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Discontinuous Fractional Sturm-Liouville
Problems with Hilfer Derivatives∗
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Abstract In this paper, we study discontinuous Sturm-Liouville problem
with fractional Hilfer derivatives. By defining an operator A in the Hilbert
space L2[−1, 1], this research shows that the eigenvalues and corresponding
eigenfunctions of the main problem coincide with the eigenvalues and corre-
sponding eigenfunctions of the constructed operator. Moreover, the charac-
teristic function is also constructed such that the eigenvalues of the problem
are coincide with the zeros of this function.
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1. Introduction

Named after mathematicians Jacques Charles Francois Sturm and Joseph Liou-
ville, Sturm-Liouville(S-L) problem is a mathematical concept that deals with the
eigenvalue problem of a differential equation. In related fields such as quantum me-
chanics, heat transfer, and vibration analysis, it has attracted much attention and
plays an important role in mathematical physics. Although first proposed more
than 170 years ago, Sturm-Liouville theory has produced numerous research pa-
pers and monographs, it remains one of the most thriving areas of research [1–3],
and many references with respect to physics and mechanics problems are contained
in [4–6].

In general, as a class of boundary value problems, the Sturm-Liouville problem
involves finding the eigenfunctions and eigenvalues of a second-order linear differ-
ential equation of the form:

− d

dx
[p(x)

dy

dx
] + q(x)y = λw(x)y,

where p(x), q(x), and w(x) are specified functions defined on an interval [a, b].
λ is the spectral parameter with certain boundary value conditions, while y is
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the eigenfunction. The differential equation mentioned above, combined with the
boundary conditions in forms

c1y(a) + c2y
′(a) = 0, (c21 + c22 > 0),

d1y(b) + d2y
′(b) = 0, (d21 + d22 > 0),

is referred to as regular Sturm-Liouville problems (SLPs) if p(x),w(x) > 0 and
p′(x), q(x) and w(x) are continuous functions over the finite interval [a, b]. To
solve this problem, it is necessary to apply several techniques such as separation of
variables, Fourier series, and Green’s functions in order to obtain the eigenvalues
and eigenfunctions that meet the boundary conditions.

While a significant amount of research has been conducted on the general the-
ory and methodologies for boundary value problems with continuous coefficients,
little is currently known about similar problems that involve discontinuities. Several
studies, such as those detailed in [7–10], have explored the discontinuous bound-
ary value problems with transmission conditions and its potential application to
boundary value problems in parabolic equations. Additionally, some research has
also examined transmission condition problems in mechanics. A particular focus has
been placed on studying the discontinuous Sturm-Liouville problem, especially when
the eigenparameter is presented in both the differential equation and the boundary
and transmission conditions, as discussed in [11–14]. One common method for solv-
ing discontinuous Sturm-Liouville problems is to divide the domain into multiple
sub-domains, each with its own set of continuous coefficients. The solutions for each
sub-domain can then be matched at the points of discontinuity using boundary con-
ditions. Another approach is to use a weighted inner product to define the space
of functions over which the problem is defined. This allows for a wider range of
functions to be used in the solution, including those that are not continuous. This
problem can provide valuable insights into a wide range of physical phenomena.

Fractional Sturm-Liouville problem is a type of differential equation problem
that involves fractional derivatives in the Sturm-Liouville operator. The history of
fractional calculus can be found in [15,16]. One important application of fractional
calculus is in modeling problems involving anomalous diffusion, viscoelasticity, and
other phenomena that exhibit fractal behavior. Researches [17–21] have demon-
strated that fractional derivative models typically provide more accurate solutions
for real processes of anomalous systems compared to models based on integer-order
derivatives. The traditional methods used to solve ordinary Sturm-Liouville prob-
lems may not be applicable to fractional Sturm-Liouville problems. Specialized
techniques, such as the fractional calculus and spectral methods, are often employed
to solve these problems.

There exist various definitions for fractional derivatives and integrals in frac-
tional calculus, such as Riemann-Liouville, Caputo, Grunwald-Letnikov, and oth-
ers. Each of these has its own advantages and disadvantages. The selection of the
appropriate definition to use relies on the specific problem being investigated.The
Riemann-Liouville and Caputo derivative definitions are among the most commonly
utilized tools in fractional calculus, particularly for the purpose of modeling physi-
cal systems. Additionally, a new generalized definition of fractional derivatives has
been proposed by Hilfer, which has garnered significant attention in recent years.
The Hilfer derivative is defined by two parameters α and β, with Riemann-Liouville
and Caputo fractional derivatives being specific cases of β = 0 and β = 1 ( [22–24]),
respectively. Although the Hilfer derivative has only recently been introduced, it has
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already found applications in diverse fields ( [25, 26]), such as engineering, physics,
biology, and finance. Nonetheless, additional research is necessary to gain a com-
prehensive understanding of its characteristics and determine its effectiveness in
various contexts.

