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On Nodal Solutions of the Schrödinger-Poisson
System with a Cubic Term*

Ronghua Tang1, Hui Guo2,† and Tao Wang3

Abstract In this paper, we consider the following Schrödinger-Poisson sys-
tem with a cubic term{

−∆u+ V (|x|)u+ λϕu = |u|2u in R3,

−∆ϕ = u2 in R3,
(0.1)

where λ > 0 and the radial function V (x) is an external potential. By taking
advantage of the Gersgorin disc theorem and Miranda theorem, via the vari-
ational method and blow up analysis, we prove that for each positive integer
k, problem (0.1) admits a radial nodal solution Uλ

k,4 that changes sign exactly

k times. Furthermore, the energy of Uλ
k,4 is strictly increasing in k and the

asymptotic behavior of Uλ
k,4 as λ → 0+ is established. These results extend

the existing ones from the super-cubic case in [17] to the cubic case.

Keywords Schrödinger-Poisson system, nodal solutions, Gersgorin disc the-
orem, Miranda theorem, blow-up analysis
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1. Introduction

In the last decades, the following Schrödinger-Poisson system{
−∆u+ V (x)u+ λϕu = |u|p−1u in R3,

−∆ϕ = u2 in R3
(1.1)

has attracted much research attention due to its deep physical backgrounds and
mathematical challenges. Here λ > 0, 1 < p < 5 and V represents external potential
function. From a physical point of view, system (1.1) comes from semiconductor
theory and is used to simulate the evolution of electronic ensemble in semiconductor

†the corresponding author.
Email address: math tangronghua@163.com(Ronghua Tang), huiguo math@163.com(Hui
Guo),wt 61003@163.com(Tao Wang)

1Information Department, Dongguan Light Industry School, Dongguan, Guangdong 523000,
P. R. China

2Department of Mathematics and Finance, Hunan University of Humanities, Science and
Technology, Loudi, Hunan 417000, P. R. China

3College of Mathematics and Computing Science, Hunan University of Science and Technology,
Xiangtan, Hunan 411201, P. R. China

∗The authors were supported by Scientific Research Fund of Hunan Provincial Education De-
partment (Grant No. 22B0484,22C0601) and Natural Science Foundation of Hunan Province
(Grant No. 2024JJ5214, 2022JJ30235) and Research on Teaching Reform in Ordinary Un-
dergraduate Universities of Hunan Province (Grant No. 202401000915,202401001472).

http://dx.doi.org/10.12150/jnma.2024.623


624 R. Tang, H. Guo & T. Wang

crystals, see [4, 20] for instance. In mathematical contents, the appearance of the
nonlocal term λϕu causes some mathematical difficulties and makes the study of
(1.1) interesting. As we know, there are many existence results in the literature on
the solutions of (1.1), such as ground state solutions [3, 15], bound state solutions
[1, 15, 22], positive solutions [5, 21], non-radial solutions [9], and semiclassical state
solutions [14]. For more related problems, one can refer to [6, 27] and references
therein.

Recently, some researchers have shown interest in the existence and properties
of nodal solutions (or sign-changing solutions) to (1.1). When the nonlinearity
|u|p−2u satisfies the super-cubic growth condition that p ∈ (3, 5), via the Nehari
manifold method, Wang-Zhou [23] studied the existence of a least energy nodal
solution of (1.1) which changes sign only once. Later, the existence of infinitely
many radial nodal solutions of (1.1) with any prescribed number of nodal domains
was proved by Kim-Seok [17] via the variational method and gluing method for
p ∈ (3, 5), see also [13] for a dynamical method. For the more general nonlinearity
f(u) satisfying super-cubic condition, one can see [2, 7, 8, 10, 16] for instance. For
the cubic case p = 3, Zhong-Tang [28] investigated the existence and asymptotical
behaviors of a least energy nodal solution with exactly two nodal domains to (1.1)
by the Nehari manifold method. Later, Sun-Wu [22] extended this result to the sub-
cubic case p ∈ (1, 3). Furthermore, Liu-Wang-Zhang [18] obtained infinitely many
sign-changing solutions for p ∈ (2, 3] by using the perturbation method and the
invariant subsets of descending flow. In [14], Ianni-Vaira obtained infinitely many
nonradial sign-changing solutions in the semiclassical limit for p ∈ (1, 3] by using
the Lyapunov-Schmit reduction method. For more related results and details, one
can refer to [11, 25, 26]. From the above discussions, we see that p = 3 is a critical
value. So a natural question arises that whether equation (1.1) with p = 3 admits
radial nodal solutions with a prescribed number of nodal domains. In this paper,
we shall give a confirmative answer to the following cubic case p = 3 of (1.1), that
is, {

−∆u+ V (|x|)u+ λϕu = |u|2u in R3,

−∆ϕ = u2 in R3,
(1.2)

where λ > 0 and V satisfies

(V) V (|x|) ∈ C([0,+∞),R) is bounded from below by a positive constant V0.

As is well known, equation (1.2) is equivalent to

−∆u+ V (|x|)u+ λϕuu = |u|2u in R3 (1.3)

with ϕu(x) =
∫
R3

u2(y)
4π|x−y|dy, which has a variational structure. Let

HV = {u ∈ H1(R3) : u(x) = u(|x|),
∫
R3

V (|x|)u2 < +∞}

be endowed with the norm ∥u∥HV
=
(∫

R3(|∇u|2 + V (|x|)|u|2)dx
) 1

2 . Then its energy
functional Iλ,4 : HV → R is

Iλ,4(u) :=
1

2

∫
R3

(|∇u|2 + V (|x|)u2)dx+
λ

4

∫
R3

ϕuu
2dx− 1

4

∫
R3

|u|4.
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We denote the usual Nehari manifold by N := {u ∈ HV \{0} : ⟨I ′λ,4(u), u⟩ = 0} and
the ground state solution of (1.2) by U0,4, which is obtained in [3] and satisfies

m := inf
u∈N

Iλ,4(u) = Iλ,4(U0,4) > 0. (1.4)

Now we are ready to illustrate our main results. First we give the existence
result.

Theorem 1.1. For any positive integer k, problem (1.2) admits a radial nodal
solution Uk,4 which has exactly k + 1 nodal domains.

We point out that the dynamical method used in [13] is not available here,
because it is difficult to analyze the number of nodes when V ̸≡ constant. At
the meanwhile, all the techniques concerning the super-cubic case used in [17], are
also no longer valid, because the cubic term |u|2u has a complicated competitive
relationship with the 3−homogeneous term ϕuu in the sense that ϕtutu = t3ϕuu
for any t ∈ R. Hence some novel ideas are necessary. By taking advantage of the
Gersgorin disc theorem and Miranda theorem, Theorem 1.1 is proved via variational
method together with a limit procedure.

The next result shows that the energy of Uk,4 obtained in Theorem 1.1 increases
as the number of nodes.

