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Developing Insurance Mathematical Model to
Assess Economic Burden of Dengue Outbreaks

Ilham Saiful Fauzi1,†

Abstract Dengue fever is a vector-borne viral disease that has become a
worrisome health issue in tropical and subtropical countries. The seasonal
trend of dengue incidence encourages outbreaks with a high risk of infection
at particular periods annually that potentially resulted in a significant eco-
nomic burden. The epidemiological mathematical model, the SIR-SI model, is
modified by considering the time-dependent and periodic-forced infection rate
parameter through sinusoidal functions to obtain well data fitting. We show
the existence and the stability of the disease-free and endemic equilibria for
the system and their relation to the basic reproduction number of the disease.
Next, we adapt the insurance concept to develop an insurance mathematical
model that accommodates the proposed dengue transmission model in calcu-
lating nominal premiums. An increase in the basic reproduction number as
an important indicator of the level of disease transmission risk resulted in an
increase in the nominal premium. We also introduce a reserve function that
guarantees sufficient premium payments collected by insurer to cover up future
expenditure due to dengue outbreaks. Through this reserve function, we ob-
tain an adjusted premium as a minimum value of premium which ensures that
the reserve function is always positive. Mathematical models combined with
insurance features have the potential to become important tools for relevant
authorities to gain insight into disease transmission dynamics as well as assess
the economic burden induced by the occurrence of disease outbreaks.
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1. Introduction

Globally, dengue is an arboviral infection that is highly endemic in regions featuring
tropical and subtropical climates. Over the past few decades, the worldwide dengue
incidence has increased significantly in terms of the frequency of epidemics, and
severe dengue disease is the notable cause of mortality and morbidity [1]. Dengue
has a huge impact on human health and an estimated half of the world’s population
in more than 128 countries is now at risk with Asia bearing 70% of the global
burden [2–4]. According to an estimate, annually, 100 million people are affected
by dengue infections, and 500,000 are hospitalized with more than 25,000 reported
deaths globally [5]. More than 20% of the annual dengue cases evolve into a high
level of dengue disease severity, dengue hemorrhagic fever (DHF) or dengue shock
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syndrome (DSS), which requires intensive medical treatment, whereas the rest of
the cases remain in the milder dengue fever (DF) form. Dengue is considered the
fastest-growing vector-borne viral disease in the past 30 years, and the number of
incidences has increased fourfold [6]. In the 1970s, dengue epidemics were reported
in less than 10 countries. However, nowadays, more than 150 countries all over
the world were affected by dengue infection [7]. WHO recorded around 5.2 million
dengue cases globally in 2019 which increased dramatically compared to 2.4 million
cases in 2010 and half a million cases in 2000 [8]. Moreover, within 2000-2019, age-
related dengue mortality are higher in younger age group and showed an increase
from 960 to 4,032 deaths in a year [9].

The complexities of the mechanism underlying dengue re-emergence are not yet
fully understood, which implies that the occurrence of the outbreaks is mostly un-
predictable. Various researches have been conducted to examine the possible vari-
ables that influence the emergence of dengue outbreaks around the world. Climate
change, globalization process, unplanned urbanization, and environmental degra-
dation allegedly play a critical role in the increase and expansion of dengue cases.
In general, meteorological factors have been recognized as the major determinant
in driving dengue epidemic. Climatic and weather conditions greatly influence the
development, ecology, behavior, and survival of the Aedes mosquito as the primary
vector that transmits dengue virus [10]. The risk of dengue infection in humans is
strongly associated to the number of mosquito larvae [11]. The number of mosquito
larvae in most tropical and subtropical regions is higher in the rainy season than in
other seasons [12–14]. The expansion of egg-laying areas due to high rainfall and
a slum environment that allows many water-filled containers has led to an abun-
dance of vector populations. Weather in each region has a trend of repeating each
year depending on climatic conditions which in turn encourages the recurrence of
dengue outbreaks with a high number of cases at certain periods in a year [15]. The
seasonal pattern of dengue cases coincides mostly with the rainy season.

Dengue is a significant economic burden of infectious disease in many dengue
affected areas, especially in developing countries. Shepard and others [16] have con-
ducted a research about the economic burden related to dengue in some Southeast
Asia countries, and over the decade of 2001-2010, it was estimated that the annual
average economic burden was US$950 million (US$610 million - US$1,384 million,
with 95% certainty levels). In Sri Lanka, the total cost of dengue case management
in hospitals were approximately US$3.45 million or US$1.50 per capita), whereas
the total expenditure for dengue prevention programs exceeded US$1.27 million
in 2012 [17]. In 2010, economic cost related to dengue in the Americas averaged
US$2.1 billion per year, with substantial year-to-year variation ranging from US$1
billion to US$4 billion [18]. Considering all these previous studies, it can be seen
that, in recent years, the dengue outbreaks have become a burden on the country’s
economy and have had a significant effect on the worldwide socio-economic sec-
tor. The economic cost induced by dengue epidemic can be generally categorized
as direct and indirect cost. Expenses incurred for the prevention program, surveil-
lance and reporting, and medical treatment are included in direct costs [19]. The
cost of the prevention program accommodates activities to prevent dengue, such as
controlling vector population and awareness campaigns. Surveillance and reporting
cost is linked to the efforts of governments and related authorities in observing and
disseminating any dengue information to the public. Medical expenses include the
costs of diagnosis, hospitalization, and outpatient care [20]. In addition, indirect