This paper aims to investigate the applicability of utilizing the Hilfer fractional
derivative in discontinuous Sturm-Liouville problems. Specifically, we will examine
the properties of the discontinuous fractional Sturm-Liouville problem with trans-
mission conditions for the Hilfer operator. The structure of this paper is as follows:
Section 2 provides an overview of fundamental properties of fractional derivatives,
including the Riemann-Liouville, Caputo, and Hilfer definitions. Additionally, some
lemmas that will be used to establish more intricate results later in the paper are
presented. In Section 3, we focus on the construction of a novel type of fractional
Sturm-Liouville problem involving discontinuous functions with Hilfer derivatives.
Section 4 analyzes the operator’s characteristics, such as its symmetry, the orthog-
onality of its eigenfunctions, the reality of its eigenvalues, and the properties of its
eigenfunctions.

2. Some auxiliary definitions and results

This section will review some fundamental concepts and principles of fractional
calculus that are essential for the paper’s progression (see also [15,16]). Additionally,
several lemmas will be presented and proven as necessary.

Definition 2.1 (c.f. [15]). (Left and right Riemann-Liouville (R-L) fractional inte-
grals)

Let [a, b] ⊂ R, Re(α) > 0 and f ∈ L1[a, b]. Then the left and right Riemann-
Liouville fractional integrals Iαa+ and Iαb− of order α ∈ C are given by

Iαa+f(x) =
1

Γ(α)

∫ x

a

f(t)dt

(x− t)1−α
, x ∈ (a, b],

Iαb−f(x) =
1

Γ(α)

∫ b

x

f(t)dt

(t− x)1−α
, x ∈ [a, b),

respectively.

Definition 2.2 (c.f. [16]). ( Left and right Riemann-Liouville (R-L) fractional
derivatives) Let [a, b] ⊂ R, Re(α) ∈ (0, 1) and f ∈ L1[a, b]. Then the left and right
Riemann-Liouville fractional derivatives of order α ∈ C of function f are defined as

Dα
a+f(x) := DI1−α

a+ f(x), x ∈ (a, b],

Dα
b−f(x) := −DI1−α

b− f(x), x ∈ [a, b),

respectively, where D = d
dx is the usual differential operator.

Definition 2.3 (c.f. [16]). (Left and right Caputo fractional derivatives) Let [a, b] ⊂
R, Re(α) ∈ (0, 1) and f ∈ L1[a, b]. Then the left and right Caputo fractional
derivatives of order α ∈ C are

cDα
a+f(x) := I1−α

a+ Df(x), x ∈ (a, b],
cDα

b−f(x) := −I1−α
b− Df(x), x ∈ [a, b),

respectively, where D = d
dx is the usual differential operator.
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Definition 2.4 (c.f. [27]). (Left and right Hilfer fractional derivatives) Let [a, b] ⊂
R, α ∈ (0, 1), β ∈ [0, 1] and f ∈ L1[a, b]. Then the left and right Hilfer fractional
derivatives of order are defined as

Dα,β
a+ f(x) := I

β(1−α)
a+ D(I

(1−β)(1−α)
a+ f(x),

Dα,β
b− f(x) := I

(1−α)(1−β)
b− DI

β(1−α)
b− f(x),

respectively, where D = d
dx is the usual differential operator.

Definition 2.5. (New integral-type fractional operator) Let [a, b]⊂R, α∈(0, 1), β∈
(0, 1) and f ∈ L1[a, b].

To unify the fractional derivative form with Hilfer’s, a combination of differ-
ent versions of fractional integral and derivatives is defined as a new integral-type
fractional operator

lα,βa+ f(x) := D
(1−β)(1−α)
a+ I1a+D

β(1−α)
a+ f(x),

lα,βb− f(x) := D
β(1−α)
b− I1b−D

(1−β)(1−α)
b− f(x).

Using property 2.2 in [16], the direct calculation gives

lα,βa+ f(x) = D
(1−β)(1−α)
a+ I1a+D

β(1−α)
a+ f(x)

= I
1−(1−α)(1−β)
a+ D

β(1−α)
a+ f(x)

= Iαa+I
β−αβ
a+ Dβ−αβ

a+ f(x)

= Iαa+f(x),

Property 2.1 (c.f. [15]).

Dα
a+Iαa+f(x) = f(x),

Dα
b−I

α
b−f(x) = f(x),

and

Iαa+Dα
a+f(x) = f(x)− (x− a)α−1

Γ(α)
I1−α
a+ f(a),

Iαb−D
α
b−f(x) = f(x)− (b− x)α−1

Γ(α)
I1−α
a+ f(b),

where α ∈ (0, 1).
According to the above equations, we can see that the R-L derivative is the left

inverse of the R-L integral, but not the right inverse.

Property 2.2 (c.f. [15]).
cDα

a+Iαa+f(x) = f(x),
cDα

b−I
α
b−f(x) = f(x),

and
Iαa+

cDα
a+f(x) = f(x)− f(a),

Iαb−
cDα

b−f(x) = f(x)− f(b),

where α ∈ (0, 1).

Now, we state and prove the following lemmas which is used in the next section.
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Lemma 2.1 (c.f. [16]). Let f ∈ L2(a, b) and α ∈ (0, 1). Then

Iαa+
cDα

b− = Mg(x)− (f(x)− f(b)),

Iαa+
cDα

b− = (f(x)− f(a))− Iαa+N1
f (x),

where

Mg(x) =
1

Γ(α)

∫ b

a

|x− t|α−1g(t)dt,

N1
f (x) =

1

Γ(1− α)

∫ b

a

|x− t|−αf ′(t)dt,

and
g(x) = cDα

b−f(x).

