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Abstract In this article, we introduce the notion of cyclic α-admissible map-
ping with respect to θ with its special cases, which are cyclic α-admissible
mapping with respect to θ∗ and cyclic α∗-admissible mapping with respect to
θ. We present the notion of orthogonal (αθ − βF )-rational contraction and
establish new fixed point results over orthogonal F-metric space. The study
includes illustrative examples to support our results. We apply our results to
prove the existence and uniqueness of solutions for second-order differential
equations.
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1. Introduction

In 1922, [9] the Polish mathematician Banach presented the most important of the
fixed point theorems known as the Banach contraction principle, which proves the
existence and uniqueness of the fixed point for any contraction mapping H : Ξ → Ξ,
and (Ξ, D) should be a complete metric space, where D : Ξ × Ξ → [0,∞). In
2012, Wardowski [7] presented the concept of F -contraction, a generalization of
the Banach contraction principle. This means that Banach contractions can be
seen as a particular case of F -contractions. Therefore, many researchers used this
concept to study the existence and uniqueness of the fixed point in a different way
instead of using Banach’s theorem. [10–16] is recommended for readers interested
in fixed point findings obtained using the notion of F -contraction. Some authors
modified or reformulated some of the conditions of this concept and studied some
fixed point theorems (see [17–20]). Kanokwan et al. [27] introduced the notion of
orthogonal F -contraction and established some fixed point results over orthogonal
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metric space. Jleli and Samet [1] introduced the concept of F-metric space in 2018.
Researchers have since paid great attention to this space and have used it to study
several fixed point theorems (see, e.g., [21–24]). Some even used F -contraction to
study some fixed point theorems over F-metric space (see [25, 26]). In 2020, T.
Kanwal et al. [3] presented the notion of orthogonal F-metric spaces and proved
some fixed point theorems and [8,29,30] presented some new fixed point results over
orthogonal F-metric space. M. Taleb et al. studied some fixed point results and
applied their results to study the existence and uniqueness of solutions of nonlinear
neutral differential equations (see [23]) and in [28] also studied the existence and
uniqueness of solutions to first-order differential equations.

In this paper, we present a modification of the cyclic (α, θ)-admissible map-
ping, which is done by introducing the concept of cyclic α-admissible mapping with
respect to θ, presenting the notion of orthogonal (αθ − βF )-rational contraction.
Additionally, we establish new fixed point results over orthogonal F-metric space.
The paper is organized as follows. In Sect.(3), the concept of cyclic α-admissible
mapping with respect to θ is introduced (see Definition (3.1)) which is a modifica-
tion to what was stated in definition (2.11) and we provide an illustrative example
to support this result (see Example (3.1)). We deduce two special concepts from
definition (3.1), namely cyclic α-admissible mapping with respect to θ∗ and cyclic
α∗-admissible mapping with respect to θ (see Remark (3.1)). We also introduce a
concept of orthogonal (αθ − βF )-rational contraction (see Definition (3.2)) and we
establish new fixed point results over orthogonal F-metric space (see Theorem (3.1)
) and (Corollaries (3.1), (3.2) and (3.3)). These results are supported by an example
(3.2). In Sect. (4), we apply our results to show the existence and uniqueness of
solutions for second-order differential equations (see Theorem (4.1)). Our results
generalize and advance existing literature, such as [5], [23] and also present a novel
approach to establish the existence and uniqueness of solutions for second-order
differential equations.

2. Preliminaries

In 2012, Wardowski [7] introduced the notion of F - contraction as follows.

Definition 2.1 ( [7]). Let Ξ ̸= ∅, and (Ξ, D) be a metric space. A mapping
H : Ξ → Ξ is called F - contraction if ∃ τ > 0, ∀ ω, ν ∈ Ξ, D(Hω,Hν) > 0, and we
have

τ + F (D(Hω,Hν)) ≤ F (D(ω, ν)) ,

where F : (0,∞) → R satisfies the following conditions:

(F1) 0 < s < ι ⇒ F (s) ≤ F (ι).

(F2) ∀ {ιn} ⊂ (0,+∞), we have

lim
n→+∞

F (ιn) = −∞ ⇔ lim
n→+∞

ιn = 0.

(F3) For some r ∈ (0, 1), lim
ι→0+

ιrF (ι) = 0.

The class of functions F is denoted by Φ.

Definition 2.2 ( [1]). Let DF : Ξ×Ξ → [0,∞) be a given mapping. If ∃ a ∈ [0,∞),
such that
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(DF 1) (ω, ν) ∈ Ξ× Ξ, DF (ω, ν) = 0 ⇔ ω = ν.

(DF 2) DF (ω, ν) = DF (ν, ω), ∀ (ω, ν) ∈ Ξ× Ξ.

