
Journal of Nonlinear Modeling and Analysis http://jnma-online.com

Volume 6, Number 3, September 2024, 793–811 DOI:10.12150/jnma.2024.793

A Mathematical Model of in-Host Tuberculous
Granuloma∗
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Abstract Tuberculosis is the second biggest infectious disease killer after
coronavirus. In this paper, we analyze a mathematical model of in-host tu-
berculous granuloma, obtaining the basic reproduction number, as well as the
existence and stability of equilibrium points. The sensitivity analysis provides
parameters that have a significant effect on model dynamics. Finally, changes
in the number of immune cells, infected macrophages and Mycobacterium tu-
berculosis are analyzed by numerical simulation of three disease states: clear-
ance, latent infection and active tuberculosis. The results suggest that the
immune mechanism determing whether an infected individual will suffer from
active or latent tuberculosis is the ability of activated infected macrophages
to kill Mycobacterium tuberculosis.
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1. Introduction

Tuberculosis (TB) is a communicable disease that is a major cause of ill health and
one of the leading causes of death worldwide. Until the coronavirus (COVID-19)
pandemic, TB was the leading cause of death from a single infectious agent, ranking
above HIV/AIDS [1]. Therefore, the study of the dynamics of the immune response
within the granuloma is crucial for the prevention and treatment of TB.

About a quarter of the global population is estimated to have been infected
with TB, but most people will not go on to develop TB. They either clear the
infection, or experience latent infection [1]. These latent infection are neither sick
nor contagious, but they are at greater risk of developing TB, especially those with
weakened immune systems. Without treatment, the death rate from TB disease is
high (about 50%) [1]. Providing them with TB prevention and treatment measures
not only protects them from the disease, but also reduces the risk of transmission
in the community. Understanding the dynamics of the immune response is critical
to elucidating the differences between infected individuals and those with active
disease.
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Nowadays, mathematical models are widely used to study the factors that in-
fluence the progression of TB infection [2–8]. We assume that:

1) As soon as Mycobacterium tuberculosis(Mtb) invades, macrophages are acti-
vated, that is, only activated and infected macrophages are considered;

2) Mtb is phagocytosed by macrophages and is either cleared or infects the
macrophages. When the number of Mtb inside the macrophage reaches its limit,
it explodes and releases Mtb outside the macrophage. Mtb outside macrophages
grows in a linear manner;

3) in the event of a non-specific immune response, T cells are activated in a
logistic manner induced by infected macrophages;

4) the role of cytokines in the immune response is expressed only through im-
mune T cells and is not considered separately.

Based on the above assumptions and [3, 9], we study a four-dimensional ODE
in-host TB granuloma model (1.1) that includes linear growth of Mtb. Model
(1.1) includes activated infected macrophages(M̄U ), infected macrophages (M̄I),
extracellular Mtb(B̄) and immune T cells(T̄ ). Activation, infection and death
of activated infected macrophages(M̄U ) are tagged with ΛU , β̄ and µU . Infected
macrophages(M̄I) are cleared by T cells at the rate ᾱT . The death rate of infected
macrophages(M̄I) is µI . Recruitment of extracellular Mtb(B̄) resulting cell division
or release by apoptosis of infected macrophages. The bacteria division is modelled
in a linear manner, at a constant growth rate(ΛB). The average number of bacte-
ria released by apoptosis of infected macrophages is r̄. The death rate of immune
T cells(T̄ ) is expressed as µT . Infected macrophages(M̄I) can activate T cells(T̄ ),

expressed as (1 − T̄
Tmax

)k̄IM̄I , where k̄I is the growth rate of T cells, and Tmax is
the maximum population level of T cells. Our mathematical model of in-host TB
granuloma is written like this:

dM̄U

dt
= ΛU − µUM̄U − β̄B̄M̄U ,

dM̄I

dt
= β̄B̄M̄U − ᾱT M̄I T̄ − µIM̄I ,

dB̄

dt
= ΛBB̄ + r̄µIM̄I − γ̄UM̄U B̄ − µBB̄,

dT̄

dt
= (1− T̄

Tmax
)k̄IM̄I − µT T̄ ,

(1.1)

In order to reduce the number of parameters, we introduce the following variables

MU = M̄U

ΛU/µU
, MI = M̄I

ΛU/µU
, B = B̄

µ2
U/Λ2

B
, T = T̄

Tmax
.

The system(1.1) becomes

dMU

dt
= µU − µUMU − βBMU ,

dMI

dt
= βBMU − αTMIT − µIMI ,

dB

dt
= ΛBB + rMI − γUMUB − µBB,

dT

dt
= (1− T )kIMI − µTT,

(1.2)

where



A Mathematical Model of in-Host Tuberculous Granuloma 795

αT = ᾱTTmax, γU = γ̄UΛU

µU
, kI = k̄IΛU

TmaxµU
, β =

β̄µ2
U

Λ2
B
, r =

r̄Λ2
BΛUµI

µ3
U

.