Theorem 1.2. Under the assumptions of Theorem 1.1, the energy of Uk,4 is strictly
increasing with k, namely,

Iλ,4(Uk+1,4) > Iλ,4(Uk,4), ∀k ∈ N+.

Moreover, Iλ,4(Uk,4) > (k + 1)Iλ,4(U0,4).

Obviously, Uk,4 obtained in Theorem 1.1 depends on λ. We shall sometimes
denote Uk,4 by Uλk,4 to emphasize this dependence. The following result shows the

convergence property of Uλk,4 as λ→ 0+.

Theorem 1.3. Under the assumptions of Theorem 1.1, for any sequence {λn}n≥1

with λn → 0+ as n→ ∞, there exists a subsequence, still denoted by {λn}n≥1, such

that Uλn

k,4 converges to U0
k,4 strongly in HV as n → ∞, where U0

k,4 is a least energy
radial nodal solution having exactly k + 1 nodal domains to the following equation

−∆u+ V (|x|)u = |u|2u. (1.5)

The contribution of this paper are twofold: on one hand, our results extend and
complement the previous results in [13] via the variational method. On the other
hand, this paper partially solves the open problem proposed in [17]. We emphasize
that for the case p < 3, the existence of such sign-changing solutions of (1.1) with
any prescribed number of nodes is still open.

This paper is organized as follows. In Section 2, we give a variational framework
of problem (1.2), and in Section 3, we give some properties of the Nehari type set.
In Section 4, we prove Theorem 1.1 by the limit approach. In Section 5, the energy
comparison and asymptotic behaviors are obtained.
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2. Preliminaries

In this section, we give some notations and useful lemmas. For each k ∈ N+, we
define

Γk =
{
rk := (r1, · · · , rk) ∈ (R>0)

k : 0 =: r0 < r1 < · · · < rk < rk+1 := +∞
}
,
(2.1)

and for each rk ∈ Γk, we denote by

Brk
1 :=

{
x ∈ R3 : |x| < r1

}
,

Brk
i :=

{
x ∈ R3 : ri−1 < |x| < ri

}
, i = 2, · · · , k,

Brk
k+1 :=

{
x ∈ R3 : |x| > rk

}
.

Clearly, Brk
1 is a ball, Brk

2 , · · · , Brk
k are annulus and Brk

k+1 is the complement of a

ball. Moreover, R3 = ∪k+1
i=1B

rk
i . For u ∈ HV , we denote by ui = uχBrk

i
, where χBrk

i

is the characteristic function on Brk
i . We define the infimum level

ck,4 := inf
u∈Nk,4

Iλ,4(u) (2.2)

constrained on the Nehari set

Nk,4={u∈HV : there exists rk s.t. ui ̸=0 in Brk
i , ⟨I ′λ,4(u), ui⟩ = 0, i = 1, · · · , k+1}.

(2.3)
In order to study Nk,4, we set

Hrk
i :=

{
u ∈ H1

0 (B
rk
i ) : u(x) = u(|x|), u(x) = 0, x ∈ ∂Brk

i

}
with the norm ∥u∥i := ∥u∥Hrk

i
=
(∫

B
rk
i
(|∇u|2 + V (|x|)u2)dx

) 1
2

, and define a prod-

uct space
Hrk
k = Hrk

1 × · · · ×Hrk
k+1. (2.4)

Next we introduce an auxiliary function Eλ,4 : Hrk
k → R related to Iλ,4,

Eλ,4(u1,· · · ,uk+1)=

k+1∑
i=1

1

2
∥ui∥2i+

λ

4

k+1∑
j=1

∫
B

rk
i

∫
B

rk
j

u2j (y)u
2
i (x)

4π|x− y|
dydx− 1

4

∫
B

rk
i

u4i dx

 ,

(2.5)
which satisfies

Eλ,4(u1, · · · , uk+1) = Iλ,4(

k+1∑
i=1

ui). (2.6)

Then

⟨∂ui
Eλ,4(u1, · · · , uk+1), ui⟩ = ∥ui∥2i + λ

k+1∑
j=1

∫
B

rk
i

ϕuj
u2i −

∫
B

rk
i

u4i ,

and the Nehari type set for Eλ,4 is

Mrk
k,4 :={(u1,· · ·, uk+1)∈Hrk

k :ui ̸=0, ⟨∂ui
Eλ,4(u1,· · ·, uk+1), ui⟩=0, i=1, · · ·, k + 1} .

(2.7)
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Obviously, if (u1, · · · , uk+1) ∈ Hrk
k is a critical point of Eλ,4, then each ui

satisfies the following system
−∆ui + V (|x|)ui +

k+1∑
j=1

λϕujui = |ui|2ui in Brk
i , 1 ≤ i ≤ k + 1,

ui = 0 on ∂Brk
i .

(2.8)

In the following, we list the Miranda theorem and a variant of the Gersgorin
disc theorem, which will play an important role in our proofs.

Lemma 2.1. (Miranda Theorem, [19]) Let

D =
{
x := (x1, · · · , xn) ∈ R3 : |xi| < L, ∀1 ≤ i ≤ n

}
.

Suppose that the mapping H = (h1, · · · , hn) : D → R3 is continuous on D satisfying

H(x) ̸= θ, ∀ x ∈ ∂D

and

(i) hi(x1, · · · , xi−1,−L, xi+1, · · · , xn) ≥ 0 for 1 ≤ i ≤ n,

(ii) hi(x1, · · · , xi−1, L, xi+1, · · · , xn) ≤ 0 for 1 ≤ i ≤ n,

where θ := (0, · · · , 0). Then H(x) = θ has a solution in D.

Lemma 2.2. (Lemma 2.3, a variant of the Gersgorin disc theorem, [12]) For any
aij = aji > 0 with i ̸= j ∈ {1, · · · , n} and si > 0 with i = 1, · · · , n, define the
matrix B := (bij)n×n by

bij =


−
∑
l ̸=i

slail
si

i = j,

aij > 0 i ̸= j.

Then the real symmetric matrix (bij)n×n is non-positive definite.

Lemma 2.3. (Lemma 2.3, [24]) If f ∈ C1(Rn,R) is a strictly concave function and
has a critical point (s1, · · · , sn) ∈ Rn, then (s1, · · · , sn) is the unique critical point
of f in Rn.

3. Properties of the Nehari type set

In this section, we prove some properties of the Nehari type set Mrk
k,4 and Nk,4.