(DF 3) For each (ω, ν) ∈ Ξ× Ξ, ∀ N in N, N ≥ 2, ∀ (ωi)
N
i=1 ⊂ Ξ, with (ω1, ωN ) =

(ω, ν), we have

DF (ω, ν) > 0 ⇒ ξ (DF (ω, ν)) ≤ ξ

(
N−1∑
i=1

DF (ωi, ωi+1)

)
+ a,

where ξ : (0,∞) → R satisfies F1 and F2. Then (Ξ, DF ) is called F-metric space
(briefly F-MS).

Example 2.1 ( [1]). Let Ξ = N, DF : Ξ× Ξ → [0,∞) be a mapping define by

DF (ω, ν) =

{
e|ω−ν|, if ω ̸= ν,

0, if ω = ν,

∀ (ω, ν) ∈ Ξ× Ξ. Then (Ξ, DF ) is an F-MS with ξ(ι) = −1
ι , ι > 0 and a = 1.

Definition 2.3 ( [1]). Let (Ξ, DF ) be an F-MS.

1. {ωn} is F-convergent to ω ∈ Ξ, if lim
n→∞

DF (ωn, ω) = 0.

2. {ωn} is F-Cauchy, if lim
n,m→+∞

DF (ωn, ωm) = 0.

3. (Ξ, DF ) is F-complete, if each F-Cauchy sequence in Ξ is F-convergent to a
point in Ξ.

Definition 2.4 ( [2]). Let Ξ ̸= ∅, and the binary relation ⊥ ⊂ Ξ × Ξ satisfies the
following condition:

∃ ω0 : (∀ν, ν⊥ω0) or (∀ν, ω0⊥ν).

Then it is called an orthogonal set (briefly O-set) and is denoted by (Ξ,⊥).

Definition 2.5 ( [2]). Let (Ξ,⊥) be an O-set. A sequence {ωn} is called orthogonal
sequence (O-sequence) if

(ωn⊥ωn+1,∀ n ∈ N) ∨ (ωn+1⊥ωn,∀ n ∈ N).

Definition 2.6 ( [2]). Let (Ξ,⊥) be an O-set. A mapping H : Ξ → Ξ is said to be
⊥−preserving if:

ω⊥ν ⇒ Hω⊥Hν.

Definition 2.7 ( [3]). Let (Ξ,⊥) be an O-set and DOF be an F-M on Ξ. The
triplet (Ξ,⊥, DOF ) is called orthogonal F-metric space (briefly O-F-MS).

Example 2.2 ( [3]). Let Ξ = [0, 1] be an F-MS with metric defined in Example
(2.1), ∀ ω, ν ∈ Ξ with ξ(ι) = −1

ι , ι > 0 and a = 1. Define ω⊥ν if ων ≤ ω or ων ≤ ν.
Then, ∀ ω ∈ Ξ, 0⊥ω, so (Ξ,⊥) is an O-set. Then (Ξ,⊥, DOF ) is an O-F-MS.

Definition 2.8 ( [3]). Let (Ξ,⊥, DOF ) be an O-F-MS.

1. A mapping H : Ξ → Ξ is called orthogonally continuous (⊥-continuous) at
ω ∈ Ξ if for all O-sequence {ωn} in Ξ with ωn → ω, then Hωn → Hω. And H
is called ⊥-continuous on Ξ if H is ⊥-continuous in every ω ∈ Ξ.
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2. A set Ξ of (Ξ,⊥, DOF ) is called orthogonally F-complete (O-F-complete) if
every Cauchy O-sequence is F- convergent in Ξ.

Let ℑ be the set of functions β : [0,∞) → [0, 1) such that

lim
n→∞

β(ιn) = 1 ⇒ lim
n→∞

ιn = 0.

Definition 2.9 ( [4]). Let H : Ξ → Ξ and α : Ξ×Ξ → [0,∞) be a mapping. Then
H is called α-admissible mapping if:

ω, ν ∈ Ξ, α(ω, ν) ≥ 1 ⇒ α(Hω,Hν) ≥ 1.

In 2013 Salimi et al. [6] extended the concept of α-admissible mapping as follows

Definition 2.10 ( [6]). Let H : Ξ → Ξ and α, θ : Ξ × Ξ → [0,∞). Then H is
called α-admissible mapping with respect to θ if:

ω, ν ∈ Ξ, α(ω, ν) ≥ θ(ω, ν) ⇒ α(Hω,Hν) ≥ θ(Hω,Hν).

Definition 2.11 ( [5]). Let H : Ξ → Ξ and α, θ : Ξ → [0,∞). Then H is called
cyclic (α, θ)-admissible mapping if:

1. α(ω) ≥ 1 for some ω ∈ Ξ, it implies that θ(Hω) ≥ 1,

2. θ(ω) ≥ 1 for some ω ∈ Ξ, it implies that α(Hω) ≥ 1.

3. Main results

In this section, we introduce the concepts of cyclic α-admissible mapping with
respect to θ and orthogonal (αθ−βF )-rational contraction and we prove some new
fixed point results in an O-F-MS.

Definition 3.1. Let H : Ξ → Ξ and α, θ : Ξ → [0,∞). Then H is called cyclic
α-admissible mapping with respect to θ if:

α(ω) ≥ θ(ω) for some ω ∈ Ξ ⇒ θ(Hω) ≥ α(Hω).