The aim of this paper is to study the dynamical behaviour of a mathematical
model of in-host TB granuloma. The paper is organised as follows. In section 2, the
well-posedness of system (1.2) is given. In section 3, the existence of equilibrium
points is given. In section 4, the global stability of the equilibrium points is proved.
In section 5, sensitivity analyses of important parameters are carried out, followed
by numerical simulations of different infection states in which Mtb enters the human
body, with specific analyses. Finally, we give discussion and conclusions.

2. Well-posedness

In this section, we will study the non-negativity and ultimately boundedness of the
solutions of model (1.2) with non-negativity initial conditions.

Theorem 2.1. If initial conditions MU (0), MI(0), B(0), and T (0) are nonnegative,
then the solution MU (t), MI(t), B(t), T (t) of model (1.2) stays in the positively
invariant cone R4

+ and is bounded in the region

Ω = {(MU,MI,B,T) ∈ R4
+ : MU +MI ≤

µU

a
,B ≤ BM,T ≤ TM}, (2.1)

where, a = min{µU , µI}, TM = kIµU

kIµU+aµT
, BM = rµU

a(µB−ΛB) and µB > ΛB.

Proof. We first prove the non-negativity of the solutions (MU (t),MI(t), B(t), T (t))
of model (1.2) with the non-negative initial (MU (0),MI(0), B(0), T (0)).

The first equation of model (1.2) implies that

MU (t) = e−
∫ t
0
(µU+βB(s)) ds(

∫ t

0

µUe
∫ t
s
(µU+βB(u)) du ds+MU (0)).

It is easy to see that MU (t) > 0, t > 0 if MU (0) ≥ 0.
By the second and third equations of model (1.2), we can get

MI(t) = e−
∫ t
0
(αTT (s)+µI) ds(

∫ t

0

βB(s)MU (s)e
∫ t
s
(αTT (u)+µI) du ds+MI(0)),

B(t) = e−
∫ t
0
(γUMU (s)+µB−ΛB) ds(

∫ t

0

rMI(s)e
∫ t
s
(γUMU (u)+µB−ΛB) du ds+B(0)).

It implies that MI(t) ≥ 0, t ≥ 0 when B(t) ≥ 0, t ≥ 0, and B(t) ≥ 0, t ≥ 0, when
MI(t) ≥ 0, t ≥ 0. We suppose that MI(t) < 0 and B(t) < 0. Since the initial value
MI(0) ≥ 0 and B(0) ≥ 0, the continuous dependence of the solution on the initial
value implies the existence of t1 > 0, and t2 > 0, such that

MI(t1) = 0,

{
MI(t) > 0, t < t1,

MI(t) < 0, t > t1,
B(t2) = 0,

{
B(t) > 0, t < t2,

B(t) < 0, t > t2.

Without loss of generality, we assume that t1 ≤ t2, then B(t) > 0 for t < t2, and

MI(t1) =e−
∫ t1
0 (αTT (s)+µI)ds(∫ t1

0

βB(s)MU (s)e
∫ t1
s

(αTT (u)+µI)duds+MI(0)

)
> 0,
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which contradicts MI(t1) = 0. That is, t1 does not exist. Therefore MI(t) ≥ 0,
t ≥ 0.

Similarly, if t1 ≥ t2, we have MI(t) > 0 for t < t1, then

B(t2) =e−
∫ t2
0 (γUMU (s)+µB−ΛB)ds(∫ t2

0

rMI(s)e
∫ t2
s

(γUMU (u)+µB−ΛB)duds+B(0)

)
> 0,

which contradicts B(t2) = 0. That is, t2 does not exist. Therefore B(t) ≥ 0, t > 0.
Furthermore, from the fourth equation of (1.2), we have

T (t) = e−
∫ t
0
(kIMI(s)+µT )ds

(∫ t

0

kIMI(s)e
∫ t
s
(kIMI(u)+µT )duds+ T (0)

)
.

It is clear that T (t) ≥ 0, t > 0 when T (0) ≥ 0 since MI(t) ≥ 0.
Summarizing the above analysis, we know the solution (MU (t),MI(t), B(t), T (t))

of model (1.2) with the non-negative initial value {MU (0),MI(0), B(0), T (0)} is
non-negative.

Next, we prove the boundedness of the solutions of model (1.2). The first equa-
tion of system (1.2) implies that

M ′
U ≤ µU − µUMU ,

which implies that lim sup
t→∞

MU (t) ≤ 1.

Adding the first and second equations in model (1.2), and letting a = min{µU ,
µI}, we obtain

(MU +MI)
′ ≤ µU − a(MU +MI).

That is, lim sup
t→∞

(MU (t) +MI(t)) ≤ µU

a .

According to the third equation of system (1.2), and MI ≤ µU

a −MU ≤ µU

a , we
have

B′ ≤ r
µU

a
− (µB − ΛB)B.

It means that lim sup
t→∞

B ≤ rµU

a(µB−ΛB) ≜ BM. Obviously, B > 0 if and only if

µB > ΛB .
By the fourth equation of the system (1.2), and MI ≤ µU

a −MU ≤ µU

a , we get

T ′ = (1− T )kIMI − µTT

= kIMI − TkIMI − µTT.