Insurance Model to Assess Dengue Economic Burden 695

costs due to dengue are related to lost productivity and lost human hours due to
sickness and untimely death [21].

Although it is difficult to assess the economic burden caused by dengue out-
breaks, it is crucial to estimate the costs of infectious disease mitigation by health
authorities and the government as policymakers. Information on the economic bur-
den caused by dengue outbreaks is required to set health policy priorities, allocate
the funds needed to control the disease, inform decision-makers about the implemen-
tation of existing dengue fever management programs, and propose new strategies
that possibly increase the effectiveness of the disease control. The effectiveness
of the healthcare system is also influenced by the level of affordability of medical
expenses for each individual. Developing a conceptual framework for estimating
future direct medical costs is an important task in reducing the burden effects of
epidemics and promoting the development of more efficient control strategies.

This paper deals with the development of an insurance-based model to determine
the direct costs of medical treatment related to dengue outbreak. The parameter
of infection rate in the SIR-SI model is considered time-dependent and periodic
to capture the seasonal pattern of dengue case data. The calculation of insurance
premiums is redefined referring to the proposed dengue transmission model from
an insurance perspective. The approach of using mathematical models integrated
with insurance concept is expected to provide new insights and usefulness in both
explaining the dynamic of dengue transmission and assesing the economic burden
induced by the outbreak. In addition to being useful for health authorities and the
government, estimating the economic burden and overall costs of the epidemic can
assist the insurance industry to develop new breakthroughs in health insurance.

2. Methods

2.1. Mathematical model

To obtain the description of the dynamics of dengue within host and vector pop-
ulations, we modified a classical SIR model for infectious disease. The SIR model
type is the basic model in epidemiology that is widely used to explain and describe
disease transmission [22]. From an epidemiological viewpoint, host populations can
be subdivided into three compartments with respect to the dominant circulating
strain of dengue virus, and vector populations can be subdivided into two com-
partments. The host is divided into susceptibles (Sh), i.e., individuals who do not
have immune defenses against viral infection; infected (Ih), i.e., individuals that are
infected and infectious; and recovered (Rh), i.e., individuals that are recovered from
dengue infection. The vector is divided into susceptibles (Sv), i.e., mosquitoes that
free from the virus, and infected (Iv), i.e., mosquitoes that carry the virus and can
transmit it to the host through bites. For the sake of simplicity, we assume that the
vectors carry the virus until death and no recovery compartment for the vector.

The dengue transmission model is shown in the following system of non-linear
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differential equations.

dSh

dt
= µh(Nh − Sh)− βhSh

Iv
Nv

,

dIh
dt

= βhSh
Iv
Nv

− (µh + γh)Ih,

dRh

dt
= γhIh − µhRh,

dSv

dt
= µv(Nv − Sv)− βvSv

Ih
Nh

,

dIv
dt

= βvSv
Ih
Nh

− µvIv.

(2.1)

The parameters βh and βv represent the rate of infection from vector-to-host and
host-to-vector, respectively. The host natural birth and mortality rate is denoted
by µh, while µv denotes the reproduction rate of vector. The parameter γh indicates
the recovery rate of host from dengue infection.

Considering that there are two compartments in the mosquito population which
contain parameters whose values are difficult to observe and we do not have reliable
data about mosquito populations, we decide to reduce the vector compartments in
its coexistence equlibrium. The coexistence equilibrium is considered as the best
representation for vector population because vector dynamics occur on a faster time
scale than host dynamics. The coexistence equilibria are given as follows.

S∗
v =

βvµvNvNh

βvIh + µvNh
, I∗v =

βvNvIh
βvIh + µvNh

. (2.2)

By using the equlibrium value I∗v for the virus carrier vector and the fact that
Sh = Nh − (Ih +Rh), we obtain a reduced equations system given by:

dIh
dt

= βh(Nh − (Ih +Rh))
βvIh

βvIh + µvNh
− (µh + γh)Ih,

dRh

dt
= γhIh − µhRh.