Example 3.1. Let Ξ = R. Define H : Ξ → Ξ by

H(ω) =

{
1
ω , if ω ∈ [1,∞),

0, otherwies,

and α, θ : Ξ → [0,∞) by

α(ω) =

{
ω, if ω ∈ [1,∞),

0, otherwies,

θ(ω) =

{
1
ω , if ω ∈ [1,∞),

0, otherwies.

Clearly, α(ω) ≥ θ(ω) for all ω ∈ [1,∞), we have, θ(Hω) = 1
Hω = ω and α(Hω) =

Hω = 1
ω . Then, we get θ(Hω) ≥ α(Hω) for all ω ∈ [1,∞). Hence, H is a cyclic

α-admissible mapping with respect to θ.
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Remark 3.1. (1) If θ(ω) = 1 in Definition (3.1) we get the following condition:

α(ω) ≥ 1 for some ω ∈ Ξ ⇒ α(Hω) ≤ 1.

In this case H is called cyclic α-admissible mapping with respect to θ∗.

(2) If α(ω) = 1 in Definition (3.1) we get the following condition:

θ(ω) ≤ 1 for some ω ∈ Ξ ⇒ θ(Hω) ≥ 1.

In this case H is called cyclic α∗-admissible mapping with respect to θ.

In Example (3.1) if we take θ(ω) = 1. Then, we get α(ω) = ω ≥ 1 for all
ω ∈ [1,∞). Since θ(Hω) = 1, then we get α(Hω) = Hω = 1

ω ≤ 1 for all ω ∈ [1,∞).
And if we take α(ω) = 1. Then, we get θ(ω) = 1

ω ≤ 1 for all ω ∈ [1,∞). Since
α(Hω) = 1, then we get θ(Hω) = 1

Hω = ω ≥ 1 for all ω ∈ [1,∞).

Definition 3.2. Let (Ξ,⊥, DOF ) be an O-F-MS. A mappingH : Ξ → Ξ is called an
orthogonal (αθ− βF )- rational contraction if there exists F ∈ Φ, α, θ : Ξ → (0,∞),
β ∈ ℑ and τ > 0 such that, ∀ ω, ν ∈ Ξ with ω⊥ν and DOF (Hω,Hν) > 0, the
following condition is satisfied:

α(ω)θ(Hω) ≥ θ(ω)α(Hω).

Also,
α(ν)θ(Hν) ≥ θ(ν)α(Hν)

implies
τ + F (DOF (Hω,Hν)) ≤ F (β (M(ω, ν))M(ω, ν)) , (3.1)

where

M(ω, ν) = max

{
DOF (ω, ν),

min

{
DOF (ω,Hω)DOF (ν,Hν)

1 +DOF (ω, ν)
,
DOF (ν,Hν)[1 +DOF (ω,Hω)]

1 +DOF (ω, ν)

}}
.

Theorem 3.1. Let (Ξ,⊥, DOF ) be an O-complete F-MS and H : Ξ → Ξ be an
orthogonal (αθ−βF )- rational contraction. If the following conditions are satisfied:

(h1) H is ⊥−preserving, that is ω⊥ν ⇒ Hω⊥Hν.
(h2) There exists an orthogonal element ω0 ∈ Ξ such that ω0⊥Hω0 or Hω0⊥ω0

and α(ω0) ≥ θ(ω0).

(h3) H is ⊥−continuous or,

(h′3) if {ωn} is a sequence in Ξ such that ωn → ω ∈ Ξ and ωn⊥Hωn or Hωn⊥ωn

and α(ωn) ≥ θ(ωn) then ωn⊥ω or ω⊥ωn and α(ω) ≥ θ(ω), ∀ n ∈ N.
(h4) H is cyclic α-admissible mapping with respect to θ.

(h5) For all ω, ν ∈ Ξ (ω ̸= ν) fixed points of H with ω⊥ν or ν⊥ω, then α(ω) ≥ θ(ω)
and α(ν) ≥ θ(ν).

Then H has a unique fixed point.
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Proof. By (h2), ∃ ω0 ∈ Ξ such that ω0⊥Hω0 or Hω0⊥ω0 and α(ω0) ≥ θ(ω0).
Define a sequence {ωn} by ωn+1 = Hωn ∀ n ∈ N. For some n, if ωn+1 = ωn, then
Hωn = ωn. Thus, ωn is a fixed point of H, the proof is completed. So suppose that
ωn+1 ̸= ωn ∀ n ∈ N. Then DOF (ωn, ωn+1) > 0. As H is ⊥−preserving, so we have

[ωn⊥ωn+1 ∀ n ∈ N] or [ωn+1⊥ωn ∀ n ∈ N],

that is, the sequence {ωn} is an ⊥-sequence in Ξ. By (h4), we have

α(ω0) ≥ θ(ω0) ⇒ θ(Hω0) ≥ α(Hω0).