Thus, we have lim sup
t→∞

T ≤ kIµU

kIµU+aµT
≜ TM . Therefore, the solutions (MU (t),MI(t),

B(t), T (t)) of the system (1.2) are bounded.

3. Equilibrium solutions

In this section, we focus on the basic reproduction number and the existence of
equilibria of the model (1.2).
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It is clear that there always exists the bacterium-free equilibrium P0 = (1, 0, 0, 0).
And then, following the approach of next-generation matrix [11], we can find the
basic reproduction number R0 of model (1.2) to be

R0 =
rβ

µI(γU + µB − ΛB)
.

Now, in order to find the bacteria-present equilibrium P1 = (M∗
U ,M

∗
I , B

∗, T ∗),
we consider the following equations:

µU − µUM
∗
U − βB∗M∗

U = 0,

βB∗M∗
U − αTM

∗
I T

∗ − µIM
∗
I = 0,

ΛBB
∗ + rM∗

I − γUM
∗
UB

∗ − µBB
∗ = 0,

(1− T ∗)KIM
∗
I − µTT

∗ = 0.

(3.1)

The fourth equation of (3.1) implies that

M∗
I =

µTT
∗

(1− T ∗)kI
. (3.2)

On the other hand, the first equation of (3.1) implies that

B∗ =
µU − µUM

∗
U

βM∗
U

. (3.3)

From the second and third equations of (3.1), we get the following relationship

B∗

M∗
I

=
αTT

∗ + µI

βM∗
U

, (3.4)

B∗

M∗
I

=
r

γUM∗
U + µB − ΛB

. (3.5)

That is, we obtain
αTT

∗ + µI

βM∗
U

=
r

γUM∗
U + µB − ΛB

. (3.6)

Equation (3.6) implies that

M∗
U =

(αTT
∗ + µI)(µB − ΛB)

rβ − (αTT ∗ + µI)γU
. (3.7)

It is clear that M∗
U > 0 when rβ − (αTT

∗ + µI)γU > 0, which implies that

T ∗ <
µI(µB − ΛB)R0 + µIγU (R0 − 1)

γUαT
≜ Tm. (3.8)

On the other hand, M∗
U ≤ 1 when T ∗ ≤ µI

αT
(R0−1), which implies that T ∗ > 0 holds

if and only if R0 > 1. That is, 0 < M∗
U ≤ 1 holds when 0 < T ∗ ≤ µI

αT
(R0−1) ≜ T ∗

M

and R0 > 1. Therefore, when R0 > 1, model (1.2) may exist the bacteria-present
equilibrium P1 = (M∗

U ,M
∗
I , B

∗, T ∗) with T ∗ < min{TM , T ∗
M} ≜ T̃ .
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Next, we study the existence and uniqueness of T ∗ in the interval (0, T̃ ), which
means the existence and uniqueness of the bacteria-present equilibrium P1 of model
(1.2). To this end, taking the expressions of (3.2) and (3.3) into (3.4), we have

µU − µUM
∗
U = (αTT

∗ + µI)
µTT

∗

(1− T ∗)kI
. (3.9)

Taking the expressions of (3.7) into (3.9), we have

[rβ − (αTT
∗ + µI)γU ][µU (1− T ∗)kI − µT (αTT

∗ + µI)T
∗]

−µU (αTT
∗ + µI)(µB − ΛB)(1− T ∗)kI = 0.

(3.10)

By equation (3.10), we conclude that T ∗ is the root of the following function f(T )
defined by the

f(T ) =− µTαT [rβ − (αTT + µI)γU ](T
2 +

µIµT + µUkI
µTαT

T − µUkI
µTαT

)

− µU (αTT + µI)(µB − ΛB)(1− T )kI , T ∈ (0, T̃ ).

(3.11)

Because of

T 2 +
µIµT + µUkI

µTαT
T − µUkI

µTαT
= (T − ξ)(T − η), (3.12)

where

ξ =
−µIµT+µUkI

µTαT
+

√
(µIµT+µUkI

µTαT
)2 + 4 µUkI

µTαT

2
< TM ,

η =
−µIµT+µUkI

µTαT
−

√
(µIµT+µUkI

µTαT
)2 + 4 µUkI

µTαT

2
< 0,

(3.13)

(3.11) can be rewritten as

f(T ) =− µTαT [rβ − (αTT + µI)γU ](T − ξ)(T − η)

− µU (αTT + µI)(µB − ΛB)(1− T )kI , T ∈ (0, T̃ ).
(3.14)

Rearranging (3.14), we have

f(T ) = y1T
3 + y2T

2 + y3T + y4, T ∈ (0, T̃ ), (3.15)

where
y1 =α2

T γUµT ,

y2 =µUαT kI(µB − ΛB + γU )− (rβ − 2µIγU )µTαT ,

y3 =− µUkIαT (µB − ΛB + γU )− µUkIµI(µB

− ΛB + γU )(R0 − 1)− µIµT (rβ − µIγU ),

y4 =µIµUkI(γU + µB − ΛB)(R0 − 1).

It is clear that y1 > 0, and f(0) = y4 > 0 when R0 > 1. Since f(ξ) =
−µU (αT ξ + µI)(µB − ΛB)(1 − ξ)kI < 0, and ξ > 0, we know f(T ) = 0 has one
negative root and two positive roots.