(2.3)

We have two possible equilibria of the differential equation system, i.e. the
disease-free equilibrium (DFE), (I◦h, R

◦
h) = (0, 0), and the endemic equilibrium (EE),

(I∗h, R
∗
h) = (µhη, γhη), where

η =
βhβv − µv(µh + γh)

βv(βh + µh)(γh + µh)
Nh.

To determine a basic reproduction number, R0, we use Next Generation Matrix
(NGM) to obtain a Jacobian matrix by considering the infected subsystem and
linearizing at disease-free equilibrium. The basic reproduction number is derived
from the dominant eigenvalue of the Jacobian matrix, which is shown as:

R2
0 =

βhβv
µv(µh + γh)

. (2.4)

The existence of the disease-free equilibrium (DFE) is guaranteed. Meanwhile,
we require the condition R0 > 1 for the existence of endemic equilibrium (EE) by
considering the value of I∗h and the positivity of (µh, γh, βh, βv). Theorem 2.1 and
Theorem 2.2 show the stability analysis at DFE and EE, respectively.
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Theorem 2.1. If R0 < 1, then DFE is locally asymptotically stable.

Proof. At the disease-free equilibrium, the Jacobian matrix is given as follows:

J◦ =

βhβv

µv
− (µh + γh) 0

γh −µh

 . (2.5)

Matrix J◦ has a characteristic polynomial P (λ) = λ2 + a1λ+ a2 where

a1 = µh − (γh + µh)(R
2
0 − 1),

a2 = −µh(µh + γh)(R
2
0 − 1).

Since all parameters are positive, then R0 < 1 implies a1, a2 > 0. Based on Routh-
Hurwitz ’s stability criterion, the polynomial has roots with a negative real part.
Therefore, the disease-free equilibrium (DFE) is locally asymptotically stable.

Theorem 2.2. If R0 > 1, then EE is locally asymptotically stable.

Proof. At the endemic equilibrium, the Jacobian matrix is given as follows:

J∗ =

 δ(1+α+ρ)
ρ δ

α −1

 (2.6)

with

α =
γh
µh
, ρ =

βh
µh
, δ =

µv(α+ 1)− βvρ

µv(α+ 1) + βv
.

Matrix J∗ has a characteristic polynomial P (λ) = λ2 + a1λ+ a2 where

a1 = 1− δ(1 + α+ ρ)

ρ
,

a2 = −δ
(
α+

1 + α+ ρ

ρ

)
.

Considering the Routh-Hurwitz ’s stability criterion, the second-degree polynomial
P (λ) has both roots with negative real part if and only if the coefficients are positive.
Hence, the condition for asymptotic stability of EE is a1, a2 > 0. Since µh, βh, γh
are positive, then we have α > 0 and ρ > 0. Consequently, a1 > 0 and a2 > 0 are
satisfied when δ < 0 or equivalently:

µv(α+ 1)− βvρ

µv(α+ 1) + βv
= − µv(µh + γh)

µv(µh + γh) + µhβv

(
R2

0 − 1
)
< 0. (2.7)

The condition R0 > 1 implies that the Jacobian matrix J∗ has eigenvalues with neg-
ative real parts and the endemic equilibrium (EE) is locally asymptotically stable.

2.2. Parameter estimation

To obtain a more realistic description, we considered the infection rate parameter,
βh, to be time-dependent, whose value changes over time. The obtained mathemat-
ical model will be fitted to dengue data recorded in Semarang, Indonesia. Semarang
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is both the largest and the capital city of Central Java province. It is considered as
one of the dengue-endemic cities in Indonesia, where high-frequency of incidences
are reported annually. Semarang is precisely located in the middle of the north
coast of the densely populated island of Java. It covers an area of 373.78 square
kilometers (144.32 square miles) and, at the 2020 census, the population of the
city was 1,653,524 which makes it the ninth most populous city in Indonesia. Se-
marang features high temperatures throughout the year of around 30◦C (87◦F) to
32◦C (90◦F). The rainy season mostly occurs at the beginning (January-April) and
the end (November-December) of a year, in which January tops the wettest month
list with 371mm (14.6in) of rainfall. Overall, Semarang features a typical tropical
climate that supports vector population growth and dengue virus transmission.
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Figure 1. (a) The number of dengue cases; and (b) the box plot of dengue cases each month in Semarang.

Dengue data is obtained and recorded by the Semarang City Health Office on
a weekly basis. The total number of hospitalized dengue cases is an accumula-
tion of Dengue Fever (DF), Dengue Hemorrhagic Fever (DHF), and Dengue Shock
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Syndrome (DSS), with no specific classification for each level. Due to lack of data
availability, we use dengue data for 112 weeks starting from the first week of Jan-
uary 2013 to the last week of April 2015. Figure 1(a) shows the number of dengue
cases throughout the observation period and Figure 1(b) presents a boxplot which
indicates that most of the dengue incidences in Semarang occur at the beginning of
the year, January-April, when it is the wettest period with high rainfall intensity.