Proof. In view of Definition 2.1, we have

Mg(x) =
1

Γ(α)

∫ x

a

|x− t|α−1g(t)dt+
1

Γ(α)

∫ b

x

|x− t|α−1g(t)dt

= Iαa+g(x) + Iαb−g(x).

Then it leads to

Iαa+g(x) = Mg(x)− Iαb−g(x).

To prove (2), by Definition 2.3, we obtain

N1
f (x) =

1

Γ(1− α)

∫ b

a

|x− t|−αf ′(t)dt

=
1

Γ(1− α)

∫ x

a

|x− t|−αf ′(t)dt+
1

Γ(1− α)

∫ b

x

|x− t|−αf ′(t)dt

= cDα
a+f(x)−

1

Γ(1− α)

∫ b

x

|t− x|−α(−f ′)(t)dt

= cDα
a+f(x)− cDα

b−f(x),

which gives
cDα

b−f(x) =
cDα

a+f(x)−N1
f (x).

By applying the fractional operatorIαa+ to both sides, we get

Iαa+
cDα

b−f(x) = Iαa+
cDα

a+f(x)− Iαa+N1
f (x)

= (f(x)− f(a))− Iαa+N1
f (x).

Property 2.3 (c.f. [16]). If [a, b] ⊂ R, α ∈ (0, 1), β ∈ (0, 1) Re(α) > 0 and Re(β) >
0, forf ∈ L1[a, b], the following relations hold almost everywhere on [a, b].

Iαa+I
β
a+f(x) = Iα+β

a+ f(x),

Iαb−I
β
b−f(x) = Iα+β

b− f(x),

and
Dβ

a+I
α
a+f(x) = Iα−β

a+ f(x),

Dβ
b−I

β
b−f(x) = Iα−β

b− f(x).
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Theorem 2.1 (c.f. [28]). Let [a, b] ⊂ R, α ∈ (0, 1), β ∈ (0, 1), f(x) ∈ L1[a, b], and
g(x) ∈ L1[a, b], the integration by parts formula for the new operator defined by
definition 2.4 is given∫ b

a

f(x)Dα,β
a+ g(x)dx = −

∫ b

a

g(x)Dα,β
b− f(x)dx+ I

β(1−α)
b− f(x)I

(1−β)(1−α)
a+ g(x)|x=b

x=a.

Theorem 2.2. Let α ∈ (0, 1) and β ∈ (0, 1). If f(x) ∈ L1[a, b] is generalized
differentiable and integrable, then

lα,βa+ Dα,β
a+ f(x) = f(x)− (x− a)−(1−β)(1−α)

Γ(1− (1− β)(1− α))
I
(1−β)(1−α)
a+ f(a),

lα,βb− Dα,β
b− f(x) = −f(x) +

(b− x)−β(1−α)

Γ(1 + αβ − β)
I
β(1−α)
b− f(b).

The fractional derivatives are defined in Riemann-Liouville sense.

Proof.

lα,βa+ Dα,β
a+ f(x) = (D

(1−β)(1−α)
a+ I1a+D

β(1−α)
a+ I

β(1−α)
a+ DI

(1−β)(1−α)
a+ )f(x)

= (D
(1−β)(1−α)
a+ I1a+DI

(1−β)(1−α)
a+ )f(x)

= (D
(1−β)(1−α)
a+ (I

(1−β)(1−α)
a+ )f(x)− I

(1−β)(1−α)
a+ )f(a))

= f(x)− (x− a)−(1−β)(1−α)

Γ(1− (1− β)(1− α))
I
(1−β)(1−α)
a+ f(a).

lα,βb− Dα,β
b− f(x) = (D

β(1−α)
b− I1b−D

(1−β)(1−α)
b− I

(1−β)(1−α)
b− DI

β(1−α)
b− )f(x)

= (D
β(1−α)
b− I1b−DI

β(1−α)
b− )f(x)

= D
β(1−α)
b− (I

β(1−α)
b− f(b)− I

β(1−α)
b− f(x))

= −f(x) +
(b− x)−β(1−α)

Γ(1 + αβ − β)
I
β(1−α)
b− f(b).

Theorem 2.3. Let α ∈ (0, 1) and β ∈ (0, 1). If f(x) ∈ L1[a, b] is generalized
differentiable and integrable as theorem 2.2, then

Iα+β−αβ
a+ Dα,β

b− f(x) = −I
β(1−α)
b− f(x) + I

β(1−α)
b− f(a) + Iα+β−αβ

a+ Nf ,

where

Nf =
1

Γ[(1− α)(a− β)]

∫ b

a

|x− t|αβ−α−βIβ−αβ−1
b− f(t)dt.

Proof.