In order to ensure the existence of the bacteria-present equilibrium P1 of model
(1.2), we only need to discuss the positive root of f(T ) = 0 in the interval (0, T̃ ).
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When TM < T ∗
M < Tm, we have

rβ − (αTTM + µI)γU >rβ − (αTT
∗
M + µI)γU

>rβ − (αTTm + µI)γU

=0.

Thus,
f(TM ) =− µTαT [rβ − (αTTM + µI)γU ](TM − ξ)(TM − η)

− µU (αTTM + µI)(µB − ΛB)(1− TM )kI < 0.

When T ∗
M < TM , we have

(αTT
∗
M + µI)(µB − ΛB) = rβ − (αTT

∗
M + µI)γU .

Thus,

f(T ∗
M ) =− µTαT [rβ − (αTT

∗
M + µI)γU ][T

∗2
M +

µIµT + µUkI
µTαT

T ∗
M − µUkI

µTαT
]

− µU (αTT
∗
M + µI)(µB − ΛB)(1− T ∗

M )kI

=− (αTT
∗
M + µI)(µB − ΛB)(µTαTT

∗2
M + µIµTT

∗
M ) < 0.

Therefore, when R0 > 1, f(T ) = 0 has the unique positive roots T ∗ in the interval
(0, T̃ ). That is, model (1.2) has the unique bacteria-present equilibrium P1.

Summarizing the above analysis, we have the following result:

Theorem 3.1. Model (1.2) always has the bacterium-free equilibrium P0 = (1, 0, 0,
0). In addition, if R0 > 1, model (1.2) also has the unique the bacteria-present
equilibrium P1 = (M∗

U ,M
∗
I , B

∗, T ∗), where

M∗
I =

µTT
∗

(1− T ∗)kI
, B∗ =

µU − µUM
∗
U

βM∗
U

, M∗
U =

(αTT
∗ + µI)(µB − ΛB)

rβ − (αTT ∗ + µI)γU
,

and T ∗ is the solution of f(T ) = 0 in (3.15).

4. Global analysis

In this section, we focus on the stability of the bacterium-free equilibrium P0 and
the bacteria-present equilibrium P1.

Theorem 4.1. If R0 < 1, the bacterium-free equilibrium P0 is globally asymptoti-
cally stable, while if R0 > 1, the bacterium-free equilibrium P0 is unstable.

Proof. The Jacobian matrix of model (1.2) at P0

J(P0) =


−µU 0 −β 0

0 −µI β 0

0 r −(γU + µB) + ΛB 0

0 kI 0 −µT

 .
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Therefore, the characteristic equation of the system (1.2) at P0 is

p1(λ) = (λ+ µU )[(λ+ µI)(λ+ (γU + µB)− ΛB)(λ+ µT )− rβ(λ+ µT )]

= (λ+ µU )(λ+ µT )[λ
2 + (γU + µB − ΛB + µI)λ+ µI(γU + µB − ΛB)− rβ].

It is clear that both λ1 = −µU and λ2 = −µT are the characteristic roots, and the
remaining characteristic roots satisfy

g(λ) = λ2 + (
rβ

R0µI
+ µI)λ+ (

1

R0
− 1)rβ = 0. (4.1)

Because rβ
R0µI

+ µI > 0, we know g(λ) = 0 has one positive real root if R0 > 1,
which implies that P0 is unstable. While if R0 < 1, the Routh-Hurwitz criterion
implies that the roots of g(λ) = 0 both have negative real part, that is, P0 is locally
asymptotically stable.

Next, we give the global stability of P0 by constructing the Lyapunov function.
Let

V0 = rMI + µIB.

When R0 < 1, rβ − γUµI < µI(µB − ΛB). Then, we have

dV0

dt
= r(βBMU − αTMIT − µIMI) + µI(ΛBB + rMI − γUMUB − µBB)

= BMU (rβ − γUµI)− rαTMIT + µIB(ΛB − µB)

< BMUµI(µB − ΛB)− rαTMIT − µIB(µB − ΛB)

= BµI(µB − ΛB)(MU − 1)− rαTMIT.

(4.2)

Because µB > ΛB , MU < 1, thus, when R0 < 1, for all x ∈ Ω, V ′
0(x) ≤ 0. It is clear

that the maximum invariant set contained in the set dV0

dt = 0 is {P0}. Therefore,
applying the LaSalle-Lyapunov Theorem, we have that P0 is globally asymptotically
stable.

Theorem 4.2. If R0 > 1, then the bacteria-present equilibrium P1 is locally asymp-
totically stable.

Proof. The Jacobian matrix of model (1.2) at the bacteria-present equilibrium
P1 is:

J(P1) =


−µU − βB∗ 0 −βM∗

U 0

βB∗ −αTT
∗ − µI βM∗

U −αTM
∗
I

−γUB
∗ r ΛB − γUM

∗
U − µB 0

0 (1− T ∗)kI 0 −kIM
∗
I − µT

 .