Further, seasonal variation in terms of dengue incidences is generally found in
countries featuring either tropical or subtropical climates. An abundance of vector
populations in a specific season leads to the occurrence of seasonality in dengue
outbreaks. The repeated pattern of climate variability drives the annual variation
of dengue transmission and results in seasonal dengue cases [23]. It can be observed
in Figure 1(a) that the number of dengue incidences in Semarang also indicates
the existence of seasonality. The high incidences mostly occurred during the rainy
season and, as entering the dry season, the number of dengue incidences started to
decrease. To capture the seasonality pattern in the dengue dynamics, we accommo-
dated it into the model through the infection rate with periodic forced. We used a
sinusoidal function inspired by empirical observations of vector dynamic that shows
seasonal patterns in reality [24]. The infection rate parameter is approximated as
a periodic function to accommodate seasonality seasonality and is given as follows:

βh(t) = β0 +

n∑
k=1

[ak cos(kωt+ ϕk) + bk sin(kωt+ ψk)] , (2.8)

where β0 denotes the baseline, ak and bk are the cosine and sine amplitude, ϕk and
ψk are the cosine and sine phase, ω is the period of seasonality, and n is the number
of modulo. By substituting Eq. 2.8 into our Model 2.1, we obtain a periodically
forced non-linear system. Although there are many complex functions that can
represent seasonality, we consider that a simple sinusoidal function is sufficient to
describe the seasonal incidence induced by seasonal climate cycles.

The values of each parameter in the periodic infection rate, βh(t), were estimated
by minimizing the error between dengue data and model output. We performed
Spiral Dynamics Optimization (SDO) method introduced by Tamura and Yasuda
[25] to obtain the minimum root-mean-square error (RMSE) between model output
(Ih) and the data of infected people. The fixed values of the remaining parameters
obtained from the literature and the references were summarized in Table 1.

Table 1. Fixed parameter values used in the numerical simulation.

Parameter Description Value Unit References

µh Host natural birth and mortality rate 1/(65× 52) 1/week [26–29]

µv Vector mortality rate 7/10 1/week [26,27]

βv Infection rate of host to vector 2µv 1/week [27]

γh Host recovery rate 7/6 1/week [28,29]

Nh Total population 1.5× 106 people -

Sh(0) Initial value of susceptible human 0.569×Nh(0) people [28,29]
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The initial value of the total population, Nh(0), approximates the total popu-
lation in Semarang to be 1.5 million people. The initial value of infected host is
obtained from data i.e. the number of infected individuals recorded in the first week
of January 2013, Ih(0) = 154. Based on the researches conducted by Andraud [28]
and Ooi [29], we assume that the initial proportion of susceptible individuals in a
population is 56.9%. Considering the constant human population, the initial value
of recovered host is determined by Rh(0) = Nh(0)− (Sh(0) + Ih(0)).

2.3. Insurance model

Insurance coverage can be interpreted as an agreement about financial protection
loss and is represented by a policy. As a form of risk management, insurance is
particularly used to guard against the potential risk of an uncertain future loss [30].
The main idea of developing a mathematical model of insurance is to estimate how
much we should allocate today to cover possible financial losses in the future. Basi-
cally, the model of insurance can be considered as a process of developing a specific
cooperation between two parties in which, in exchange for a fee, a party agrees to
compensate another party in the event of a particular loss, damage, or injury [31].
The party that underwrites the insurance risk and undertakes to pay compensation
for financial losses is called the insurer. The insured, on the other hand, is the party
covered under the insurance policy who will receive compensation for financial loss.
Insurance companies charge premiums in exchange for providing insurance cover-
age to any person or company for availing of an insurance policy. The concept of
insurance can be used to measure economic burden by estimating potential future
financial losses due to certain risk events listed in insurance policy. Referring to this
insurance concept, we are trying to develop a new approach to calculating insurance
premiums through a dengue transmission model and introducing a reserve function
that guarantees sufficient premium payments collected by the insurer to cover future
claims as an effort to assess the economic burden due to dengue outbreaks.

Considering the SIR compartment model described in Eq. 2.1, we redefine it as
introduced by [32] to obtain different points of view from the insurance perspective.
Susceptible people can contribute to the insurance system by joining health insur-
ance, being charged insurance premiums, and paying a number of insurance funds to
benefit medical expense claims when they are turning to be dengue-infected people.
Meanwhile, during a dengue outbreak, infected people who participate in paying the
premium are the party who gets the financial loss and will receive payment claims
from the insurance company for medical treatment costs while being hospitalized
or other compensation benefits for the paid premium.