Before the proof of Theorem 1.1, we first establish the framework of the following
equation for the super-cubic case{

−∆u+ V (|x|)u+ λϕu = |u|p−2u in R3,

−∆ϕ = u2 in R3.
(3.1)

For rk ∈ Γk and p ∈ (4, 6), we introduce the energy functional Iλ,p : HV → R
associated with (3.1) by

Iλ,p(u) :=
1

2

∫
R3

(|∇u|2 + V (|x|)u2) + λ

4

∫
R3

ϕuu
2 − 1

p

∫
R3

|u|p,
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and Eλ,p : Hrk
k → R by

Eλ,p(u1,· · ·, uk+1) :=

k+1∑
i=1

1

2
∥ui∥2i+

λ

4

k+1∑
j=1

∫
B

rk
i

∫
B

rk
j

u2j (y)u
2
i (x)

4π|x− y|
dydx− 1

p

∫
B

rk
i

|ui|p
 .

Similarly, we define

Nk,p = {u ∈ HV : there exists rk s.t. ui ̸= 0 in Brk
i ,

⟨I ′λ,p(u), ui⟩ = 0, i = 1, · · · , k + 1
}
,

Mrk
k,p := {(u1, · · · , uk+1) ∈ Hrk

k : ui ̸= 0,

⟨∂uiEλ,p(u1, · · · , uk+1), ui⟩ = 0, i = 1, · · · , k + 1}

and

ck,p := inf
u∈Nk,p

Iλ,p(u). (3.2)

Obviously, Nk,p,Mrk
k,p are consistent with Nk,4,Mrk

k,4 at p = 4. Moreover, any
critical point of Eλ,p satisfies the following system

−∆ui + V (|x|)ui +
k+1∑
j=1

λϕuj
ui = |ui|p−2ui in Brk

i , 1 ≤ i ≤ k + 1,

ui = 0 on ∂Brk
i .

(3.3)

For each (u1, · · · , uk+1) ∈ Hrk
k , let G

u
p : (R≥0)

k+1 → R be defined as

Gup(s1, · · · , sk+1) := Eλ,p(s1u1, · · · , sk+1uk+1)

=

k+1∑
i=1

1

2
s2i ∥ui∥2i +

λs2i
4

k+1∑
j=1

s2j

∫
B

rk
i

ϕuj
|ui|2 −

spi
p

∫
B

rk
i

|ui|p
 .

(3.4)

Proposition 3.1. (Proposition 3.1, Lemma 3.3, [17]) For each k ∈ N+ and p ∈
(4, 6), the following results hold true:

(i) for any rk ∈ Γk and (u1, · · · , uk+1) ∈ Hrk
k with ui ̸= 0, there exists a unique

maximum point (s1, · · · , sk+1) ∈ (R>0)
k+1 of Gup in (R≥0)

k+1 such that

(s1u1, · · · , sk+1uk+1) ∈ Mrk
k,p,

(ii) equation (3.1) admits a radial nodal solution Uk,p ∈ HV with exactly k nodes
0 < r1 < · · · < rk < +∞ such that

Iλ,p(Uk,p) = ck,p.

By virtue of Proposition 3.1, we shall prove the following result.

Lemma 3.1. For each rk ∈ Γk, the set Mrk
k,4 ̸= ∅, which is defined in (2.7).

Proof. The proof is similar to Lemma 3.2 in [10] with a slight modification. For
the completeness, we give the sketch of the proof.
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For each rk = (r1, · · · , rk+1) ∈ Γk, we take (ψ1, · · · , ψk+1) ∈ Hrk
k with ψi ̸= 0

such that min
i

{
∥∇ψi∥2

L2(B
rk
i

)

∥ψi∥4

L4(B
rk
i

)

}
> 1. Then there is δ0 > 0 such that

1 < δ20 < min{∥∇ψi∥2L2(B
rk
i )
/∥ψi∥4L4(B

rk
i )

}, 1 ≤ i ≤ k + 1. (3.5)

We define

vδ0i (x) = δ20ψi(ri−1 + δ0(|x| − ri−1)).

Clearly, supp(ψi) ⊂ Brk
i and supp(vδ0i ) ⊂ {x ∈ R3 : ri−1 < |x| < ri−1 + (ri −

ri−1)/δ0} ⊂ Brk
i . Moreover,

∥vδ0i ∥2i + λ

k+1∑
j=1

∫
R3

ϕ
v
δ0
j
|vδ0i |2 −

∫
R3

|vδ0i |4

=δ30∥∇ψi∥2L2(B
rk
i )

+ δ0

∫
B

rk
i

V (
|x| − ri−1

δ0
+ ri−1)|ψi|2

+ λδ30

k+1∑
j=1

∫
B

rk
i

ϕψjψ
2
i − δ50

∫
B

rk
i

|ψi|4

= : hi(δ0).

Obviously, by (3.5) and the condition (V), hi(δ0) ≥ δ30∥∇ψi∥2L2(B
rk
i )

−δ50
∫
B

rk
i

|ψi|4 >
0. Then hi(δ) > 0 for any δ ∈ (0, δ0). Moreover, by virtue of the condition∫
B

rk
i
V (|x|)|ψi|2 < +∞, a direct computation gives that hi(δ) → −∞ as δ → +∞.

Thus there is δi ∈ (δ0,+∞) such that hi(δi) = 0. Let δmax = max{δ1, · · · , δk+1}.
Then hi(δmax) ≤ hi(δi) ≤ 0.

Now, we set

wi(x) := vδmax
i (x). (3.6)

Then wi(x) = δ2maxψi(ri−1 + δmax(|x| − ri−1)) and

supp(wi) ⊂
{
x ∈ R3 : ri−1 < |x| < ri−1 + (ri − ri−1)/δmax

}
⊂ Brk

i ,

(w1, · · · , wk+1) ∈ Hrk
k with wi ̸= 0.

We claim that there exists (t1,4, · · · , tk+1,4) ∈ (R>0)
k+1 such that

(t1,4w1, · · · , tk+1,4wk+1) ∈ Mrk
k,4. (3.7)

Indeed, by Proposition 3.1 (i), there exists a unique global maximum point
(t1,p, · · · , tk+1,p) ∈ (R>0)

k+1 of Gwp such that

t2i,p∥wi∥2i + λ

k+1∑
j=1

t2i,pt
2
j,p

∫
B

rk
i

ϕwj
|wi|2 − tpi,p

∫
B

rk
i

|wi|p = 0, ∀1 ≤ i ≤ k + 1. (3.8)

We assert that (t1,p, · · · , tk+1,p) is bounded for p→ 4+. Suppose on the contrary
that there is ip ∈ {1, · · · , k + 1} such that tip,p → +∞ as p → 4+. Then it follows
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from (3.6) and (3.8) that

0 = t2−pip,p
∥wip∥2ip + λ

k+1∑
j=1

t2j,p
t2ip,p

t4−pip,p

∫
B

rk
ip

ϕwj |wip |2 −
∫
B

rk
ip

|wip |p

≤ t2−pip,p
∥wip∥2ip + λ

k+1∑
j=1

∫
B

rk
ip

ϕwj
|wip |2 −

∫
B

rk
ip

|wip |p

→ λ

k+1∑
j=1

∫
B

rk
ip

ϕwj |wip |2 −
∫
B

rk
ip

|wip |4 as p→ 4+

= λδ3max

k+1∑
j=1

∫
B

rk
ip

ϕψj
ψ2
ip − δ5max

∫
B

rk
ip

|ψip |4

= hip(δmax)− δ3max∥∇ψip∥2L2(B
rk
ip

)
− δmax

∫
B

rk
ip

|ψip |2

< 0,

(3.9)

which leads to a contradiction. Thus the assertion follows.
Then there is (t1,4, · · · , tk+1,4) ∈ (R≥0)

k+1 and a sequence {pn}n such that

(t1,pn , · · · , tk+1,pn) → (t1,4, · · · , tk+1,4) as pn → 4+.