Therefore, the characteristic equation of matrix J(P1) is

p2(λ) = λ4 + c1λ
3 + c2λ

2 + c3λ+ c4, (4.3)
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where

c1 =µU + βB∗ + αTT
∗ + µI + µB − ΛB + γUM

∗
U + kIM

∗
I + µT ,

c2 =(µU + βB∗)(αTT
∗ + µI) + (µU + βB∗ + αTT

∗ + µI)(µB − ΛB + γUM
∗
U )

+ (kIM
∗
I + µT )(µU + βB∗ + αTT

∗ + µI + µB − ΛB + γUM
∗
U )

+ αTM
∗
I (1− T ∗)kI − rβM∗

U − βM∗
UγUB

∗,

c3 =(µU + βB∗)(αTT
∗ + µI)(µB − ΛB + γUM

∗
U )

+ (kIM
∗
I + µT )[(µU + βB∗)(αTT

∗ + µI)

+ (µU + βB∗ + αTT
∗ + µI)(µB − ΛB + γUM

∗
U )]

+ (µU + βB∗ + µB − ΛB + γUM
∗
U )αTM

∗
I (1− T ∗)kI + rβB∗βM∗

U

− rβM∗
U (µU + βB∗ + kIM

∗
I + µT )− βM∗

UγUB
∗(αTT

∗ + µI + kIM
∗
I + µT ),

c4 =(µU + βB∗)(αTT
∗ + µI)(µB − ΛB + γUM

∗
U )(kIM

∗
I + µT )

+ (µU + βB∗)(µB − ΛB + γUM
∗
U )αTM

∗
I (1− T ∗)kI

+ rβB∗βM∗
U (kIM

∗
I + µT )− rβM∗

U (µU + βB∗)(kIM
∗
I + µT )

− βM∗
UγUB

∗αTM
∗
I (1− T ∗)kI − βM∗

UγUB
∗(αTT

∗ + µI)(kIM
∗
I + µT ).

(4.4)
By substituting M∗

U , M
∗
I and B∗ from Theorem 3.1 into (4.4), we have

c1 =
µU [rβ − (αTT

∗ + µI)γU ]

(αTT ∗ + µI)(µB − ΛB)
+ αTT

∗ + µI + µB − ΛB

+
γU (αTT

∗ + µI)(µB − ΛB)

rβ − (αTT ∗ + µI)γU
+

µT

1− T ∗ ,

c2 =
µU [rβ − (αTT

∗ + µI)γU ]

µB − ΛB
+

µU [rβ − (αTT
∗ + µI)γU ]

αTT ∗ + µI

+
µT

1− T ∗

(
µU [rβ − (αTT

∗ + µI)γU ]

(αTT ∗ + µI)(µB − ΛB)
+ αTT

∗ + µI + µB − ΛB

+
γU (αTT

∗ + µI)(µB − ΛB)

rβ − (αTT ∗ + µI)γU

)
+ αTµTT

∗ +
µUγU (αTT

∗ + µI)(µB − ΛB)

rβ − (αTT ∗ + µI)γU
,

c3 =µU [rβ − (αTT
∗ + µI)γU − (αTT

∗ + µI)(µB − ΛB)]

+
µT

1− T ∗
µU [rβ − (αTT

∗ + µI)γU ]

µB − ΛB
+

µT

1− T ∗
µU [rβ − (αTT

∗ + µI)γU ]

αTT ∗ + µI

+

(
µU [rβ − (αTT

∗ + µI)γU ]

(αTT ∗ + µI)(µB − ΛB)
+ µB − ΛB +

γU (αTT
∗ + µI)(µB − ΛB)

rβ − (αTT ∗ + µI)γU

)
αTµTT

∗ +
µUγU (αTT

∗ + µI)(µB − ΛB)

rβ − (αTT ∗ + µI)γU

µT

1− T ∗ ,

c4 =
µT

1− T ∗µU [rβ − (αTT
∗ + µI)γU − (αTT

∗ + µI)(µB − ΛB)]

+
µU [rβ − (αTT

∗ + µI)γU ]

αTT ∗ + µI
αTµTT

∗ +
µUγU (αTT

∗ + µI)(µB − ΛB)

rβ − (αTT ∗ + µI)γU
αTµTT

∗.

(4.5)
Since rβ − (αTT

∗ + µI)γU > 0, µB − ΛB > 0, 1− T ∗ > 0, and according to (3.10),
we have

uU (1− T ∗)kI [rβ − (αTT
∗ + µI)γU − (αTT

∗ + µI)(µB − ΛB)]

= [rβ − (αTT
∗ + µI)γU ]µT (αTT

∗ + µI)T
∗.
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Then rβ − (αTT
∗ + µI)γU − (αTT

∗ + µI)(µB − ΛB) > 0.
It follows from the Routh-Hurwitz criterion that the roots of the polynomial

p1(λ) has a negative real part if and only if its coefficients satisfy (4.6), thus the
bacteria-present equilibrium is locally asymptotically stable.

c1 > 0, c2 > 0, c3 > 0, c4 > 0,

D1 = c1 > 0,

D2 = c1c2 − c3 > 0,

D3 = (c1c2 − c3)c3 − c21c4 > 0.