Then, we get
α(ω0)θ(Hω0) ≥ θ(ω0)α(Hω0).

Deductively, we have

α(ωn−1)θ(Hωn−1) ≥ θ(ωn−1)α(Hωn−1), (3.2)

and

α(ωn)θ(Hωn) ≥ θ(ωn)α(Hωn), ∀ n ∈ N. (3.3)

By (3.2), (3.3) and using (3.1), we get

τ + F (DOF (ωn, ωn+1)) = τ + F (DOF (Hωn−1,Hωn)) (3.4)

≤ F (β (M(ωn−1, ωn))M(ωn−1, ωn)) ,

where

M(ωn−1, ωn) = max

{
DOF (ωn−1, ωn),min

{
DOF (ωn−1,Hωn−1)DOF (ωn,Hωn)

1 +DOF (ωn−1, ωn)
,

DOF (ωn,Hωn)[1 +DOF (ωn−1,Hωn−1)]

1 +DOF (ωn−1, ωn)

}}
= max

{
DOF (ωn−1, ωn),min

{
DOF (ωn−1, ωn)DOF (ωn, ωn+1)

1 +DOF (ωn−1, ωn)
,

DOF (ωn, ωn+1)[1 +DOF (ωn−1, ωn)]

1 +DOF (ωn−1, ωn)

}}
≤ max {DOF (ωn−1, ωn),min {DOF (ωn, ωn+1), DOF (ωn, ωn+1)}}
= max {DOF (ωn−1, ωn), DOF (ωn, ωn+1)} .

If max {DOF (ωn−1, ωn), DOF (ωn, ωn+1)} = DOF (ωn, ωn+1), then by (3.4) and β ∈
ℑ, we get

F (DOF (ωn, ωn+1)) ≤ F (β (DOF (ωn, ωn+1))DOF (ωn, ωn+1))− τ

≤ F (DOF (ωn, ωn+1))− τ, τ > 0,

which is a contradiction, and hence,

max
{
DOF (ωn−1, ωn), DOF (ωn, ωn+1)

}
= DOF (ωn−1, ωn),

then from (3.4), we get

F (DOF (ωn, ωn+1))
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≤ F (β (DOF (ωn−1, ωn))DOF (ωn−1, ωn))− τ

= F
(
β
(
DOF (ωn−1, ωn)

)
DOF (Hωn−2,Hωn−1)

)
− τ

≤ F
(
β
(
DOF (ωn−1, ωn)

)
β
(
DOF (ωn−2, ωn−1)

)
DOF (ωn−2, ωn−1)

)
− 2τ

...

≤ F
(
β
(
DOF (ωn−1, ωn)

)
β
(
DOF (ωn−2, ωn−1)

)
· · ·β

(
DOF (ω0, ω1)

)
DOF (ω0, ω1)

)
− nτ

= F

((
n∏

i=1

β (DOF (ωi−1, ωi))

)
DOF (ω0, ω1)

)
− nτ

≤ F (DOF (ω0, ω1))− nτ, ∀ n ∈ N. (3.5)

Let ξ : (0,∞) → R satisfy (F1) and (F2). Let ε > 0 and a ∈ [0,∞) be such that
(DF 3) is satisfied. From (F2), there exists δ > 0 such that

0 < ι < δ ⇒ ξ(ι) < ξ(ε)− a. (3.6)

Now, applying n → ∞ and by (F2), we get

lim
n→∞

F (DOF (ωn, ωn+1)) = −∞ ⇔ lim
n→∞

DOF (ωn, ωn+1) = 0. (3.7)

By (F3) ∃ r ∈ (0, 1) such that

lim
n→∞

(
DOF (ωn, ωn+1)

)r
F
(
DOF (ωn, ωn+1)

)
= 0. (3.8)

Then, from (3.5), we get(
DOF (ωn, ωn+1)

)r
F (DOF (ωn, ωn+1)) ≤

(
DOF (ωn, ωn+1)

)r[
F (DOF (ω0, ω1))− nτ

]
.

We have(
DOF (ωn, ωn+1)

)r
F (DOF (ωn, ωn+1))−

(
DOF (ωn, ωn+1)

)r
F (DOF (ω0, ω1))

≤
(
DOF (ωn, ωn+1)

)r[
F (DOF (ω0, ω1))− nτ

]
−
(
DOF (ωn, ωn+1)

)r
F (DOF (ω0, ω1))

≤ −nτ
(
DOF (ωn, ωn+1)

)r
≤ 0.