Let variable Sh(t) and Ih(t) denote the probability of an individual being sus-
ceptible and infected at time t, respectively. In terms of income from insurance, the
total expected present value of premium payments in the period t is P (t). On the
other hand, from the expenditure side of the investment plan, the total expected
present value for benefits payments (claims) in period t is denoted by C(t). The
values of P (t) and C(t) are given by the following equations.

P (t) =

∫ t

0

exp(−σt)Sh(t)dt,

C(t) =

∫ t

0

exp(−σt)Ih(t)dt,
(2.9)
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where σ > 0 denotes the force of interest. Considering the expected total value
of premium payments, P (t), and claim payments, C(t), the possible future loss by
investors, is defined as follows:

L(t) = C(t)− κP (t), (2.10)

where κ represents the amount of premium payment. According to the equivalence
principle, an insurance investment requires that the expected loss value is zero.
Considering this equivalence principle, the amount of premium for each payment
can be calculated as follows:

κ =
C(t)

P (t)
=

∫ t

0
exp(−σt)Ih(t)dt∫ t

0
exp(−σt)Sh(t)dt

. (2.11)

Thus, it can be observed that the amount of premium payment, κ, depends on the
value of basic reproduction number of disease (R0) and the force of interest.

The basic reproduction number (R0) is generally known as the average number
of secondary infections and it becomes an important indicator to determine if the
disease will vanish or persist. Therefore, the dynamic of the infected individual
(Ih) is strongly associated with the value of R0, and the dynamic of Ih significantly
influences the amount of premium defined by Eq. 2.11. In fact, an increase in the
R0 value indicates an increased risk of the disease spreading and an accelerated
outbreak progress. The large impact of the outbreak has the potential to induce
even greater economic losses that need higher premium payments to cover there
losses.

In addition, the premium payment computed by proposed mathematical model
does not guarantee that the investment income is sufficient to cover up future expen-
diture, especially when the dengue infection transmit quickly and widely. To verify
this, we introduce a reserve function, F (t), and perform the actuarial analysis. We
define the reserve function as the difference between accumulated claim payment
and accumulated premium payment. As we mentioned before, C(t) and P (t) are
the total sum of claim received and the total sum of premium paid, respectively, up
to time t. The rate of change in the total claim can be denoted as the sum of the
rate of change of claim payment and the rate of change of interest obtained from
the current total claim payment. In the total premium income, the rate of change
can be defined in a similar way. The rate of change in claim payment and premium
income are presented as the following differential equations.

dC

dt
= Ih + σC,

dP

dt
= κSh + σP,

(2.12)

with C(0) = Ih(0) > 0 and P (0) = κSh(0) > 0. Since the value of reserve func-
tion is obtained from the difference between accumulated premium payments and
accumulated claims, the reserve function has the rate of change as follows:

dF

dt
=
dP

dt
− dC

dt
= κSh + σP − (Ih + σC) = κSh − Ih + σ(P − C). (2.13)

Using our assumption F = P − C, we obtain:

dF

dt
= κSh − Ih + σF, (2.14)
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with the initial value F (0) = κSh(0)− Ih(0) > 0.
The premium computed by the equivalence principle does not ensure premium

sufficiency to pay claims and is possible to result in undesirable negative reserves
during the observation period. This may occur due to the insurer not being able
to collect enough premiums from investors. Therefore, it is necessary to determine
the minimum amount of the premium to ensure that benefit reserves are always
positive. We modify the premium calculation in such a way that the premium
income collected by the insurer can guarantee the adequacy of claim payments
submitted by the insured in the future. The proposed new premium is adjusted by
setting the value of the reserve function to be positive during the policy term.

Theorem 2.3. If κ′ =
Ih(0)+

∫ t
0
exp(−σt)Ih(t)dt

Sh(0)+
∫ t
0
exp(−σt)Sh(t)dt

then F (t) > 0 for all time t.

Proof. Consider the rate of change of the reserve function

dF

dt
= κSh − Ih + σF,

d

dt
(exp(−σt)F ) = (exp(−σt)) (κSh − Ih) ,∫ t

0

d

dt
(exp(−σt)F ) dt =

∫ t

0

(exp(−σt)) (κSh − Ih) dt,

exp(−σt)F = F (0) +

∫ t

0

(exp(−σt)) (κSh − Ih) dt,

exp(−σt)F = κ

(
Sh(0) +

∫ t

0

(exp(−σt))Shdt

)
− (Ih(0) +

∫ t

0

(exp(−σt)) Ihdt).

Hence, to obtain F (t) > 0 for all time t, we require

κ

(
Sh(0) +

∫ t

0

(exp(−σt))Shdt

)
− (Ih(0) +

∫ t

0

(exp(−σt)) Ihdt > 0 (2.15)

or equivalently

κ >
Ih(0) +

∫ t

0
exp(−σt)Ih(t)dt

Sh(0) +
∫ t

0
exp(−σt)Sh(t)dt

. (2.16)

Thus, the minimum of κ showed in Eq. 2.16 can be set as the proposed new
premium, κ′.