(4.6)

It is clear that c1, c2, c3, c4 > 0. For easy writing, we make

A = rβ − (αTT
∗ + µI)γU , C = αTT

∗ + µI ,

D = µB − ΛB , E =
µT

1− T ∗ , F = αTµTT
∗.

(4.7)

After simplification, D2, D3 can be written as

D2 =(
µUA

CD
+

γUCD

A
)[
µUA

D
+

µUA

C
+ E(

µUA

CD
) + C +D +

γUCD

A
) +

µUγUCD

A
]

+ C[
µUA

D
+

µUA

C
+ E(C +D +

γUCD

A
) + F +

µUγUCD

A
]

+D[
µUA

C
+ E(C +D +

γUCD

A
) +

µUγUCD

A
]

+ E[
µUA

D
+

µUA

C
+ E(

µUA

CD
+ C +D +

γUCD

A
) + F ] + µUCD,

D3 =γUµUC(
µUA

CD
+

γUCD

A
)F (1− CD

A
)

+ γUµUC[µU (A− CD) + E
µUA

D
+ E

µUA

C
+

µUγUCD

A
E]

+
µUA

CD

µUA

D
[µU (A− CD) + E

µUA

D
+ E

µUA

C
+ (

µUA

CD
+

γUCD

A
)F

+
µUγUCD

A
E] + (

µUA

CD
+

γUCD

A
)
µUA

C
[µU (A− CD) + E

µUA

D
+ E

µUA

C

+
µUγUCD

A
E] +

µUA

CD
EγUµUF (1− CD

A
) + µUγUEDF (1− CD

A
)

+ µUγUE(E
µUA

D
+ E

µUA

C
+

γUCD

A
F +

µUγUCD

A
E)

+
µUA

CD
EµUγUF (1− CD

A
) +

µUA

CD
E
µUA

CD
[E

µUA

D
+ E

µUA

C
+ (

µUA

CD
+D)F

+
µUγUCD

A
E] +

µUA

CD
ED(E

µUA

D
+ E

µUA

C
+
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E)

+ µUγUEDF (1− CD
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+
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E
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+ (D +
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A
)F +
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A
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+ (
µUA

CD
+D +

γUCD

A
)F +

µUγUCD

A
E]

+
µUγUCD

A
E) + µUγUECF (1− CD

A
) +

γUCD

A
EγUµUF (1− CD

A
)
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A
)F ] + CD2E2
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A
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µUA

CD
+

γUCD

A

+D)F +
µUγUCD

A
E] +DE(
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D
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A
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A
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D
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A
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D
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C
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A
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) + E2 γUCD

A
[E

µUA

D
+ E

µUA

C
+ (

µUA

CD
+

γUCD

A

+D)F +
µUγUCD

A
E] + E

µUA

C
µU [(A− CD) + E

µUA

C
+

µUγUCD

A
E]

+ E2µUA+ CE(C +
γUCD

A
)E

µUA

D
+ EµUA(ET ∗ + µT + αTM

∗
I T

∗kI + EµI),

Because

A− CD = rβ − (αTT
∗ + µI)γU − (αTT

∗ + µI)(µB − ΛB) > 0,
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it is clear that when R0 > 1, D2 > 0, D3 > 0. That is, the bacteria-present
equilibrium P1 is locally asymptotically stable when R0 > 1.

Theorem 4.3. If R0 > 1, and B∗ ≤ µU (µB−ΛB)
βM∗

UγU
, then the bacteria-present equilib-

rium P1 is globally asymptotically stable.

Proof. We will prove the global stability of P1 by constructing a Lyapunov func-
tion. Let

V1 =(a1 + a2)[MU −M∗
U −M∗

U ln(
MU

M∗
U

)] + (a3 + a4)[MI −M∗
I −M∗

I ln(
MI

M∗
I

)]

+ a5[B −B∗ −B∗ ln(
B

B∗ )] + a6[T − T ∗ − T ∗ ln(
T

T ∗ )],

(4.8)
where

a1 = βB∗M∗
UγU , a2 = µU (µB − ΛB)− βB∗M∗

UγU , a3 = µU (µB − ΛB),

a4 = µUM
∗
UγU , a5 = µUM

∗
Uβ, a6 =

[µUM
∗
UγU + µU (µB − ΛB)]αTT

∗M∗
I

kIM∗
I (1− T ∗)

.
(4.9)

It is clear that V1(x) > 0, and V1(P1) = 0 for x ∈ Ω. Then, taking the derivative of
V1 directly yields that

dV1

dt
=(a1 + a2)(MU −M∗

U )(
µU

MU
− µU − βB)

+ (a3 + a4)(MI −M∗
I )(

βBMU

MI
− αTT − µI)

+ a5(B −B∗)(ΛB +
rMI

B
− γUMU − µB)

+ a6(T − T ∗)(
kIMI

T
− kIMI − µT ).

(4.10)

In addition, by using Eq.(3.1), we have

µU = µUM
∗
U + βB∗M∗

U , µI =
βB∗M∗

U

M∗
I

− αTT
∗M∗

I

M∗
I

,

µB =
rM∗

I

B∗ − γUM
∗
U + ΛB , µT =

kIM
∗
I

T ∗ − kIM
∗
I .