Iα+β−αβ
a+ Dα,β

b− f(x) = Iα+β−αβ
a+ (I

(1−α)(1−β)
b− DI

β(1−α)
b− )f(x)

= Iα+β−αβ
a+ [−I

1−(α+β−αβ)
b− D(−I

β(1−α)
b− )]

= Iα+β−αβ
a+

cDα+β−αβ
b− (−I

β(1−α)
b− )f(x)

= −I
β(1−α)
b− f(x) + I

β(1−α)
b− f(a) + Iα+β−αβ

a+ Nf ,
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where

Nf =
1

Γ[(1− α)(1− β)]

∫ b

a

|x− t|αβ−α−β(I
β(1−α)
b− f(t))′dt

=
1

Γ[(1− α)(1− β)]

∫ x

a

|x− t|αβ−α−β(I
β(1−α)
b− f(t))′dt

+
1

Γ[(1− α)(1− β)]

∫ b

x

|x− t|αβ−α−β(I
β(1−α)
b− f(t))′dt

= cDα+β−αβ
a+ (I

β(1−α)
b− f(x))− cDα+β−αβ

b− (I
β(1−α)
b− f(x)).

Theorem 2.4. Let α ∈ (0, 1), β ∈ [0, 1] and f ∈ L1[a, b]. Then

∥Dα,β
a+ f(x)∥ ≤ 1

(1 + β − αβ)Γ(β − αβ)Γ[1 + (1− β)(1− α)]
∥f(x)∥.

Proof. Using Lemma 2.1 and Corollary 2.3 in [16] we obtain

∥Dα,β
a+ f(x)∥ = ∥Iβ(1−α)

a+ D(I
(1−β)(1−α)
a+ f(x)∥

= ∥I1−[1−β(1−α)]
a+ D(I

(1−β)(1−α)
a+ f(x)∥

= ∥cD1−β+αβ
a+ (I

(1−β)(1−α)
a+ f(x)∥

≤ 1

(1 + β − αβ)Γ(β − αβ)Γ[1 + (1− β)(1− α)]
∥f(x)∥.

3. Discontinuous Hilfer fractional Sturm-Liouville
problems with transmission conditions

In this section, we consider the following Hilfer fractional S-L differential expression
£α defined as

£αy := Dα,β
1− Dα,β

−1+y + q(x)y, x ∈ [−1, 0) ∪ (0, 1].

We shall consider the following fractional S-L problem on I, where I = [−1, 0)∪(0, 1],

£αu+ λu = 0, (3.1)

with boundary conditions

L1(u) := I
(1−β)(1−α)
−1+ u(−1) = 0, (3.2)

L2(u) := I
β(1−α)
1− Dα,β

−1+u(1) = 0, (3.3)

and transmission conditions

L3(u) := I
(1−β)(1−α)
−1+ u(−0)− kI

(1−β)(1−α)
−1+ u(+0) = 0, (3.4)

L4(u) := I
β(1−α)
1− Dα,β

−1+u(−0)− 1

k
I
β(1−α)
1− Dα,β

−1+u(+0) = 0, (3.5)

where 0 < α < 1 in (3.1)-(3.5), λ ∈ C and λ is the eigenparameter in (3.1). q(x)
is real-valued and continuous in both [−1, 0) and (0, 1], which also has finite limits
q(±0) := lim

x→±0
q(x), and k ̸= 0 is a real number.
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4. The operator formulation of the problem

We define the following inner product in the Hilbert space L2[−1, 1] by

⟨f, g⟩ =
∫ 1

−1

f(x)g(x)dx, (4.1)

where F := f(x), G := g(x) ∈ L2[−1, 1]. In this Hilbert space, we define the
operator A with domain

D(A) :=



f = f(x) and Dα,β
−1+f(x)

are absolutely continuous on [−1, 0) ∪ (0, 1],

and f(±0), I
β(1−α)
1− Dα,β

−1+u(±0), I
(1−β)(1−α)
−1+ u(±0) have finite limits,

Lif = 0, i = 1, 2, 3, 4


(4.2)

and the action law

Af = Dα,β
1− Dα,β

−1+f + q(x)f. (4.3)

Thus problems (3.1)-(3.5) can be written in the operator form as

Au = λu.

It is clear that the eigenvalues and corresponding eigenfunctions of problems (3.1)-
(3.5) correspond to the eigenvalues and eigenelements of the operator A.

Theorem 4.1. The linear operator A is symmetric.
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Proof. For each f, g ∈ D(A), using (4.1), we write

⟨Af, g⟩ =
∫ 1

−1

Af(x)g(x)dx

=

∫ 1

−1

(Dα,β
1− Dα,β

−1+f(x))g(x)dx+

∫ 1

−1

q(x)f(x)g(x)dx

=

∫ 1

−1

(Dα,β
−1+f(x))(D

α,β
−1+g(x))dx

+ I
(1−α)(1−β)
−1+ g(x)I

β(1−α)
1− Dα,β

−1+f(x)|
1
−1 +

∫ 1

−1

q(x)f(x)g(x)dx

=

∫ 1

−1

f(x)(Dα,β
1− Dα,β

−1+g(x))dx

− I
(1−α)(1−β)
−1+ f(x)I

β(1−α)
1− Dα,β

−1+g(x)|
1
−1

+ I
(1−α)(1−β)
−1+ g(x)I

β(1−α)
1− Dα,β

−1+f(x)|
1
−1 +

∫ 1

−1

q(x)f(x)g(x)dx

= ⟨f,Ag⟩

− I
(1−α)(1−β)
−1+ f(x)I

β(1−α)
1− Dα,β

−1+g(x)|
1
0+

− I
(1−α)(1−β)
−1+ f(x)I

β(1−α)
1− Dα,β

−1+g(x)|
0−

−1

+ I
(1−α)(1−β)
−1+ g(x)I

β(1−α)
1− Dα,β

−1+f(x)|
1
0+

+ I
(1−α)(1−β)
−1+ g(x)I

β(1−α)
1− Dα,β

−1+f(x)|
0−

−1.