κ′ =
Ih(0) +

∫ t

0
exp(−σt)Ih(t)dt

Sh(0) +
∫ t

0
exp(−σt)Sh(t)dt

. (2.17)

3. Result and simulation

In this section, the results of numerical simulation are presented considering the
estimated parameter values of seasonal infection rate βh(t) that minimize error
between dengue data and the model’s output. Dengue data is the weekly number of
dengue-infected people reported and recorded by Semarang City Health Office from
January 2013 to April 2015. The mathematical model’s output represents the result
of numerical simulation that indicates the number of infected people, Ih, in a week.
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We simulate the calculation of premium through the simulation of the insurance
mathematical model. We also consider the variations of basic reproduction number
R0 and force of interest separately, and interpret the simulation’s result.

Table 2. Parameter values for seasonal infection rate βh.

Parameter Description
95% Confidence Interval

Estimated Value Lower Bound Upper Bound

β0 Baseline 0.7513 0.6522 0.8503

a1 Cosine amplitude for mod 1 −0.0603 −0.0638 −0.0568

a2 Cosine amplitude for mod 2 −0.4683 −0.5248 −0.4118

a3 Cosine amplitude for mod 3 −0.0579 −0.0623 −0.0535

ϕ1 Cosine phase for mod 1 3.5983 3.3261 3.8704

ϕ2 Cosine phase for mod 2 −3.5535 −3.8172 −3.2898

ϕ3 Cosine phase for mod 3 −6.4968 −6.8232 −6.1704

b1 Sine amplitude for mod 1 −0.0108 −0.0114 −0.0102

b2 Sine amplitude for mod 2 0.4352 0.3818 0.4886

b3 Sine amplitude for mod 3 −0.0809 −0.0878 −0.0740

ψ1 Sine phase for mod 1 9.9600 9.1993 10.7207

ψ2 Sine phase for mod 2 4.1839 3.9507 4.4171

ψ3 Sine phase for mod 3 5.6060 5.2227 5.9893

3.1. Data fitting with seasonal infection rates

First, we determined the period of seasonality, ω, in our proposed sinusoidal func-
tion. The period of seasonality is ω = 2πT with T stands for the period of sea-
sonality. We implemented Fast Fourier Transform (FFT) on dengue data and we
obtained the dominant frequency of Fourier spectrum is f = 0.02 or equivalent to
period T = 50 weeks, approximately corresponding to an annual pattern. Based on
this fact that dengue cases recur annually, we afterward determined the number of
modulo, n, which represents the number of local peaks in the annual dengue data.
Applying the Gaussian filter, we obtained n = 3 which indicates the existence of
three local peaks in a year. Next, in order to obtain the value of the remaining
parameters in the periodic-forced infection rate, (β0, ak, bk, ϕk, ψk), we used Spiral
Dynamic Optimization. This optimization method determines the optimal value of
a set of parameters that has a minimum error between the actual dengue data and
the number of infected individuals (Ih) resulted from the mathematical model. The
coefficient of the seasonal infection rate generated by the optimization is shown in
Table 2. The bootstrap realization was implemented 100 times to obtain a 95%
confidence interval.
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Figure 2. (a) The result of numerical simulation of data fitting by using seasonal infection rate βh(t);
and (b) the seasonal infection rate βh(t).

In Figure 2(a), we present the simulation results that integrate the seasonal
infection rate into the model. The simulations produce good data fitting with well-
captured annual patterns. To measure the goodness of fit, the Pearson correlation
coefficient is evaluated between the model’s output and the dengue data. Using a
significance level of p < 0.05, the coefficient of Pearson correlation is r = 0.8307
which indicates a firm positive connection between the simulation and the data.
Figure 2(b) shows the time-dependent infection rate βh indicating seasonality.

The high incidence of dengue in Semarang mostly occurs from January to April
each year along with the wet period. Entering the dry season in early June, dengue
cases have decreased until October. This repeat pattern occurs every year and
seasonal infection rates explain this phenomenon well. The increase in dengue cases
along with the rainy season can be explained by the expansion of the egg-laying
area for mosquitoes in stagnant water generated from trapped rainwater. High
rainfall and rain intensity that is not accompanied by a good sanitation system will
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support mosquitoes to grow and breed, particularly in slums and densely populated
areas. The expansion of the breeding site encourages an abundance of mosquito
populations and automatically increases the risk of dengue fever transmission.
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Figure 3. (a) Variations of the basic reproduction number, 0.8659 ≤ R0 ≤ 2.5708, on the number of
infected people; and (b) variations of R0 close to the result of data fitting, 1.2425 ≤ R0 ≤ 1.3282, on
the number of infected people and the simulation result of R0 ≈ 1.2876 is indicated by the red arrow.