(4.11)

Taking (4.11) into (4.10), we can get

dV1

dt
=(a1 + a2)[µUM

∗
U (2−

M∗
U

MU
− MU

M∗
U

) + βB∗M∗
U (1 +

B

B∗ − M∗
U

MU
− BMU

B∗M∗
U

)]

+ (a3 + a4)[βB
∗M∗

U (
BMU

B∗M∗
U

− BMUM
∗
I

B∗M∗
UMI

− MI

M∗
I

+ 1)

+ αTT
∗M∗

I (
T

T ∗ +
MI

M∗
I

− TMI

T ∗M∗
I

− 1)]

+ a5[rM
∗
I (

MI

M∗
I

+ 1− MIB
∗

M∗
I B

− B

B∗ ) + γUM
∗
UB

∗(
MU

M∗
U

+
B

B∗ − 1− MUB

M∗
UB

∗ )]

+ a6[kIM
∗
I (

MI

M∗
I

− MIT
∗

M∗
I T

− T

T ∗ + 1)

+ kIM
∗
I T

∗(− MIT

M∗
I T

∗ +
MI

M∗
I

+
T

T ∗ − 1)].
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Denoting h = MU

M∗
U
, y = MI

M∗
I
, z = B

B∗ , and w = T
T∗ , we have

dV1

dt
=(a1 + a2)[µUM

∗
U (2−

1

h
− h) + βB∗M∗

U (1 + z − 1

h
− hz)]

+ (a3 + a4)[βB
∗M∗

U (zh− zh

y
− y + 1) + αTT

∗M∗
I (w + y − wy − 1)]

+ a5[rM
∗
I (y + 1− y

z
− z) + γUM

∗
UB

∗(h+ z − 1− hz)]

+ a6[kIM
∗
I (y −

y

w
− w + 1) + kIM

∗
I T

∗(−yw + y + w − 1)].

(4.12)
Furthermore, by using

(a1 + a2)βB
∗M∗

U = a3βB
∗M∗

U = a5(µB − ΛB)B
∗,

a1µUM
∗
U = a4βB

∗M∗
U = a5γUM

∗
UB

∗,

a6kIM
∗
I = (a3 + a4)αTT

∗M∗
I + a6kIM

∗
I T

∗,

(4.12) can be rewritten as

dV1

dt
=(a3 + a4)βB

∗M∗
U (3−

hz

y
− y

z
− 1

h
) + a2µUM

∗
U (2− h− 1

h
)

+ a6kIM
∗
I y(2− w − 1

w
).

Obviously, ai > 0, i = 1, 3, 4, 5, 6, in (4.9). In addition, B∗ ≤ µU (µB−ΛB)
βM∗

UγU
can

ensure a2 ≥ 0. Therefore, we can get dV1

dt (x) ≤ 0 for any x ∈ Ω, and dV1

dt (x) = 0
if and only if x = P1. That is, the LaSalle-Lyapunov Theorem implies that P1 is

globally asymptotically stable in R0 > 1 and B∗ ≤ µU (µB−ΛB)
βM∗

UγU
. This means that at

R0 > 1, if B ∈ (0, µU (µB−ΛB)
βM∗

UγU
], then the bacteria-present equilibrium P1 is globally

asymptotically stable, and at this time bacterial growth is controlled, which is the

latent period of TB; and if B > µU (µB−ΛB)
βM∗

UγU
, then the bacteria-present equilibrium

P1 is unstable, and at this time bacterial growth is not controlled, and is active TB.

5. The sensitivity analysis and numerical simula-
tions

Some individuals infected with Mtb can eliminate or control the infection, thus re-
main in a latent state, while others can develop active disease in the short or long
term. Identifying the immune mechanisms that determine whether an infected indi-
vidual will suffer from active or latent TB can help in the development of treatment
and prevention strategies. We will choose five parameters related to M̄I and B̄, that
is, β̄, ᾱT , γ̄U , ΛB and r̄, and use sensitivity analyses based on Latin Hypercube
Sampling (LHS) on them, so as to show the effects of these parameters on Mtb in
the hosts. The parameter ranges of model (1.1) are put in Table 1. According to
the original data, the basic reproduction number of model (1.1) is

R0 =
r̄β̄ΛU

γ̄UΛU + µUµB − ΛBµU
.
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Table 1. Parameter values

Parameter Value Unit Reference

ᾱT 1× 10−5 − 5× 10−5 day−1 [5]

γ̄U 0.5× 10−7 − 1.9× 10−6 day−1 Estimate

µI 0.011 day−1 [3]

µU 0.0028 day−1 [3]

µT 0.33 day−1 [3]

µB 0.012 day−1 [3]

r̄ 0.2-0.5 day−1 [5]

ΛB 0-0.011 day−1 [9]

ΛU 1000 1/ml day [3]

β̄ 1× 10−6 − 3× 10−6 day−1 [5]

k̄I 0.008 day−1 [3]

Tmax 50000 day−1 [3]

Both Fig.1 and Fig.2 show that the rate at which activated infected macrophages
kill Mtb γ̄U has the greatest effect on infected macrophages and Mtb, followed by
the infection rate β̄ of activated infected macrophages and the average number r̄
of bacteria released by apoptosis of infected macrophages. This means that if the
ability of activated infected macrophages to kill Mtb is weakened, Mtb will increase
substantially in the host. In other words, the immune system of an infected person
determines whether Mtb is cleared from the body, develops latent TB, or progresses
to active TB.
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Figure 1. The sensitivity analysis of MI on part parameter.

