Uniqueness for the Semilinear Elliptic Problems[∗]

Jian-Wen Sun¹

Abstract In this paper, we study the positive solutions of the semilinear elliptic equation

$$
\begin{cases} Lu + g(x, u)u = 0 & \text{in } \Omega, \\ Bu = 0 & \text{on } \partial\Omega, \end{cases}
$$

where $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain, L is an elliptic operator, B is a general boundary operator and $g(\cdot, \cdot)$ is a continuous function. This is a general problem proposed by Amann [Arch. Rational Mech. Anal. 44 (1972)], Cac [J. London Math. Soc. 25 (1982)] and Hess [Math. Z. 154 (1977)]. We obtain various uniqueness results when the nonlinearity function q satisfies some additional conditions.

Keywords Elliptic, reaction-diffusion equation, uniqueness

MSC(2010) 35B40, 35K57, 92D25

1. Introduction

In this paper, we study the positive solutions of the elliptic problem

$$
\begin{cases} Lu + g(x, u)u = 0 & \text{in } \Omega, \\ Bu = 0 & \text{on } \partial\Omega, \end{cases}
$$
 (1.1)

where $\Omega \subset \mathbb{R}^N$ is a bounded and smooth domain, the boundary $\partial\Omega$ consists of disjoint open subset Γ_0 and closed subset Γ_1 with finitely many components such that $\partial\Omega = \Gamma_0 \cup \Gamma_1$, and

$$
L = -\sum_{i,j=1}^{N} a_{ij} D_i D_j + \sum_{i=1}^{N} a_i(x) D_i + a_0(x)
$$

is a second order uniformly elliptic operator with $a_{ij}, a_i, a_0 \in C^{\mu}(\bar{\Omega}), i, j = 1, \cdots, N$. In [\(1.1\)](#page-0-0), the boundary operator

$$
B:C(\Gamma_0)\cup C^1(\Omega\cup\Gamma_1)\to C(\partial\Omega)
$$

is given by

$$
Bu = \begin{cases} u & \text{on } \Gamma_0, \\ \frac{\partial u}{\partial n} + \beta(x)u & \text{on } \Gamma_1, \end{cases}
$$

Email address: jianwensun@lzu.edu.cn

¹School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, P.R. China

[∗]This work was supported by NSF of China (12371170) and NSF of Gansu (21JR7RA535, 21JR7RA537).

where *n* is the outward unit normal of $\partial\Omega$, and $\beta \geq 0$ is continuous. Note that $Γ$ ₀ or $Γ$ ₁ can be empty. The operator B includes Dirichlet, Neumann as well as the Robin boundary condition. As far as the function $g(x, u)$, we assume that $g \in C(\Omega \times \mathbb{R}^+; \mathbb{R}^+)$ and there is a positive constant M such that

$$
a_0(x) + g(x, M) \ge 0 \text{ in } \bar{\Omega}.
$$
\n(1.2)

Throughout the paper, we consider the positive solution $\omega \in C^{2+\mu}(\Omega)$ of [\(1.1\)](#page-0-0) with $0 \leq \omega(x) \leq M$ and $\omega(x) \neq 0$ in $\overline{\Omega}$.

Note that [\(1.1\)](#page-0-0) is widely used in the study of various diffusion problems and it is also called the diffusive logistic model $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$ $[4, 5, 7, 8, 10, 12, 14–16]$. In 1977, Hess [\[13\]](#page-8-9) investigated the uniqueness problem on positive solutions of

$$
\begin{cases} \Delta u = g(x, u)u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}
$$
 (1.3)

Since then, the positive solution problem [\(1.3\)](#page-1-0) has attracted much attention, see Cac [\[9\]](#page-8-10), Allegretto [\[1\]](#page-8-11) and references therein. In this paper, we shall consider the uniqueness of positive solutions to the general problem [\(1.1\)](#page-0-0). We shall obtain various uniqueness results under the assumptions that the nonlinear function q satisfies some additional conditions. In the case of (1.3) , our results partially improve the classical conclusions of $[1, 13]$ $[1, 13]$. We also prove the stability of positive solutions to $(1.1).$ $(1.1).$