By the continuity of Gwp and the fact that (t1,p, · · · , tk+1,p) is the global maximum
point of Gwp , (t1,4, · · · , tk+1,4) is also a global maximum point of Gw4 and thus

t2i,4∥wi∥2i + λ

k+1∑
j=1

t2i,4t
2
j,4

∫
B

rk
i

ϕwj
w2
i = t4i,4

∫
B

rk
i

|wi|4. (3.10)

Next, we prove (t1,4, · · · , tk+1,4) ∈ (R>0)
k+1. Indeed, suppose on the contrary

that there is i0 ∈ {1, · · · , k + 1} such that (t1,4, · · · , ti0−1,4, 0, ti0+1,4, · · · , tk+1,4) is
the global maximum point of Gw4 in (R≥0)

k+1. Since

Gw4 (t1,4, · · · , ti0−1,4, µ, ti0+1,4, · · · , tk+1,4)

= Gw4 (t1,4, · · · , ti0−1,4, 0, ti0+1,4, · · · , tk+1,4)

+
µ2

2
∥wi0∥2i0 +

λµ4

4

∫
ϕwi0

w2
i0 +

λµ2

4

∑
j ̸=i0

t2j,4

∫
ϕwj

w2
i0 − µ4

∫
|wi0 |4

= Gw4 (t1,4, · · · , ti0−1,4, 0, ti0+1,4, · · · , tk+1,4) + θ(µ),

where θ(µ) := µ2

2 ∥wi0∥2i0 +
λµ4

4

∫
ϕwi0

w2
i0
+ λµ2

4

∑
j ̸=i0 t

2
j,4

∫
ϕwjw

2
i0
−µ4

∫
|wi0 |4 > 0

if µ is sufficiently small, it leads to a contradiction. Thus ti,4 > 0 for all 1 ≤ i ≤ k+1.
Therefore, the claim (3.7) follows due to (3.10) and (t1,4, · · · , tk+1,4) ∈ (R>0)

k+1.
So Mrk

k,4 ̸= ∅ and the proof is completed.

Lemma 3.2. If (u1, · · · , uk+1) ∈ Mrk
k,4, then for any (b1, · · · , bk+1) ∈

(R≥0)
k+1\(1, · · · , 1),

Eλ,4(b1u1, · · · , bk+1uk+1) < Eλ,4(u1, · · · , uk+1).
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Proof. For (u1, · · · , uk+1) ∈ Mrk
k,4 and (b1, · · · , bk+1) ∈ (R≥0)

k+1\(1, · · · , 1), it
follows that

Eλ,4(b1u1, · · · , bk+1uk+1)

=Eλ,4(b1u1, · · · , bk+1uk+1)−
k+1∑
i=1

b4i
4
⟨∂ui

Eλ,4(u1, · · · , uk+1), ui⟩

=

k+1∑
i=1

b2i
2
∥ui∥2i +

λb2i
4

k+1∑
j=1

b2j

∫
B

rk
i

ϕuj
u2i −

∫
B

rk
i

b4i
4
u4i


−
k+1∑
i=1

b4i
4

∥ui∥2i + λ

k+1∑
j=1

∫
B

rk
i

ϕuj
u2i −

∫
B

rk
i

u4i


=

k+1∑
i=1

(
(
b2i
2

− b4i
4
)∥ui∥2i

)
+ λ

k+1∑
i,j=1

(
b2i b

2
j − b4i
4

+
b2i b

2
j − b4j
4

)∫
B

rk
i

ϕuj
u2i

<

k+1∑
i=1

(
1

4
∥ui∥2i

)
− λ

4

k+1∑
i,j=1

(b2i − b2j )
2

∫
B

rk
i

ϕuju
2
i ≤

k+1∑
i=1

(
1

4
∥ui∥2i

)

=Eλ,4(u1, · · · , uk+1)−
k+1∑
i=1

1

4
⟨∂ui

Eλ,4(u1, · · · , uk+1), ui⟩

=Eλ,4(u1, · · · , uk+1).

The proof is completed.
By using Lemma 3.1, we prove that Nk,4 is non-empty.

Lemma 3.3. There hold Nk,4 ̸= ∅ and 0 < ck,4 < +∞, where ck,4 and Nk,4 are
defined in (2.2) and (2.3), respectively.

Proof. By Lemma 3.1, we can take (v1, · · · , vk+1) ∈ Mrk
k,4. Then by (2.6),

⟨I ′λ,4(
k+1∑
i=1

vi), vi⟩ = ⟨∂ui
Eλ,4(v1, · · · , vk+1), vi⟩ = 0. So

k+1∑
i=1

vi ∈ Nk,4. Moreover,

since Nk,4 ⊂ N , it follows from (1.4) that

0 < m := inf
u∈N

Iλ,4(u) ≤ inf
u∈Nk,4

Iλ,4(u) = ck,4 ≤ Iλ,4(

k+1∑
i=1

vi) < +∞.

The proof is completed.

4. Proof of Theorem 1.1

With the help of Proposition 3.1, we are going to prove Theorem 1.1 by the limit
approach and blow up analysis in this section.
Proof of Theorem 1.1. According to Theorem 1.1 in [17], for each k ∈ N+ and p ∈
(4, 6), there exists rk ∈ Γk and a radial nodal solution uk,p := (u1,p, · · · , uk+1,p) ∈
Hrk
k \{0} of (3.3) such that

Iλ,p

(
k+1∑
i=1

ui,p

)
= Eλ,p(uk,p) = ck,p.
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Moreover, Uk,p :=
k+1∑
i=1

ui,p is a radial nodal solution having exactly k nodes of

equation (3.1). Then we shall finish our proof by four steps.
Step 1. Prove

lim sup
p→4+

ck,p ≤ ck,4 < +∞. (4.1)

Indeed, for any (w1,4, · · · , wk+1,4) ∈ Mrk
k,4, it follows from Proposition 3.1 (i) that

for each p ∈ (4, 6), there exists a unique k+1 tuple (m1,p, · · · ,mk+1,p) ∈ (R>0)
k+1

such that (m1,pw1,4, · · · ,mk+1,pwk+1,4) ∈ Mrk
k,p, that is,

m2
i,p∥wi,4∥2i + λ

k+1∑
j=1

m2
i,pm

2
j,p

∫
B

rk
i

ϕwj,4
w2
i,4 −mp

i,p

∫
B

rk
i

|wi,4|p = 0, ∀1 ≤ i ≤ k + 1.