The basic reproduction number, R0, is intended to be an indicator of transmis-
sibility of infectious agents and parasites [33]. This parameter is often used as a
reference to determine the severity of dengue outbreaks and is a consideration for de-
signing control strategies [34]. As can be seen in Eq. 2.4, the value of R0 is affected
by the value of the rate of dengue infection. Working with a time-dependent infec-
tion rate parameter, the calculation of R0 is carried out using the average seasonal
infection rate indicated by the baseline β0 in the sinusoidal function (see Eq. 2.8).
Therefore, the value of R0 of the model generated by data fitting is R0 ≈ 1.2876.
Figure 3(a) shows the number of infected people respect to the variations of basic
reproduction number, and Figure 3(b) shows the same result as a narrower R0 and
is close to the value of data fitting. We can observe that an increase in R0 induces an
earlier dengue outbreak peak. On the other hand, a decrease in basic reproduction
number R0 implies a lower number of dengue cases.
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Figure 4. The solution trajectory projected onto susceptible and infected compartment, (Sh, Ih), with
R0 < 1 for disease free case (a); and with R0 > 1 for endemic case (b).

Figures 4(a) and 4(b) present the solution trajectories of our proposed math-
ematical model system in the (Sh, Ih) plane for disease-free and endemic cases,
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respectively. With initial value (Sh(0), Ih(0)), the simulation for R0 < 1 results in
the disappearance of the disease as shown by the proportion of infected tending to
zero. For endemic case, R0 > 1 encourages the occurrence of dengue outbreak.

3.2. Insurance model simulation

The basic reproduction number of an epidemiological model is generally known as
the average number of secondary infections produced by an infected individual in
the population of susceptible. The value R0 is an important indicator to determine
whether the disease will vanish or persist. All references in mathematical epidemi-
ology have mentioned that R0 < 1 indicates that the number of infected individuals
decreases over time and the disease vanishes. The human population converges to
a state with zero infected individuals, or it is called a disease-free equilibrium. Oth-
erwise, when R0 > 1, the number of infected people increases, attains a peak, and
declines to an endemic equilibrium for endemic models. Hence, the value of basic
reproduction number, R0, has a significant influence on the dynamics of infected
(Ih) and susceptible (Sh) individuals in our mathematical model which will auto-
matically affect the calculation of the amount of the premium payment defined in
Eq. 2.11. Working with a time-dependent infection rate parameter, the value of R0

presented in Figure 5(a) is calculated using the average of seasonal infection rate,
indicated by the baseline β0 in the sinusoidal function as can be seen in Eq. 2.8.

We can observe in Figure 5(a) that the changes in the value of basic reproduction
number (R0) affect the variations in the amount of insurance premium. A higher
value of R0 results in a higher premium value. An increase in the R0 value indicates
an increased risk of the disease spreading and an accelerated outbreak progress.
The large and widespread impact of the outbreak has the potential to induce even
greater future losses [35]. Thus, a greater risk of spreading disease will have an
impact on increasing premium payments. In contrast, the smaller the R0 value, the
lower the risk of an outbreak occurring and the disease will disappear over time.
In this condition, the potential for future losses is low, so the premium is small.
Further, based on our simulation, the premium value starts to increase significantly
when R0 > 1.3. On the other hand, R0 < 1.3 indicates that the payment value of
insurance premium is close to zero. The results of our data fitting shown in Figure
2(a) use the average basic reproduction number R0 ≈ 1.28, which has a premium
calculation value approximately 0.003 (see Figure 5(a)).
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Figure 5. (a) Variations of the basic reproduction number (R0) on the amount of premium payment;
and (b) variations of the force of interest (σ) on the the amount of premium payment.
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Figure 5(b) presents the variations of premium value affected by the change
of force of interest (σ). The force of interest represents the uncertainty of future
expenditures due to external factors or can be interpreted as a discounting factor.
It can be seen that σ = 1% corresponds to the premium κ = 4.8 × 10−3 and the
premium value continues to decrease as the value of force of interest increases, with
σ = 20% resulting premium κ = 4.9 × 10−4. This can be explained that a large
discounting factor (σ) results in a decrease in the present value of the future sum
of the premium payment received by the insurer from the investors.
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Figure 6. The dynamic of the benefit reverse function using: (a) κ = 0.003, and (b) κ = 0.0025.