Since

lim
n→∞

n
(
DOF (ωn, ωn+1)

)r
= 0, (3.9)

therefore, ∃ n1 ∈ N such that

DOF (ωn, ωn+1) ≤
1

n
1
r

, ∀ n ≥ n1, (3.10)

which yields
m−1∑
i=n

DOF (ωi, ωi+1) ≤
m−1∑
i=n

1

i
1
r

, m > n. (3.11)
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Since
m−1∑
i=n

1

i
1
r
<∞ , then ∃ N ∈ N such that

0 <

m−1∑
i=n

1

i
1
r

<

∞∑
i=n

1

i
1
r

< δ, m > n ≥ N. (3.12)

By (3.6), (3.11), (3.12) and (F1), we get

ξ

(
m−1∑
i=n

DOF (ωi, ωi+1)

)
< ξ

( ∞∑
i=n

1

i
1
r

)
< ξ(ε)− a, m > n ≥ N. (3.13)

Using (DF 3) and (3.13), we get

DOF (ωn, ωm) > 0, m > n ≥ N ⇒ ξ (DOF (ωn, ωm)) ≤ ξ

(
m−1∑
i=n

DOF (ωi, ωi+1)

)
+ a

< ξ(ε).

From (F1), we have

DOF (ωn, ωm) < ε, m > n ≥ N. (3.14)

This means that ωn is a Cauchy O-sequence. Since Ξ is O-complete, there exists
ω∗ ∈ Ξ such that

lim
n→∞

ωn = ω∗.

Now, we prove that Hω∗ = ω∗. By (h3), gives Hωn → Hω∗ as n → ∞.

Thus,

Hω∗ = lim
n→∞

Hωn = lim
n→∞

ωn+1 = ω∗.

Next, we will use (h′3) to prove that Hω∗ = ω∗. Since ∃ ω∗ ∈ Ξ such that
ωn → ω∗ as n → ∞. Put A = {n ∈ N : Hωn = Hω∗}. Now, if A is not finite, then ∃
{ωn(k)} ⊂ {ωn} such that ωn(k)+1 = Hωn(k) = Hω∗, ∀ n ∈ N. Since ωn → ω∗, then
Hω∗ = ω∗. If A is finite, then ∃ n0 ∈ N such that Hωn ̸= Hω∗, ∀ n ≥ n0, means
that DOF (Hω∗,Hωn) > 0. Assume that DOF (Hω∗, ω∗) > 0. From (h′3), we have
ωn⊥ω∗ or ω∗⊥ωn and α(ω∗) ≥ θ(ω∗). By (h4), we get θ(Hω∗) ≥ α(Hω∗), then, we
obtain

α(ω∗)θ(Hω∗) ≥ θ(ω∗)α(Hω∗), (3.15)

also we have

α(ωn)θ(Hωn) ≥ θ(ωn)α(Hωn). (3.16)

Using (3.15), (3.16) and applying (3.1), we get

τ + F (DOF (Hω∗,Hωn)) ≤ F (β (M(ω∗, ωn))M(ω∗, ωn))

≤ F (M(ω∗, ωn)) , ∀ n ≥ n0,

where

M(ω∗, ωn) = max

{
DOF (ω

∗, ωn),min

{
DOF (ω

∗,Hω∗)DOF (ωn,Hωn)

1 +DOF (ω
∗, ωn)

,
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DOF (ωn,Hωn)[1 +DOF (ω
∗,Hω∗)]

1 +DOF (ω
∗, ωn)

}}
= max

{
DOF (ω

∗, ωn),min

{
DOF (ω

∗,Hω∗)DOF (ωn, ωn+1)

1 +DOF (ω
∗, ωn)

,

DOF (ωn, ωn+1)[1 +DOF (ω
∗,Hω∗)]

1 +DOF (ω
∗, ωn)

}}
.

For all M(ω∗, ωn), we get lim
n→∞

M(ω∗, ωn) = 0, then by (F2), it implies

lim
n→∞

F (M(ω∗, ωn)) = −∞, then lim
n→∞

F (DOF (Hω∗,Hωn)) = −∞.

Also by (F2), it implies

lim
n→∞

DOF (Hω∗,Hωn) = lim
n→∞

DOF (Hω∗, ωn+1) = DOF (Hω∗, ω∗) = 0.

Therefore, our assumption is wrong and hence, Hω∗ = ω∗.

Uniqueness
Suppose that there are two fixed point ω∗, ν∗ ∈ Ξ such that ω∗ ̸= ν∗ and ω∗⊥ν∗

or ν∗⊥ω∗. Using (h4) and (h5), we get

α(ω∗) ≥ θ(ω∗) ⇒ θ(Hω∗) ≥ α(Hω∗),

then we get
α(ω∗)θ(Hω∗) ≥ θ(ω∗)α(Hω∗). (3.17)

And
α(ν∗) ≥ θ(ν∗) ⇒ θ(Hν∗) ≥ α(Hν∗),

then we get
α(ν∗)θ(Hν∗) ≥ θ(ν∗)α(Hν∗). (3.18)

From (3.17), (3.18), (3.1), and β ∈ ℑ, we have

τ + F (DOF (ω
∗, ν∗)) = τ + F (DOF (Hω∗,Hν∗)) (3.19)

≤ F (β (M(ω∗, ν∗))M(ω∗, ν∗))

≤ F (M(ω∗, ν∗)) ,

where

M(ω∗, ν∗) = max

{
DOF (ω

∗, ν∗),min

{
DOF (ω

∗,Hω∗)DOF (ν
∗,Hν∗)

1 +DOF (ω
∗, ν∗)

,

DOF (ν
∗,Hν∗)[1 +DOF (ω

∗,Hω∗)]

1 +DOF (ω
∗, ν∗)

}}
= DOF (ω

∗, ν∗).