In the following, we will simulate different outcomes of the disease. First simulate
the state where Mtb invading the host is eliminated. Take the parameters ᾱT =
3 × 10−5, γ̄U = 3 × 10−7, µI = 0.011, µU = 0.0028, µT = 0.33, µB = 0.012,
β̄ = 1 × 10−6, r̄ = 0.2, k̄I = 0.008, ΛU = 1000, ΛB = 0.011, and Tmax = 50000.
At this stage with R0 = 0.6605, the simulation results for this case are shown in
the following Fig.3. Fig.3 shows that the number of activated infected macrophages
increases substantially over time, while the number of Mtb, infected macrophages
and T cells decreases to zero. In other words, Mtb is removed from the human
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Figure 2. The sensitivity analysis of B on part parameter.

body, so the infected individuals is not infected and is healthy.
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Figure 3. The uninfected stage is formed after Mtb invades the host when R0 < 1.

.

Then, we simulate the latent infection formed by Mtb entering the human body.
Take the parameters γ̄U = 1.9×10−7, and keep the other parameters consistent with
Fig.3. At this stage R0 = 1.0373, and the simulation results for this case are shown
in the following Fig.4. Fig.4 shows that over time, the number of activated infected
macrophages grows substantially and T cells decrease to zero. Although Mtb and
infected macrophages are eventually present in the body, the number of activated
infected macrophages is much greater than the number of infected macrophages
and Mtb, which is the latent period of TB. During the latent period, infected
individuals are not contagious and do not show obvious symptoms, but they should
pay attention to their immunity and avoid prolonged fatigue and malnutrition. If
the immune system is weakened, it may lead to reactivation of the disease and the
development of active TB. It is important for infected individuals to be exercised
and to have regular checkups at the hospital.

At last, we simulate the state of active TB in which Mtb invades the host. Take
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Figure 4. The latent stage is formed after Mtb invades the host when R0 > 1.

the parameters r̄ = 0.5, β̄T = 2 × 10−6, γ̄U = 1.2 × 10−7, and keep the other
parameters consistent with Fig.3. At this time R0 = 8.1433, and the simulation
results for this case are shown in the following Fig.5. Fig.5 shows that activated
infected macrophages grow rapidly during the initial phase of infection, followed
by a rapid growth of T cells and infected macrophages, then infected macrophages
decrease dramatically due to the burst, which results in the release of a large number
of bacteria, and these bacteria multiply so that the bacterial population grows
beyond the control of the immune cells. This is a state of active infection, leading
to uncontrolled infection and eventual development of active TB. At this time, the
individual is contagious and clearly symptomatic.

6. Conclusion

Based on the immune response after Mtb invasion, we developed a mathematical
model of in-host TB granuloma. For this model, we demonstrate the existence
and the global stability of the bacteria-free equilibrium and the bacteria-present
equilibrium, then perform sensitivity analyses on important parameters. Finally,
three different states of Mtb after entering the host are numerically simulated. The
main objective is to analyze the changes in the number of infected macrophages and
Mtb after the entry of Mtb into the host, and to find out the immune mechanism
that determines whether an infected individual will suffer from active or latent TB.

The results show that when R0 < 1, the rate γ̄U at which activated infected
macrophages kill Mtb is greater, and therefore the number of bacteria is less. When
the number of bacteria is small, a large increase in the number of activated infected
macrophages will kill the bacteria directly. At this point the individual is not
infected and the body is healthy. When R0 > 1, the rate γ̄U becomes smaller,
so the number of surviving bacteria becomes larger. Since γ̄U can still control the
number of bacteria at this time, fewer macrophages are infected. Although the
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Figure 5. The active stage is formed after Mtb invades the host when R0 > 1.

individual cannot eliminate Mtb, the number of activated infected macrophages
is much greater than the number of Mtb, which is the latent period of TB, i.e.,
latent infection. Individuals with latent infection are not contagious and do not
show obvious symptoms. When the body is chronically tired, malnourished, and
immunocompromised, the ability of the activated infected macrophages to kill Mtb
is reduced, thus the number od infected macrophages increases, and eventually
the bacteria grow in large numbers without being controlled by the immune cells,
resulting in an uncontrolled infection that progresses to active TB. At this point,
the individual has TB, which is contagious and accompanied by obvious symptoms.
In conclusion, the immune system of TB patients, especially the ability of activated
infected macrophages to kill Mtb, is related to the treatment and prevention, so it
is necessary to strengthen the exercise in daily life and go to the hospital for regular
medical checkups.

References [5] proposed that Mtb can also activate T cells. Therefore, a math-
ematical model of TB granuloma that includes these cells should be considered for
our future studies.
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