(4.4)

By considering the Hilfer fractional boundary conditions (3.2)-(3.3) and transmis-
sion conditions (3.4)-(3.5), we have

⟨Af, g⟩ = ⟨f,Ag⟩,

which proves that the operator A is symmetric.

Corollary 4.1. All eigenvalues of problems (3.1)-(3.5) are real.

Naturally, we can now assume that all eigenfunctions of problems (3.1)-(3.5) are
real-valued.

Corollary 4.2. The eigenfunctions corresponding to different eigenvalues of Hilfer
fractional Sturm-Liouville problems (3.1)-(3.5) are orthogonal.

Proof. Let λ1 and λ2 be two different eigenvalues corresponding to eigenfunctions
y(x, λ1) and y(x, λ2), respectively, for problems (3.1) to (3.5).

£αy(x, λ1) + λ1y(x, λ1) = 0,

£αy(x, λ2) + λ2y(x, λ2) = 0.

Multiplying the last two equations to y(x, λ2) and y(x, λ1), respectively, subtracting
from each other and integrating from −1 to 1, because of the symmetry of the
operator £α, we have

(λ1 − λ2)⟨y(x, λ1), y(x, λ2)⟩ = 0.

Since λ1 ̸= λ2, and the proof completes.
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Lemma 4.1. The equivalent integral form of equation

£αu(x) + λu(x) = 0, x ∈ [−1, 0), (4.5)

with Hilfer fractional conditions

I
(1−β)(1−α)
−1+ u(−1) = 0,

I
β(1−α)
1− Dα,β

−1+u(−1) = 1,
(4.6)

is given as
u(x) = lα,β−1+yα,β(x) + lα,β−1+ l

α,β
1− ((λ+ q(x))u(x)), (4.7)

where

yα,β(x) =
(1− x)−β(1−α)

Γ(1 + αβ − β)
I
β(1−α)
1− Dα,β

−1+u(1). (4.8)

Proof. Let us consider (3.1),

Dα,β
1− Dα,β

−1+u(x) + (λ+ q(x))u(x) = 0.

Using the fractional integral operators lα,β1− acting on this equation and by Theorem
2.2, we obtain

lα,β1− (Dα,β
1− Dα,β

−1+u(x)) + lα,β1− (λ+ q(x))u(x) = 0, (4.9)

and

Dα,β
−1+u(x) =

(1− x)−β(1−α)

Γ(1 + αβ − β)
I
β(1−α)
1− Dα,β

−1+u(1) + lα,β1− ((λ+ q(x))u(x)),

Dα,β
−1+u(x) = yα,β(x) + lα,β1− ((λ+ q(x))u(x)).

(4.10)

Applying lα,β−1+ on both sides of (4.8) and using condition (4.6), we find

lα,β−1+D
α,β
−1+u(x) = lα,β−1+yα,β(x) + lα,β−1+ l

α,β
1− ((λ+ q(x))u(x)),

u(x) =
(x+ 1)−(1−β)(1−α)

Γ(1− (1− α)(1− β)
I
(1−α)(1−β)
−1+ u(−1)

+ lα,β−1+yα,β(x) + lα,β−1+ l
α,β
1− ((λ+ q(x))u(x)),

u(x) = lα,β−1+yα,β(x) + lα,β−1+ l
α,β
1− ((λ+ q(x))u(x)).

(4.11)

We reach
u(x) = lα,β−1+yα,β(x) + lα,β−1+ l

α,β
1− ((λ+ q(x))u(x)). (4.12)

Theorem 4.2. Let Q := maxx∈[−1,1] |q(x)|, then the following initial value problem

Dα,β
1− Dα,β

−1+u(x) + (λ+ q(x))u(x) = 0, x ∈ [−1, 0),

I
(1−β)(1−α)
−1+ u(−1) = 0,

I
β(1−α)
1− Dα,β

−1+u(−1) = 1,

(4.13)

has a unique solution ϕ1(x, λ) on [−1, 0) provided that

|λ|+Q

Γ2(1 + α)
< 1. (4.14)
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Proof. If we use a similar way in Lemma 4.1, we get a corresponding integral
equation of the problem as follows:

u(x) = lα,β−1+yα,β(x) + lα,β−1+ l
α,β
1− ((λ+ q(x))u(x)), (4.15)

where

yα,β(x) =
(1− x)−β(1−α)

Γ(1 + αβ − β)
I
β(1−α)
1− Dα,β

−1+u(1)

=
(1− x)−β(1−α)

Γ(1 + αβ − β)
I
β(1−α)
1− (1).

