡ 0,
and hence, u∞ ̸≡ 0 in Ω. Furthermore, the strong maximum principle ensures that
u∞ > 0 in Ω. On the other hand, we assume V∞ ≡ 0 in Ω. Let V̂i = Vi/∥Vi∥∞.
Thus, we have 

−du∆u∞ = ru∞ − u2∞, x ∈ Ω,

−∆V̂∞ = (1+γu∞)V̂∞
dv+dvγu∞+β (m∞ + cu∞) , x ∈ Ω,

u∞ = V̂∞ = 0, x ∈ ∂Ω.

Here V̂∞ ≥ ( ̸≡)0 is a limit function of a subsequence of {V̂i} in C1(Ω). Since u∞ > 0
in Ω, we deduce from the equation for u∞ that u∞ = θdu,r. Moreover, it follows
from the Krein-Rutman theorem that

λ1

(
1,− (m∞ + cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
= 0.

Consequently,

λ1(dv + β,−m∞)

dv + β
= λ1

(
1,− m∞

dv + β

)
> λ1

(
1,− (m∞ + cθdu,r)(1 + γθdu,r)

dv + dvγθdu,r + β

)
= 0,

and hence, λ1(dv + β,−m∞) > 0. This contradicts our assumption to λ1(dv +
β,−m∞) = 0. Hence, the strong maximum principle ensures that V∞ > 0 in Ω.
The desired result is obtained.
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