Then from (3.19), we get

τ + F (DOF (ω
∗, ν∗)) ≤ F (DOF (ω

∗, ν∗)) , τ > 0,

which is a contradiction. Hence, ω∗ = ν∗.
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Example 3.2. Define the sequence {ηn} by

ηn = ln(1 + 4 + 7 + · · ·+ (3n− 2)) = ln

(
n(3n− 1)

2

)
, ∀ n ∈ N.

Let Ξ = {ηn : n ∈ N} equipped with the F-metric as defined in Example (2.1).
For all ηn, ηm ∈ Ξ, define ηn⊥ηm iff (m ≥ 2 ∧ n = 1). Hence, (Ξ,⊥, DOF ) is an
O-complete F-MS. Define H : Ξ → Ξ by

H(ηn) =

{
η1, if n = 1,

ηn−1, if n > 1.

Then, H is ⊥-continuous and ⊥-preserving.
Now, define α, θ : Ξ → [1,∞) by

α(ηn) =

{
eη1 , if n = 1,

eηn−1 , if n > 1,

θ(ηn) =

{
1, if n = 1,

α(ηn), if n > 1,

we get
α(ηn) ≥ θ(ηn) ⇒ θ(Hηn) ≥ α(Hηn), ∀ ηn ∈ Ξ, n ∈ N.

Then, (h4) is satisfied. Let F : (0,∞) → R defined by F (ι) = ln ι+ ι, ι > 0. Then,
F ∈ Φ. Now, we prove that H is an orthogonal (αθ − βF )- rational contraction.
Since DOF (Hηn,Hηm) > 0, and we have

α(ηn)θ(Hηn) ≥ θ(ηn)α(Hηn),

and
α(ηm)θ(Hηm) ≥ θ(ηm)α(Hηm),

which implies

τ + F (DOF (Hηn,Hηm)) = τ + F (DOF (ηn−1, ηm−1))

= τ + F
(
eηn−1−ηm−1

)
≤ τ + F

(
e3ηn−1+ηm−1

)
= τ + ln

(
e3ηn−1+ηm−1

)
+ e3ηn−1+ηm−1

= τ + (3ηn−1 + ηm−1) + e3ηn−1+ηm−1

= τ + (3ηn−1 + 2ηm−1 − ηm−1) + e3ηn−1+2ηm−1−ηm−1 .

Then, we get

eτ+F(DOF (Hηn,Hηm)) ≤ eτ+(3ηn−1+2ηm−1−ηm−1)+e3ηn−1+2ηm−1−ηm−1

≤ eτ−ηm−1e(3ηn−1+2ηm−1)ee
τ−ηm−1e(3ηn−1+2ηm−1)

≤ β(M(ηn, ηm))M(ηn, ηm)e
β(M(ηn,ηm))M(ηn,ηm),

which yields

τ + F (DOF (Hηn,Hηm)) ≤ ln (β(M(ηn, ηm))M(ηn, ηm)) + β(M(ηn, ηm))M(ηn, ηm)
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≤ F (β(M(ηn, ηm))M(ηn, ηm)).

Then, H is an orthogonal (αθ − βF )- rational contraction where β = eτ−ηm−1 , τ <
ηm−1,∀ m > 2. So, from Theorem (3.1), it implies that η = ln(1) is a unique fixed
point of H.

We assume that M(ω, ν) is according to what was stated in Definition (3.2).
Now, we will present some results.

Corollary 3.1. Let (Ξ,⊥, DOF ) be an O-complete F-MS and H : Ξ → Ξ. Assume
that the following conditions hold:

(h1) H is ⊥−preserving, that is ω⊥ν ⇒ Hω⊥Hν.
(h2) If there exists F ∈ Φ, α : Ξ → [0,∞), β ∈ ℑ, τ > 0 and ∀ ω, ν ∈ Ξ with ω⊥ν,

DOF (Hω,Hν) > 0, such that

α(ω) ≥ α(Hω), and α(ν) ≥ α(Hν)

implies
τ + F (DOF (Hω,Hν)) ≤ F (β (M(ω, ν))M(ω, ν)) . (3.20)

(h3) There exists an orthogonal element ω0 ∈ Ξ such that ω0⊥Hω0 or Hω0⊥ω0

with α(ω0) ≥ 1.

(h4) H is cyclic α-admissible mapping with respect to θ∗.

(h5) Either H is ⊥−continuous,

(h′5) or if {ωn} is a sequence in Ξ such that ωn → ω ∈ Ξ and ωn⊥Hωn or Hωn⊥ωn

with α(ωn) ≥ 1, then ωn⊥ω or ω⊥ωn with α(ω) ≥ 1, ∀ n ∈ N.
(h6) For all ω, ν ∈ Ξ (ω ̸= ν) fixed points of H with ω⊥ν or ν⊥ω, then α(ω) ≥ 1

and α(ν) ≥ 1.