(4.16)

Let us construct the integral equation by

ϕ = Tϕ, (4.17)

where the mapping T is defined as

Tf = lα,β−1+yα,β + lα,β−1+ l
α,β
1− ((λ+ q(x))f), (4.18)

then, we have
∥Tf − Tg∥ = ∥lα,β−1+ l

α,β
1− ((λ+ q(x))(f − g)∥. (4.19)

By applying Lemma 2.1 in [16], we get

∥Tf − Tg∥ ≤ 1

Γ(1 + α)Γ(1 + α)
∥(λ+ q(x))(f − g)∥,

≤ |λ|+Q

Γ2(1 + α)
∥f − g∥.

(4.20)

By condition (4.13), the mapping T is a contraction on the space ⟨C[−1, 0), ∥ · ∥⟩.
Consequently, there exists a unique solution ϕ1(x, λ) of equation (4.16) .

Lemma 4.2. The equivalent integral form of equation

£αu+ λu = 0, x ∈ (0, 1],

with transmission conditions (3.4), (3.5) is given by

u(x) = u0(x) + lα,β0+ (cD
β(1−α)
1− Iα+β−αβ

0+ )[Nu + (λ+ q(x))u(x)], (4.21)

where

Nu = cDα+β−αβ
0+ (I

β(1−α)
1− Dα,β

−1+u(x))−
cDα+β−αβ

1− (I
β(1−α)
1− Dα,β

−1+u(x)).

Proof.
Considering the equation

Dα,β
1− Dα,β

−1+u(x) + (λ+ q(x))u(x) = 0,

applying the integral operator Iα+β−αβ
0+ on this equation and by Theorem 2.3, we

obtain

Iα+β−αβ
0+ Dα,β

1− Dα,β
−1+u(x) = −Iα+β−αβ

0+ (λ+ q(x))u(x),

I
β(1−α)
1− Dα,β

−1+u(x) = I
β(1−α)
1− Dα,β

−1+u(+0) + Iα+β−αβ
0+ Nu

+ Iα+β−αβ
0+ (λ+ q(x))u(x),

(4.22)
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where

Nu = cDα+β−αβ
0+ (I

β(1−α)
1− Dα,β

−1+u(x))−
cDα+β−αβ

1− (I
β(1−α)
1− Dα,β

−1+u(x)). (4.23)

Applying cD
β(1−α)
1− on both sides of (4.21) and using conditions (3.5)-(3.6), we find

cD
β(1−α)
1− I

β(1−α)
1− Dα,β

−1+u(x) =
cD

β(1−α)
1− I

β(1−α)
1− Dα,β

−1+u(+0)

+ cD
β(1−α)
1− Iα+β−αβ

0+ [Nu + (λ+ q(x))u(x)],

Dα,β
−1+u(x) = kDα,β

−1+ϕ(−0) + cD
β(1−α)
1− Iα+β−αβ

0+ [Nu + (λ+ q(x))u(x)].

(4.24)

Since u(x) vanishes on [−1, 0), we rewrite

Dα,β
0+ u(x) =kDα,β

−1+ϕ(−0) + cD
β(1−α)
1− Iα+β−αβ

0+ [Nu + (λ+ q(x))u(x)]. (4.25)

Using lα,β0+ acting on the both sides, based on Theorem 2.2 we find

u(x) =
x(1−β)(1−α)

Γ(1− (1− β)(1− α))
I
(1−β)(1−α)
0+ u(+0) + kDα,β

−1+ϕ(−0)

+ lα,β0+
cD

β(1−α)
1− Iα+β−αβ

0+ [Nu + (λ+ q(x))u(x)],

u(x) =
1

k

x(1−β)(1−α)

Γ(1− (1− β)(1− α))
I
(1−β)(1−α)
0+ ϕ(−0) + kDα,β

−1+ϕ(−0)

+ lα,β0+
cD

β(1−α)
1− Iα+β−αβ

0+ )[Nu + (λ+ q(x))u(x)].

(4.26)

Then we reach

u(x) = u0(x) + lα,β0+
cD

β(1−α)
1− Iα+β−αβ

0+ [Nu + (λ+ q(x))u(x)]. (4.27)

We next define um(x, λ) to construct the successive approximations

um(x, λ) = u0(x, λ) + lα,β0+
cD

β(1−α)
1− Iα+β−αβ

0+ [Nu + (λ+ q(x))um−1(x)].

Lemma 4.3. Let Q := maxx∈[−1,1] |q(x)| , PR:= max|λ|≤R P (λ) and P (λ):=
maxx∈(0,1] u0(x, λ),

kα,β:=
1

(1+β−αβ)(2−α−β+αβ)Γ(1−(1−α)(1−β))Γ(1+β−αβ)Γ(β−αβ)Γ(1+(1−α)(1−β)) ,

j(α,β):=
1

Γ(α+1)(2−α)Γ(1−α)Γ(α+β−αβ+1) .

Then the following estimate

∥um(x, λ)− um−1(x, λ)∥ ≤ PR {jα,β(kα,β + |λ|+Q)}m (4.28)

holds for all m .

Proof. Let us apply the mathematical induction for m. For m = 1, we have

∥u1(x, λ)− u0(x, λ)∥ = ∥lα,β0+
cD

β(1−α)
1− Iα+β−αβ

0+ [Nu + (λ+ q(x))u0(x)]∥.