(4.2)
We assert that (m1,p, · · · ,mk+1,p) is bounded for p→ 4+. In fact, we argue it by

contradiction. Suppose on the contrary that for each p, there is ip ∈ {1, · · · , k+ 1}
such that

mip,p := max
j=1,··· ,k+1

{mj,p} → +∞ as p→ 4+.

Then it follows from (4.2) that

0 = m−2
ip,p

∥wip∥2ip + λ

k+1∑
j=1

m2
j,p

m2
ip,p

∫
B

rk
ip

ϕwj |wip |2 −mp−4
ip,p

∫
B

rk
ip

|wip |p

≤ m−2
ip,p

∥wip∥2ip + λ

k+1∑
j=1

∫
B

rk
ip

ϕwj
|wip |2 −mp−4

ip,p

∫
B

rk
ip

|wip |p

→ λ

k+1∑
j=1

∫
B

rk
ip

ϕwj |wip |2 −
∫
B

rk
ip

|wip |4 < 0 as p→ 4+,

(4.3)

which leads to a contradiction. Thus the assertion is proved.
By the assertion above, there exists (m1,4, · · · ,mk+1,4) ∈ (R≥0)

k+1 and a se-
quence
{(m1,pn , · · · ,mk+1,pn)} such that

(m1,pn , · · · ,mk+1,pn) → (m1,4, · · · ,mk+1,4) as pn → 4+.

Since (4.2) implies limn→∞mpn−2
i,pn

≥ limn→∞
∥wi,4∥2

i∫
B

rk
i

|wi,4|pn =
∥wi,4∥2

i∫
B

rk
i

|wi,4|4 > 0, this

shows

(m1,4, · · · ,mk+1,4) ∈ (R>0)
k+1.

Then taking pn → 4, it follows from (4.2) that

m2
i,4∥wi,4∥2i + λ

k+1∑
j=1

m2
i,4m

2
j,4

∫
B

rk
i

ϕwj,4
w2
i,4 −m4

i,4

∫
B

rk
i

|wi,4|4 = 0, ∀1 ≤ i ≤ k + 1.

(4.4)
Next, we prove

(m1,4, · · · ,mk+1,4) = (1, · · · , 1). (4.5)
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In fact, let h : (R>0)
k+1 → R be defined by

h(a1, · · · , ak+1) :=Eλ,4(a
1
4
1 w1,4, · · · , a

1
4

k+1wk+1,4)

=

k+1∑
i=1

(
a

1
2
i

2
∥wi,4∥2i +

λai
4

∫
B

rk
i

∫
B

rk
i

w2
i,4(y)w

2
i,4(x)

4π|x− y|
dydx

+
λ

4

k+1∑
j ̸=i

a
1
2
i a

1
2
j

∫
B

rk
i

∫
B

rk
j

w2
j,4(y)w

2
i,4(x)

4π|x− y|
dydx

−ai
4

k+1∑
i=1

∫
B

rk
i

|wi,4|4dx

)
.

By some direct calculations, we get that

hai(a1, · · · , ak+1) =
1

4
a
− 1

2
i ∥wi,4∥2i +

λ

4

∫
B

rk
i

∫
B

rk
i

w2
i,4(y)w

2
i,4(x)

4π|x− y|
dydx

+
λ

4

k+1∑
j ̸=i

(
a
− 1

2
i a

1
2
j

∫
B

rk
i

∫
B

rk
j

w2
j,4(y)w

2
i,4(x)

4π|x− y|
dydx

)
− 1

4

∫
B

rk
i

|wi,4|4dx,

and

haiai(a1,· · ·, ak+1)=−1

8
a
− 3

2
i ∥wi,4∥2i−

λ

8

k+1∑
j ̸=i

(
a
− 3

2
i a

1
2
j

∫
B

rk
i

∫
B

rk
j

w2
j,4(y)w

2
i,4(x)

4π|x− y|
dydx

)
,

haiaj (a1, · · · , ak+1) =
λ

8
a
− 1

2
j a

− 1
2

i

∫
B

rk
i

∫
B

rk
j

w2
j,4(y)w

2
i,4(x)

4π|x− y|
dydx.

For simplicity, we denote by

Bii = −1

8
a
− 3

2
i ∥wi,4∥2i , Cii = −

k+1∑
j ̸=i

aj
ai

(
λ

8
a
− 1

2
i a

− 1
2

j

∫
B

rk
i

∫
B

rk
j

w2
j,4(y)w

2
i,4(x)

4π|x− y|
dydx

)
,

Bij = 0, Cij =
λ

8
a
− 1

2
j a

− 1
2

i

∫
B

rk
i

∫
B

rk
j

w2
j,4(y)w

2
i,4(x)

4π|x− y|
dydx if i ̸= j.

Then

Aij := haiaj (a1, · · · , ak+1) = Bij + Cij

According to Lemma 2.2, the matrix (Cij)(k+1,k+1) is non-positive definite. This
together with the fact that Bij is negative definite, (Aij)(k+1)×(k+1) is negative defi-

nite. So h is a strictly concave function in (R>0)
k+1. Note from (w1,4, · · · , wk+1,4) ∈

Mrk
k,4 that (1, · · · , 1) is a critical point of h, and from (4.4) that (m4

1,4, · · · ,m4
k+1,4)

is a critical point of h. Then (4.5) follows from Lemma 2.3 immediately.

Thus by (3.2) and (4.5), it follows that

lim sup
p→4+

ck,p ≤ lim sup
p→4+

Iλ,p(

k+1∑
i=1

mi,pwi,4) = Iλ,4(

k+1∑
i=1

wi,4).
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Since the choice of (w1,4, · · · , wk+1,4) ∈ Mrk
k,4 is arbitrary, it follows immediately

that
lim sup
p→4+

ck,p ≤ ck,4 < +∞.

Step 2. Prove that there is Uk,4 ∈ HV such that

Uk,p → Uk,4 ̸= 0 strongly in HV as p→ 4+. (4.6)

In fact, by (4.4) and Proposition 3.1, we have

ck,p = Iλ,p(Uk,p)−
1

p
⟨I ′λ,p(Uk,p), Uk,p⟩

= (
1

2
− 1

p
)∥Uk,p∥2HV

+ (
1

4
− 1

p
)

∫
R3

ϕUk,p
U2
k,p

≥ (
1

2
− 1

p
)∥Uk,p∥2HV

,

which gives that ∥Uk,p∥HV
is bounded for p → 4+. Then there exists a sequence

{Uk,pn}n≥1 and some Uk,4 ∈ HV such that Uk,pn ⇀ Uk,4 in HV as pn → 4+.
Moreover, by the compactly embedding theorem,∫
R3

ϕUk,pn
U2
k,pn →

∫
R3

ϕUk,4
U2
k,4 and

∫
R3

ϕUk,pn
Uk,pnUk,4→

∫
R3

ϕUk,4
U2
k,4 as pn→4+.