Then H has a unique fixed point.

Proof. Consider θ : Ξ → [0,∞) as θ(ω) = 1, ω ∈ Ξ in Theorem (3.1).

Corollary 3.2. Let (Ξ,⊥, DOF ) be an O-complete F-MS and H : Ξ → Ξ. Assume
that the following conditions hold:

(h1) H is ⊥−preserving, that is ω⊥ν ⇒ Hω⊥Hν.
(h2) If there exists F ∈ Φ, θ : Ξ → [0,∞), β ∈ ℑ, τ > 0 and ∀ ω, ν ∈ Ξ with ω⊥ν,

DOF (Hω,Hν) > 0, such that

θ(Hω) ≥ θ(ω), and θ(Hν) ≥ θ(ν)

implies
τ + F (DOF (Hω,Hν)) ≤ F (β (M(ω, ν))M(ω, ν)) . (3.21)

(h3) There exists an orthogonal element ω0 ∈ Ξ such that ω0⊥Hω0 or Hω0⊥ω0

with θ(ω0) ≤ 1.

(h4) H is cyclic α∗-admissible mapping with respect to θ.

(h5) Either H is ⊥−continuous,

(h′5) or if {ωn} is a sequence in Ξ s.t ωn → ω ∈ Ξ and ωn⊥Hωn or Hωn⊥ωn with
θ(ωn) ≤ 1, then ωn⊥ω or ω⊥ωn with θ(ω) ≤ 1, ∀ n ∈ N.
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(h6) For all ω, ν ∈ Ξ (ω ̸= ν) fixed points of H with ω⊥ν or ν⊥ω, then θ(ω) ≤ 1
and θ(ν) ≤ 1.

Then H has a unique fixed point.

Proof. Consider α : Ξ → [0,∞) as α(ω) = 1, ω ∈ Ξ in Theorem (3.1).

Corollary 3.3. Let (Ξ,⊥, DOF ) be an O-complete F-MS and H : Ξ → Ξ. Assume
that the following conditions hold:

(h1) H is ⊥−preserving, that is ω⊥ν ⇒ Hω⊥Hν.
(h2) If there exists F ∈ Φ, α, θ : Ξ → [0,∞), τ > 0 and ∀ ω, ν ∈ Ξ with ω⊥ν,

DOF (Hω,Hν) > 0, such that

α(ω)θ(Hω) ≥ θ(ω)α(Hω),

and
α(ν)θ(Hν) ≥ θ(ν)α(Hν)

implies
τ + F (DOF (Hω,Hν)) ≤ F (kM(ω, ν)) . (3.22)

(h3) There exists an orthogonal element ω0 ∈ Ξ such that ω0⊥Hω0 or Hω0⊥ω0

and α(ω0) ≥ θ(ω0).

(h4) H is cyclic α-admissible mapping with respect to θ.

(h5) Either H is ⊥−continuous,

(h′5) or if {ωn} is a sequence in Ξ such that ωn → ω ∈ Ξ and ωn⊥Hωn or Hωn⊥ωn

and α(ωn) ≥ θ(ωn), then ωn⊥ω or ω⊥ωn and α(ω) ≥ θ(ω), ∀ n ∈ N.
(h6) For all ω, ν ∈ Ξ (ω ̸= ν) fixed points of H with ω⊥ν or ν⊥ω, then α(ω) ≥ θ(ω)

and α(ν) ≥ θ(ν).

Then H has a unique fixed point.

Proof. Taking β(ι) = k, for all ι ≥ 0 and k ∈ [0, 1) in Theorem (3.1).

4. Application

In this section, we use Theorem (3.1) to prove the existence and uniqueness of
solutions for the following differential equation:{

d2ω
dι2 = −ξ(ι, ω(ι)), ι ∈ I = [0, 1],

ω(0) = 0 = ω(1),
(4.1)

where ξ : I × R → R is a continuous function on I.
Problem (4.1) is equivalent to the following integral equation

ω(ι) =

∫ 1

0

G(ι, s)ξ(s, ω(s))ds, ∀ ι ∈ I, (4.2)

where G is given by

G(ι, s) =

{
ι(1− s), 0 ≤ ι ≤ s ≤ 1,

s(1− ι), 0 ≤ s ≤ ι ≤ 1.
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It is clear that∫ 1

0

G(ι, s)ds =
ι

2
− ι2

2
, ∀ ι ∈ [0, 1] and sup

ι∈I

∫ 1

0

G(ι, s)ds =
1

8
.

Let Ξ = {ω|ω ∈ C(I,R)} with the supremum norm ∥ω∥∞ = sup
ι∈I

|ω(ι)|. Then,

(Ξ, ∥ω∥∞) is a Banach space.