By using Lemma 2.1 and Corollary 2.3 in [16], we have

∥u1(x, λ)− u0(x, λ)∥

≤ 1

Γ(α+ 1)

1

(2− α)Γ(1− α)

1

Γ(α+ β − αβ + 1)
∥Nu + (λ+ q(x))u0(x)∥

≤ jα,β(∥Nu∥+ ∥(λ+ q(x))u0(x)∥)
≤ jα,β(kα,β + |λ|+Q)PR.
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Suppose that (4.27) holds for m− 1, i.e.,

∥um−1(x, λ)− um−2(x, λ)∥ ≤ PR {jα,β(kα,β + |λ|+Q)}m−1
.

Then we have

∥um(x, λ)− um−1(x, λ)∥

= ∥lα,β0+
cD

β(1−α)
1− Iα+β−αβ

0+ [Nm−1 −Nm−2 + (λ+ q(x))(um−1(x, λ)− um−2(x, λ))]∥
≤ jα,β [∥Nm−1 −Nm−2∥+ ∥(λ+ q(x))(um−1(x, λ)− um−2(x, λ))∥]
≤ jα,β(kα,β + |λ|+Q)∥∥um−1(x, λ)− um−2(x, λ)∥
≤ PR {jα,β(kα,β + |λ|+Q)}m .

Next, we take into account the initial value problem of differential equation

£αũ(x) + λũ = 0, x ∈ (0, 1], (4.29)

I
(1−β)(1−α)
−1+ ũ(+0) =

1

k
I
(1−β)(1−α)
−1+ u(−0), (4.30)

Dα,β
−1+ ũ(+0) = kDα,β

−1+u(−0), (4.31)

where

u(x) :=

 0 x ∈ [−1, 0)

ũ(x) x ∈ (0, 1].
(4.32)

By Lemma 4.2, (4.27) has an equivalent integral form as follows

u(x) = u0(x) + lα,β0+ (cD
β(1−α)
1− Iα+β−αβ

0+ )[Nu + (λ+ q(x))u(x)]. (4.33)

We next define um(x, λ) to construct the successive approximations

um(x, λ) = u0(x, λ)+lα,β0+ (cD
β(1−α)
1− Iα+β−αβ

0+ )[Nm−1+(λ+q(x))um−1(x, λ)]. (4.34)

Now let us consider the series

u∗(x, λ) = lim
n→∞

(un(x, λ)− u0(x, λ)) =

∞∑
i=0

(ui(x, λ)− ui−1(x, λ)). (4.35)

According to the estimate in lemma 4.3, for 0 < x ≤ 1, the absolute value of its
terms is smaller than that of the corresponding terms of the convergent numeric
series

PR

∞∑
i=0

{jα,β(kα,β + |λ|+Q)}i .

Hence, series (4.34) converges uniformly. Obviously, each term ui(x, λ)−ui−1(x, λ)
of series (4.34) is continuous on x ∈ (0, 1]. Therefore, the sum of series (4.34) is
continuous on x ∈ (0, 1] and

ϕ2(x, λ) = lim
n→∞

(un(x, λ) = u0(x, λ) + u∗(x, λ)
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is continuous on x ∈ (0, 1].
The uniform convergence of the sequence um(x, λ) implies that we can take m →

∞ in (4.34), resulting in (4.33) that establishes ϕ2(x, λ), the limit function of the
process defined by (4.33), as being a solution to (4.26). Moreover, it is evident that
ϕ2(x, λ) satisfies the initial conditions (4.29)-(4.30). Finally, the function ϕ(x, λ)
given by

ϕ(x, λ) :=

ϕ1(x, λ) x ∈ [−1, 0)

ϕ2(x, λ) x ∈ (0, 1],
(4.36)

satisfies the differential equation (3.1), Hilfer fractional boundary condition (3.2)
and transmission conditions (3.4) and (3.5).

By a similar approach, we can prove the next theorem.

Theorem 4.3. For any λ ∈ C, satisfying PRjα,β(kα,β+|λ|+Q) < 1 , the differential
equation has a unique solution

χ(x, λ) :=

χ1(x, λ) x ∈ [−1, 0)

χ2(x, λ) x ∈ (0, 1]
, (4.37)

satisfying fractional boundary condition (3.3) and transmission conditions (3.4)-
(3.5), for each x ∈ [−1, 0)∪ (0, 1] where χ2(x, λ) is the unique solution of the initial
value problem

£αu(x) + λu(x) = 0, x ∈ (0, 1],

I
(1−β)(1−α)
−1+ u(1) = 1,

I
β(1−α)
1− Dα,β

−1+u(1) = 0,

and χ1(x, λ) is the unique solution of the initial value problem

£αu(x) + λu(x) = 0, x ∈ [−1, 0),

I
(1−β)(1−α)
−1+ u(−0) = kI

(1−β)(1−α)
−1+ χ2(+0),

I
β(1−α)
1− Dα,β

−1+u(−0) =
1

k
I
β(1−α)
1− Dα,β

−1+χ2(+0).