This, combined with the fact that Uk,pn is a solution of (3.1), yields immediately
that

0 = lim
n→+∞

⟨I ′λ,pn(Uk,pn), Uk,pn − Uk,4⟩

= lim
n→+∞

∫
R3

∇Uk,pn∇(Uk,pn − Uk,4) +

∫
R3

V (|x|)Uk,pn(Uk,pn − Uk,4)

+ λ

∫
R3

ϕUk,pn
U2
k,pn − λ

∫
R3

ϕUk,pn
Uk,pnUk,4

−
∫
R3

|Uk,pn |pn−2U2
k,pn −

∫
R3

|Uk,pn |pn−2Uk,pnUk,4

→ lim
n→∞

(
∥Uk,pn∥2HV

− ∥Uk,4∥2HV

)
≥ 0 as n→ ∞,

due to lim infn→∞ ∥Uk,pn∥2HV
≥ ∥Uk,4∥2HV

. Hence, Uk,pn → Uk,4 strongly in HV as
pn → 4+. Besides , it follows from ∥Uk,pn∥2HV

≤
∫
R3 |Uk,pn |pn ≤ C∥Uk,pn∥

pn
HV

that
lim infn→∞ ∥Uk,pn∥HV

> 0. Thus

Uk,4 ̸= 0.

Therefore, (4.6) follows and Uk,4 is a nontrivial weak solution of (1.3). Then by
the standard elliptic regularity theory, Uk,4 ∈ C2(R3) and then Uk,4 can be viewed
as a radial nodal function which has at most k + 1 components, because Uk,pn has

exactly k nodal domains. So we may assume that Uk,4 =
k+1∑
i=1

ui,4 ̸= 0 with k nodes

rk,4 := (r1,4, · · · , rk,4), where ui,4 = χBrk
i
Uk,4.

Step 3. Prove ui,4 ̸= 0 for all 1 ≤ i ≤ k + 1.
We prove it by contradiction. If NOT, there are two cases that occur: either
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case 1: rk,pn → +∞ as pn → 4+, or
case 2: there exists a subsequence pn → 4+ as n → +∞ and i0 ∈ {1, · · · , k + 1}
such that

either lim inf
n→∞

∥ui0,pn∥2i0 ̸= 0 and lim inf
n→∞

∥ui0+1,pn∥2i0+1 = 0,

or lim inf
n→∞

∥ui0,pn∥2i0 = 0 and lim inf
n→∞

∥ui0+1,pn∥2i0+1 ̸= 0.
(4.7)

If case 1 happens, by the Strauss inequality, there exists a constant C > 0 such

that |u(x)| ≤ C
∥u(x)∥HV

|x| inR3 for any u ∈ HV . Then

∥uk+1,pn∥2k+1 ≤
∫
B

rk,pn
k+1

|uk+1,pn |pndx

≤ C

∫
B

rk,pn
k+1

∥uk+1,pn∥
pn
k+1

|x|pn
dx

= Cr3−pnk,pn
∥uk+1,pn∥

pn
k+1.

This shows that ∥uk+1,pn∥k+1 → ∞ as n → ∞, which contradicts with the bound-
ness of {Uk,pn}.

If case 2 happens, we consider the latter situation in (4.7), while the former
situation can be settled by similar arguments. Without loss of generality, we may
assume ui0,pn < 0 in B

rk,pn
i0

and ui0+1,pn > 0 in B
rk,pn
i0+1 . For the convenience, we

denote by Ωpn = B
rk,pn
i0

∪Brk,pn
i0+1 and set

Ω4 := lim
n→∞

Ωpn = lim
n→∞

B
rk,pn
i0

∪Brk,pn
i0+1 .

Let vpn =
ui0,pn

∥ui0,pn∥i0
. Obviously vpn is bounded in HV , and there exists v4 ∈ HV

such that vpn ⇀ v4 in HV . Then by the compactly embedding theorem, it follows
from ∥ui0,pn∥2i0 +

∫
R3 ϕui0,pn

u2i0,pn ≤
∫
R3 |ui0,pn |pn that

1 +

∫
R3 ϕui0,pn

u2i0,pn
∥ui0,pn∥2i0

≤
∫
R3

upn−2
i0,pn

v2pn →
∫
R3

u2i0,4v
2
4 as pn → 4+.

This implies that v4 ̸= 0 and thereby the set {x ∈ R3 : v4(x) < 0} ≠ ∅. Since
{x ∈ R3 : vpn < 0} ⊂ {x ∈ R3 : ui0,pn ≤ 0} for all pn, we have

∅ ≠ {x ∈ R3 : v4(x) < 0} ⊂ {x ∈ R3 : ui0,4(x) ≤ 0}. (4.8)

On the other hand, (4.7) implies that Mi0,4(x) := ui0,4(x) + ui0+1,4(x) ≥ 0 in
Ω4, and the strong convergence Uk,pn → Uk,4 in HV as pn → 4+ shows that Mi0,4

satisfies−∆Mi0,4 + V (|x|)Mi0,4 + λ

(∫
R3

U2
k,4(y)

4π|x− y|
dy

)
Mi0,4 = |Mi0,4|2Mi0,4, in Ω4,

Mi0,4 = 0, on ∂Ω4.
(4.9)

By the classical elliptic regularity theory and the strong maximum principle, we
obtain

Mi0,4(x) > 0 in Ω4,
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which leads to {x ∈ R3 : ui0,4 ≤ 0} = ∅. Obviously it contradicts with (4.8). Hence,
the claim follows immediately and thereby ui,4 ̸= 0 for all 1 ≤ i ≤ k + 1.

Step 4. Prove that Uk.4 changes sign exactly k times and ck,4 = Iλ,4(Uk,4).
Indeed, since Uk.4 is a solution of (1.3), by the classical regularity arguments and
the strong maximum principle, we have ui,4 < 0 or ui,4 > 0 in Brk

i . Thus Uk,4
changes sign exactly k times. Moreover, by (2.7) and (4.4), it follows that

ck,4 ≥ lim sup
n→∞

Iλ,pn(Uk,pn)

= lim sup
n→∞

(
(
1

2
− 1

pn
)∥Uk,pn∥2HV

+ (
1

4
− 1

pn
)

∫
R3

ϕUk,pn
U2
k,pn

)
=

1

4
∥Uk,4∥2HV

= Iλ,4(Uk,4)−
1

4
⟨I ′λ,4(Uk,4), Uk,4⟩ = Iλ,4(Uk,4) ≥ ck,4.

(4.10)

Thus Iλ,4(Uk,4) = ck,4 and the proof is completed.