In Figure 6, we display the dynamic of the reverse function that denotes the
difference between total premium payments and total claim payments. We solved
the differential equation given in Eq. 2.14 by pairing with Eq. 2.3 and performed
numerical simulation to determine the reserve function. Using basic reproduction
number R0 = 1.28 and premium κ = 0.003, the value of the reserve function
is positive throughout the observation time as presented in Figure 6(a). Now, by
reducing the value of the premium to κ = 0.0025, the benefit reserve function shows
an unexpected negative result (see Figure 6(b)). The premium value calculated by
Eq. 2.11 is sufficient to cover medical expenses in the future. However, if the
premium value is lowered to a certain level, it is possible for the insurer to suffer
losses because the claim payments are greater than the total premium payments.
Unwanted negative reserves during the policy term can also be interpreted that not
enough premiums can be collected by the insurer from investors and the insurer
needs to increase the nominal of the premium to guarantee positive reserves.

To ensure that the investment reserves owned by the insurer are sufficient to pay
claims submitted by the insured for future medical expenses, the premium value
needs to be defined so that the reserve function is always positive. We propose
a new premium calculation as given in Eq. 2.17 which is the minimum premium
limit that guarantees sufficient premium income to cover claim costs. In Figure
7(a), the value of adjusted premium indicated by the green line is smaller than the
regular premium indicated by the red line. Using a larger value of force of interest,
σ = 1, Figure 7(b) presents that the value of adjusted premium is higher than the
regular premium for a relatively small basic reproduction number, and the adjusted
premium value will be smaller than the regular premium for a large R0. The more
affordable premium value will certainly benefit the insurer by potentially attracting
more investors to take advantage of insurance policies. Eventhough the premium
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value is affordable, the insurer ensures that the premium income is guaranteed to
be sufficient for the insurance coverage that will be claimed by the insured. Hence,
a lower premium value as long as it is enough to cover claims will benefit both
parties, the insurer paying the claim and the insured receiving compensation.
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Figure 7. Comparison between the value of regular premium and adjusted premium with variations in
the basic reproduction number and different force of interest: (a) σ = 0.05, and (b) σ = 1.

From a practical point of view, applying the insurance mathematical model
seems intricate. The number of infected individuals can be obtained from data
on dengue case reports recorded by government health institutions. However, the
number of susceptible individuals is difficult to determine due to the lack of specific
records or valid scientific methods to estimate their numbers during the observation
period. The main reasons behind the difficulty of determining the true number
of susceptible individuals in reality are the large number in the population and
the difficulty of distinguishing a susceptible individual from an immune individ-
ual. Therefore, it is important to calculate insurance premiums by prioritizing the
number of infected people and highlighting the Ih function, instead of Sh.

4. Conclusion

In this study, we propose a mathematical insurance model to estimate the present
financial risk and the economic burden related to dengue epidemic. The economic
burden due to disease epidemics is a crucial budgeting challenge, especially in
dengue-affected areas in the tropics and subtropics. Considering the classic com-
partment model, the SIR model is modified by setting the infection rate parameter
to be a time-dependent parameter and the model output fitted to the actual dengue
data recorded in Semarang. The periodic sinusoidal function is adopted as a pa-
rameter of the infection rate to capture the seasonal pattern of dengue cases which
tends to recur every wet period along with the abundance of the mosquito popula-
tion as the primary dengue vector. Local stability analysis and basic reproduction
number derivation were also performed to explain the behavior of the model. For
the SIR model with a time-dependent infection rate parameter, the average of βh,
denoted by β0, is considered the best representative to determine the value of R0.

Next, we utilize the concept of insurance to construct an insurance mathematical
model by redefining the dengue transmission model. Susceptible individuals who
are at risk to experience dengue infection in the future have the potential to suffer
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financial losses due to medical expenses once they become infected. Susceptible
individuals contribute to the insurance system as parties who pay premiums at an
amount according to the insurer’s policy after joining health insurance. During
an outbreak, infected individuals may request compensation from the insurer to
cover the medical expenses while being hospitalized as a form of claim payment.
The amount of the insurance premium is determined based on the present value
of the total premium income and total claim payments. Also, we introduced a
reserve function which is measured by the difference between total premium and
total claim as the basis for determining the lower limit on the premium value. The
minimum value of the premium guarantees that the value of the reserve function is
always positive, indicating that the insurance reserves from collecting premium are
adequate to pay future claims. The insurer can set an affordable premium value to
attract more investors to join the insurance and on the other hand the insurer has
a low risk of experiencing a loss with a premium income greater than expenditures.

This study has numerous limitations that can be extended further. We ne-
glect the secondary infection in dengue transmission which can potentially result in
additional financial loss. The second limitation is that expenditure covered by in-
surance are only medical expenses during hospitalization. The insurance model can
be extended by allocating funds to control and prevention strategies. Indirect costs
induced by the dengue epidemic such as lost productivity, lost human hours, and
untimely death can also be integrated into the premium pricing model. Measuring
the economic burden caused by an outbreak is important to assist the government
and related parties in determining the best strategy for dealing with the outbreak.
Further, the insurance model can be implemented for other infectious diseases.
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