Let us consider the Hilfer fractional Wronskians

ωi(x, λ) := WF (ϕi(x, λ), χi(x, λ)

:= I
(1−β)(1−α)
−1+ ϕi(x, λ)I

β(1−α)
1− Dα,β

−1+χi(x, λ)

− I
(1−β)(1−α)
−1+ χi(x, λ)I

β(1−α)
1− Dα,β

−1+ϕi(x, λ), i = 1, 2,

(4.38)

which is independent of x and is an entire function. The direct calculation gives

ω1(x, λ) = ω2(x, λ). (4.39)

Now we may introduce the consideration of the characteristic function

ω(x, λ) := ω1(x, λ) = ω2(x, λ). (4.40)
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Lemma 4.4. For every λ ∈ C,

WF (x, λ) = −ω3(x, λ),

where

WF (x, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

L1(ϕ1) L1(χ1) L1(ϕ2) L1(χ2)

L2(ϕ1) L2(χ1) L2(ϕ2) L2(χ2)

L3(ϕ1) L3(χ1) L3(ϕ2) L3(χ2)

L4(ϕ1) L4(χ1) L4(ϕ2) L4(χ2)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. Employing the definitions of the functions ϕi(x, λ) and χi(x, λ), i = 1, 2,
we obtain

WF (x, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 −ω1(x, λ) 0 0

0 0 −ω2(x, λ) 0

Mϕ1
(−0) Mχ1

(−0) −kMϕ2
(+0) −kMχ2(+0)

Nϕ1
(−0) Nχ1(−0) − 1

kNϕ2(+0) − 1
kNχ2(+0)

∣∣∣∣∣∣∣∣∣∣∣∣
= ω1(x, λ)ω2(x, λ)

∣∣∣∣∣∣Mϕ1(−0) − kMχ2(+0)

Nϕ1(−0) − 1
kNχ2(+0)

∣∣∣∣∣∣
= ω1(x, λ)ω2(x, λ)

∣∣∣∣∣∣kMϕ2(+0) − kMχ2(+0)

1
kNϕ2(+0) − 1

kNχ2(+0)

∣∣∣∣∣∣
= −ω1(x, λ)ω

2
2(x, λ)

= −ω3(x, λ),

where

Mϕ1(−0) = I
(1−β)(1−α)
−1+ ϕ1(−0) Mχ1(−0) = I

(1−β)(1−α)
−1+ χ1(−0)

Mϕ2(+0) = I
(1−β)(1−α)
−1+ ϕ2(+0) Mχ2(+0) = I

(1−β)(1−α)
−1+ χ2(+0)

Nϕ1(−0) = I
β(1−α)
1− Dα,β

−1+ϕ1(−0) Nχ1(−0) = I
β(1−α)
1− Dα,β

−1+χ1(−0)

Nϕ2(+0) = I
β(1−α)
1− Dα,β

−1+ϕ2(+0) Nχ2(+0) = I
β(1−α)
1− Dα,β

−1+χ2(+0)

Corollary 4.3. The zeros of the function WF (λ) consist of the zeros of the char-
acteristic function ω(λ).

Theorem 4.4. The eigenvalues of fractional boundary value problems (3.1)-(3.5)
are the same as the roots of the characteristic function ω(λ).

Proof. Let λ = λ0 be a root of the characteristic function ω(λ). Hence by (4.40),
ω(x, λ0) = ω2(x, λ0) = 0. According to (4.38), it follows that ϕ2 and χ2 are linearly
dependent, that is

ϕ2(x, λ0) = cχ2(x, λ0), x ∈ (0, 1],
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for some c ̸= 0. As a result, the function ϕ2(x, λ0) satisfies the fractional boundary
condition (3.3). So, ϕ(x, λ0) which is given by

ϕ(x, λ0) =

ϕ1(x, λ0) x ∈ [−1, 0)

ϕ2(x, λ0) x ∈ (0, 1]
,

satisfies the main problems (3.1)-(3.5). So the function ϕ(x, λ0) is an eigenfunction
of problems (3.1)-(3.5) corresponding to the eigenvalue λ0.

Assume λ = λ0 is an eigenvalue and u0(x, λ0) is the corresponding eigenfunction.
Suppose that ω(x, λ0) ̸= 0. Then there exist constants ci, i = 1, 2, 3, 4, at least one
of which is not zero, such that

u0(x, λ0) =

 c1ϕ1(x, λ0) + c2χ1(x, λ0) x ∈ [−1, 0)

c3ϕ2(x, λ0) + c4χ2(x, λ0) x ∈ (0, 1]
,

since ω1(x, λ0) ̸= 0 and ω2(x, λ0) ̸= 0.
Since the eigenfunction u0(x, λ) satisfies both fractional boundary and fractional

transmission conditions (3.2)-(3.5), we have

Liu0(., λ0) = 0, for i = 1, 2, 3, 4.

Also with at least one of the constants ci, i = 1, 2, 3, 4, is not zero,

det(Liu0(., λ0)) = 0,

that is, WF (λ) = 0. But, by Lemma 4.4, WF (λ) ̸= 0. This contradiction completes
the proof.

5. Conclusions

This article employs the Hilfer fractional operator as a tool to analyze a specific
set of S-L boundary value problems with discontinuities. The research focuses on
investigating the eigenvalues and eigenfunctions of the fractional S-L problems and
demonstrates that the corresponding operator is symmetric. Moreover, we establish
the uniqueness of the solution to the problem by employing an iterative method and
delve into how the roots of characteristic functions relate to the eigenvalues.
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