5. Proofs of Theorems 1.2 and 1.3

In this section, we investigate the energy comparison and the convergence properties
of the radial nodal solutions obtained in Theorem 1.1.
Proof of Theorem 1.2. According to Theorem 1.1, there exists r̄k+1=(r̄1,· · ·, r̄k+1)
∈ Γk+1 and a solution

Uk+1 := w
r̄k+1

1 + · · ·+ w
r̄k+1

k+2

of (1.2), which changes sign exactly k + 1 times.
We first prove

Iλ,4(Uk+1) > Iλ,4(Uk), ∀k ∈ N+.

In fact, observe that
∑k+2
i=2 niw

r̄k+1

i ∈ Nk,4 if and only if

0 = n2i ∥w
r̄k+1

i ∥2i +
k+2∑
j=2

n2in
2
jλ

∫
B

r̄k+1
i

∫
B

r̄k+1
j

|wr̄k+1

j (y)|2

4π|x− y|
|wr̄k+1

i (x)|2dydx

− n4i

∫
B

r̄k+1
i

|wr̄k+1

i |4dx

=: Ni(n2, · · · , nk+2), i = 2, · · · k + 2.

(5.1)

Note that there exists some δ ∈ (0, 1) small enough such that Ni(δ, · · · , δ) > 0 for
all i = 2, · · · , k + 2, and that

Ni(1, · · · , 1) < 0, ∀i = 2, · · · , k + 2,

because Uk+1 is a nodal solution of (1.2) satisfying

∥wr̄k+1

i ∥2i +
k+2∑
j=1

λ

∫
B

r̄k+1
i

∫
B

r̄k+1
j

|wr̄k+1

j (y)|2

4π|x− y|
|wr̄k+1

i (x)|2dydx−
∫
B

r̄k+1
i

|wr̄k+1

i |4dx = 0.

Then we deduce from (5.1) that

Ni(n2, · · · , ni−1, δ, ni+1, · · · , nk+2) > 0, ∀nj ∈ [δ, 1], j ̸= i,
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Ni(n2, · · · , ni−1, 1, ni+1, · · · , nk+2) < 0, ∀nj ∈ [δ, 1], j ̸= i.

By Lemma 2.1,there exists some s̃ := (s̃2, · · · , s̃k+2) ∈ P 1
δ such that

(N2(s̃), · · · , Nk+2(s̃)) = 0,

where P 1
δ := {(n2, · · · , nk+2) ∈ (R>0)

k+1 : δ < nj < 1,∀j = 2, · · · , k + 2}. This
implies

∑k+2
i=2 s̃iw

r̄k+1

i ∈ Nk,4 and thus

Iλ,4(

k+2∑
i=2

s̃iw
r̄k+1

i ) > Iλ,4(Uk).

Note that

Iλ,4(
∑k+2
i=2 s̃iw

r̄k+1

i ) = Eλ,4(0, s̃2w
r̄k+1

2 , · · · , s̃k+2w
r̄k+1

k+1 ),

Iλ,4(Uk+1) = Iλ,4(
∑k+2
i=1 w

r̄k+1

i ) = Eλ,4(w
r̄k+1

1 , · · · , wr̄k+1

k+2 ).

Since Lemma 3.2 gives

Eλ,4(w
r̄k+1

1 , · · · , wr̄k+1

k+2 ) > Eλ,4(0, s̃2w
r̄k+1

2 , · · · , s̃k+2w
r̄k+1

k+1 ),

we can deduce from the above inequalities easily that Iλ,4(Uk+1) > Iλ,4(Uk).

Next, we prove Iλ,4(Uk+1) > (k + 2)Iλ,4(U0). In fact, ⟨I ′λ,4(Uk+1), w
r̄k+1

i ⟩ = 0
gives

∥wr̄k+1

i ∥2i + λ

∫
B

r̄k+1
i

∫
B

r̄k+1
i

|wr̄k+1

i (y)|2

4π|x− y|
|wr̄k+1

i (x)|2dydx−
∫
B

r̄k+1
i

|wr̄k+1

i |4dx < 0.

Note that there exists a small δ̄ > 0 such that for all i,

δ̄2∥wr̄k+1

i ∥2i+δ̄4λ
∫
B

r̄k+1
i

∫
B

r̄k+1
i

|wr̄k+1

i (y)|2

4π|x− y|
|wr̄k+1

i (x)|2dydx−δ̄4
∫
B

r̄k+1
i

|wr̄k+1

i |4dx > 0.

Then for each i, there exists δ̄i ∈ (δ̄, 1) such that

δ̄2i ∥w
r̄k+1

i ∥2i+λδ̄4i
∫
B

r̄k+1
i

∫
B

r̄k+1
i

|wr̄k+1

i (y)|2

4π|x− y|
|wr̄k+1

i (x)|2dydx−δ̄4i
∫
B

r̄k+1
i

|wr̄k+1

i |4dx=0,

which shows δ̄iw
r̄k+1

i ∈ N . Hence, Iλ,4(δ̄iw
r̄k+1

i ) ≥ Iλ,4(U0) and thus

(k+2)Iλ,4(U0) ≤
k+2∑
i=1

Iλ,4(δ̄iw
r̄k+1

i )=

k+2∑
i=1

(
Iλ,4(δ̄iw

r̄k+1

i )− 1

4
⟨I ′λ,4(δ̄iw

r̄k+1

i ), δ̄iw
r̄k+1

i ⟩
)

=

k+2∑
i=1

1

4
δ̄2i ∥w

r̄k+1

i ∥2i <
k+2∑
i=1

1

4
∥wr̄k+1

i ∥2i = Iλ,4(

k+2∑
i=1

w
r̄k+1

i )

− 1

4
⟨I ′λ,4(

k+2∑
i=1

w
r̄k+1

i ), w
r̄k+1

i ⟩

=Iλ,4(

k+2∑
i=1

w
r̄k+1

i ) = Iλ,4(Uk+1).
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The proof is completed.
Proof of Theorem 1.3. For λ > 0, let Uλk,4 ∈ HV be the radial nodal solution of
(1.2) obtained in Theorem 1.1 which changes sign exactly k times. We divide the
whole proof into three steps.

Step 1. We claim that for any sequence {λn} with λn → 0+ as n → ∞,
{Uλn

k,4}n≥1 is bounded in HV .
In fact, we take rk ∈ Γk and (ψ1, · · · , ψk+1) ∈ Mrk

k,4 with ψi ̸= 0 such that

∥ψi∥2i +
k+1∑
j=1

∫
B

rk
i

ϕψjψ
2
i −

∫
B

rk
i

ψ4
i = 0.

For λ ∈ (0, 1], we define gλi : (R>0)
k+1 → R by

gλi (a1, · · · , ak+1) = a2i ∥ψi∥2i + λ

k+1∑
j=1

a2i a
2
j

∫
B

rk
i

ϕψjψ
2
i −

∫
B

rk
i

a4iψ
4
i .