Lemma 4.1 ( [3]). The Banach space (Ξ, ∥ . ∥∞) endowed with the metric D defined
by

D(ω, ν) = ∥ω − ν∥∞ = sup
ι∈I

|ω(ι)− ν(ι)|,

and orthogonal relation ω⊥ν ⇔ ων ≥ 0, where ω, ν ∈ Ξ, is an O-F-MS.

Theorem 4.1. Consider the function ξ : I×R → R is continuous and satisfies the
follwing condition:

|ξ(s, ω(s))− ξ(s, ν(s))| ≤ e−τM(ω, ν), (4.3)

where

M(ω, ν) = max

{
DOF (ω, ν),

min

{
DOF (ω,Hω)DOF (ν,Hν)

1 +DOF (ω, ν)
,
DOF (ν,Hν)[1 +DOF (ω,Hω)]

1 +DOF (ω, ν)

}}
.

∀ ω, ν ∈ Ξ s.t ω(s)ν(s) ≥ 0 , s ∈ I and τ > 0.
Then, the differential equation (4.1) has a unique solution in Ξ.

Proof. Suppose that the orthogonality relation on Ξ by ω⊥ν if ω(s)ν(s) ≥ 0, ∀ s ∈
I.

Now, for ω ∈ Ξ, ∃ ν(s) = 0, ∀ s ∈ I such that ω(s)ν(s) = 0. Then, Ξ is an
orthogonal. Define DOF : Ξ× Ξ → [0,∞) by

DOF (ω, ν) = sup
s∈I

|ω(s)− ν(s)|, for all ω, ν ∈ Ξ and s ∈ I.

Then, (Ξ,⊥, DOF ) is a complete O-F-MS.

Define a mapping H : Ξ → Ξ by

Hω(ι) =
∫ 1

0

G(ι, s)ξ(s, ω(s))ds, ∀ ι ∈ I. (4.4)

It is clear that H is ⊥-continuous. If Hω(ι) = ω(ι) then, ω(ι) is a solution of
differential equation (4.1). So, we are now trying to prove that H has a unique
fixed point, by satisfying the conditions of the theorem (3.1). Frist we prove that
H is ⊥-preserving. Let ω(ι)⊥ν(ι) for all ι ∈ [0, 1], we have

Hω(ι) =
∫ 1

0

G(ι, s)ξ(s, ω(s))ds ≥ 0,
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which implies that Hω(ι)⊥Hν(ι). This means, H is ⊥-preserving.

Now, define α, θ : Ξ → [0,∞) by

α(ω) = θ(ω) = 1, for all ω ∈ Ξ.

Clearly (h4) in theorem (3.1) is satisfied. Next, we show that H is an orthogonal
(αθ − βF )-rational contraction. For all ι ∈ [0, 1], ω(ι)⊥ν(ι), then we have

α(ω(ι))θ(Hω(ι)) ≥ θ(ω(ι))α(Hω(ι)), (4.5)

and
α(ν(ι))θ(Hν(ι)) ≥ θ(ν(ι))α(Hν(ι)). (4.6)

Using (3.1), we get

DOF (Hω(ι),Hν(ι)) = ∥Hω(ι)−Hν(ι)∥∞
= sup

ι∈I
|Hω(ι)−Hν(ι)|

= sup
ι∈I

∣∣∣∣∫ 1

0

G(ι, s) [ξ(s, ω(s))− ξ(s, ν(s))] ds

∣∣∣∣
≤
(
sup
ι∈I

∫ 1

0

G(ι, s)ds

)
|ξ(s, ω(s))− ξ(s, ν(s))|

≤ 1

8
e−τM(ω, ν).

Then we get

ln (DOF (Hω(ι),Hν(ι))) ≤ ln

(
1

8
e−τM(ω, ν)

)
≤ (−τ) + ln

(
1

8
M(ω, ν)

)
,

thus, we have

τ + ln (DOF (Hω(ι),Hν(ι))) ≤ ln

(
1

8
M(ω, ν)

)
. (4.7)

Consider F : (0,∞) → R given by F (ι) = ln(ι) and β(ι) = 1
8 ∈ [0, 1) for all ι > 0.

Then we get

τ + F (DOF (Hω(ι),Hν(ι))) ≤ F (β (M(ω, ν))M(ω, ν)) .

Thus, H is an orthogonal (αθ−βF )- rational contraction. Hence, by Theorem (3.1),
H has a unique fixed point, which is a unique solution to the equation (4.1). This
completes the proof.

5. Conclusions

In this paper, we introduced the concept of cyclic α-admissible mapping with respect
to θ and proved some new fixed point theorems in an orthogonal F-metric space
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using orthogonal (αθ−βF )- rational contraction which we also defined in this article.
Additionally, we provided illustrative examples to bolster our results and applied
the results that we obtained to prove the existence and uniqueness of solutions
for second-order differential equations. Our results extend and enhance existing
literature, while also introducing a fresh approach to verifying the existence and
uniqueness of solutions for second-order differential equations.
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