Obviously, there is δ > 0 small enough such that for all λ ∈ (0, 1],

gλi (δ, · · · , δ) ≥ g0i (δ, · · · , δ) > 0,

gλi (1, · · · , 1) ≤ 0.

Some direct computations give

gλi (a1, · · · , ai−1, 1, ai+1, · · · , ak+1) < 0, ∀δ ≤ aj ≤ 1, j ̸= i,

gλi (a1, · · · , ai−1, δ, ai+1, · · · , ak+1) > 0, ∀δ ≤ aj ≤ 1, j ̸= i.

Let D1
δ = {(a1, · · · , ak+1) ∈ (R>0)

k+1 : δ ≤ ai ≤ 1}. Then by Lemma 2.1, there
exists (ā1(λ), · · · , āk+1(λ)) ∈ D1

δ such that

gλi (ā1(λ), · · · , āk+1(λ)) = 0, ∀1 ≤ i ≤ k + 1,

which implies

(ψ̄1, · · · , ψ̄k+1) := (ā1(λ)ψ1, · · · , āk+1(λ)ψk+1) ∈ Mrk
k,4, ∀λ ∈ (0, 1].

Thus, for any λ ∈ (0, 1], we have

Iλ,4(U
λ
k,4) ≤ Eλ,4(ψ̄1, · · · , ψ̄k+1)

= Eλ,4(ψ̄1, · · · , ψ̄k+1)−
1

4
⟨∂ψ̄i

Eλ,4(ψ̄1, · · · , ψ̄k+1), ψ̄i⟩

=
1

4

k+1∑
i=1

∥ψ̄i∥2i =
1

4

k+1∑
i=1

∥ai(λ)ψi∥2i

≤ 1

4

k+1∑
i=1

∥ψi∥2i := C0,

(5.2)

where C0 > 0 and āi(λ) ≤ 1 are used. Hence

C0 ≥ Iλ,4(U
λ
k,4) = Iλ,4(U

λ
k,4)−

1

4
⟨I ′λ,4(Uλk,4), Uλk,4⟩ =

1

4
∥Uλk,4∥2HV

.
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Thus {Uλk,4} is bounded for λ ∈ (0, 1] in HV and the claim is true. Step 1 is finished.

Step 2. Up to a subsequence, there exists U0
k,4 such that Uλn

k,4 ⇀ U0
k,4 weakly

in HV as n → ∞. Then U0
k,4 is a weak solution of (1.5), due to the fact that Uλn

k,4

is a solution of (3.1). By the compactly embedding theorem HV ↪→ Lq(R3) for
2 < q < 6, we deduce that

∥Uλn

k,4 − U0
k,4∥2HV

=⟨I ′λn,4(U
λn

k,4)− I ′0,4(U
0
k,4), U

λn

k,4 − U0
k,4⟩

− λn

∫
R3

∫
R3

|Uλn

k,4(y)|2

4π|x− y|
Uλn

k,4(x)(U
λn

k,4(x)− U0
k,4(x))dydx

+

∫
R3

(Uλn

k,4)
3(Uλn

k,4 − U0
k,4)−

∫
R3

(U0
k,4)

3(Uλn

k,4 − U0
k,4) → 0, as n→ ∞.

So Uλn

k,4 → U0
k,4 strongly in HV as n→ ∞. Similar arguments could give (Uλn

k,4)i →
(U0

k,4)i strongly in HV .

Notice from ⟨I ′λn,4
(Uλn

k,4), (U
λn

k,4)i⟩ = 0 that

lim inf
n→+∞

∥(Uλn

k,4)i∥i > 0.

This result, together with strong convergence, shows that (Uλn

k,4)i ̸= 0. Moreover,
by the standard elliptic regularity theory and strong maximum principle, we know
that (U0

k,4)i has a constant sign. Thus, U0
k,4 is a radial solution of (1.5) with exactly

k + 1 nodal domains.

Step 3. Let v̄k =
k+1∑
i=1

vi be a least energy radial nodal solution of (1.5). Notice

that

0 = b2i,n∥vi∥2i +
k+1∑
j=1

λnb
2
i,nb

2
j,n

∫
B

rk
i

∫
B

rk
j

v2j (y)

4π|x− y|
v2i (x)dydx− b4i,n

∫
B

rk
i

|vi|4dx

=: kni (b1,n, · · · , bk+1,n),
(5.3)

if and only if
∑k+1
i+1 bi,nvi ∈ Nk,4,λn

, where Nk,4,λn
is defined as in (2.3) for λ = λn.

Since ⟨I ′0,4(v̄k), vi⟩ = 0, we know

kni (1, · · · , 1) = ∥vi∥2i +
k+1∑
i=1

λn

∫
B

rk
i

∫
B

rk
j

v2j (y)

4π|x− y|
v2i (x)dydx−

∫
B

rk
i

|vi|4dx

> ∥vi∥2i −
∫
B

rk
i

|vi|4dx = 0.

(5.4)

Moreover, for any A > 1,

A2∥vi∥2i −
∫
B

rk
i

A4|vi|4dx = A2

(
∥vi∥2i −

∫
B

rk
i

A2v4i dx

)

= A2

(∫
B

rk
i

v4i −
∫
B

rk
i

A2v4i dx

)

= A2(1−A2)

∫
B

rk
i

v4i dx < 0.
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Then there exists a large N > 0 such that for any n ≥ N, there holds

kni (A,· · ·, A)=A2∥vi∥2i+
k+1∑
j=1

λnA
4

∫
B

rk
i

∫
B

rk
j

v2j (y)

4π|x− y|
v2i (x)dydx−

∫
B

rk
i

A4|vi|4dx < 0.

(5.5)
Let A = 1 + 1

m and λnm
be chosen small enough satisfying (5.5). Then by Lemma

2.1, (5.4) and (5.5), there exists

(b1,nm , · · · , bk+1,nm) ∈ D
1+ 1

m
1 :=

{
(s1, · · · , sk+1) ∈ (R>0)

k+1 : 1 ≤ si ≤ 1 +
1

m

}
such that

knm
i (b1,nm

, · · · , bk+1,nm
) = 0.

So
∑k+1
i+1 bi,nm

vi ∈ Nk,4,λnm
. Clearly, (b1,nm

, · · · , bk+1,nm
) → (1, · · · , 1) andλnm

→
0 as m→ +∞.

Therefore,

I0,4(ṽk) ≤ I0,4(U
0
k,4) = lim

m→+∞
Iλnm ,4

(U
λnm

k,4 )

≤ lim
m→+∞

Iλnm ,4
(

k+1∑
i=1

bi,nm
vi) = I0,4(

k+1∑
i=1

vi) = I0,4(ṽk).
(5.6)

Here U0
k,4 is a least energy nodal solution of (1.2) among all the radial nodal solutions

having exactly k + 1 nodal domains. The proof is completed.
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