Throughout this paper, let $\lambda[L;B,\Omega]$ be the principal eigenvalue of

$$
\begin{cases} Lu = \lambda u & \text{in } \Omega, \\ Bu = 0 & \text{on } \partial\Omega, \end{cases}
$$
 (1.4)

associated with a positive eigenfunction $\phi(x)$. We then have

$$
\frac{\partial \phi}{\partial n} < 0 \text{ for } x \in \Gamma_0,
$$

and

$$
\phi(x) > 0 \text{ for } x \in \Omega \cup \Gamma_1,
$$

see [\[17,](#page-8-12) Chapter 8]. Moreover, we have

$$
\lambda[L+s;B,\Omega] = \lambda[L;B,\Omega] + s
$$

for all $s \in \mathbb{R}$ and

$$
\lambda[L + f_1; B, \Omega] < \lambda[L + f_2; B, \Omega]
$$

for any bounded functions $f_1 < f_2$ and $f_1 \not\equiv f_2$.

We first state our results on the existence of positive solutions to (1.1) .

Theorem 1.1. If $g(x, 0) < -\lambda[L; B, \Omega]$ for $x \in \overline{\Omega}$, then [\(1.1\)](#page-0-0) admits a positive solution $\omega(x)$ satisfying

$$
\frac{\partial \omega}{\partial \nu} < 0 \text{ for } x \in \Gamma_0,
$$

and

$$
\omega(x) > 0 \text{ for } x \in \Omega \cup \Gamma_1.
$$

Theorem 1.2. If $g(x, s) > g(x, 0)$ for $x \in \overline{\Omega}$ and $s \in (0, M]$, then we know that [\(1.1\)](#page-0-0) admits a positive solution if and only if

$$
\lambda[L+g(x,0);B,\Omega]<0.
$$

Our next result is concerning with the uniqueness problem on the positive solutions of (1.1) .

Theorem 1.3. Fix $x \in \Omega$. Assume that $g(x, s)$ is increasing with respect to $s > 0$. If there exists a subset Ω_0 of Ω with the positive measure such that $g(x, s)$ is strictly increasing in s for $x \in \Omega_0$, then [\(1.1\)](#page-0-0) has at most one positive solution.

If $a_0(x)$ satisfies some additional assumptions, we can prove the following result. Note that the uniqueness result holds for general nonlinear function g which may not satisfy the assumption [\(1.2\)](#page-1-1), see Remark [3.1.](#page-5-0)

Theorem 1.4. Suppose that $g(x, s)$ is non-negative and increasing with $s > 0$ for $x \in \Omega$ and $a_0(x) \geq 0$ for $x \in \Omega$. Then [\(1.1\)](#page-0-0) has at most one positive solution.

Our last unique result is concerned with the following reaction-diffusion equation

$$
\begin{cases} \Delta u - g(x, u)u = 0 & \text{in } \Omega, \\ Bu = 0 & \text{on } \partial\Omega. \end{cases}
$$
 (1.5)

Theorem 1.5. Assume that there exists $l > 0$ such that $q(x, s)$ satisfies

$$
g(x,s_1)-g(x,s_2) < l(s_1-s_2) \text{ or } g(x,s_1)-g(x,s_2) > l(s_1-s_2),
$$

where $x \in \overline{\Omega}$ and $s_1 > s_2 \geq 0$. Then [\(1.5\)](#page-2-0) has at most one positive solution.

Finally, we study the dynamical behavior of parabolic problem

$$
\begin{cases}\n u_t + Lu + g(x, u)u = 0 & \text{in } \Omega \times (0, \infty), \\
Bu = 0 & \text{on } \partial\Omega \times (0, \infty), \\
u(x, 0) = u_0(x) & \text{on } \overline{\Omega},\n\end{cases}
$$
\n(1.6)

where $u_0 \in C^{2+\mu}(\overline{\Omega})$ is nontrivial and

$$
0 \le u_0(x) \le M
$$

for $x \in \overline{\Omega}$. It is known that ([1.6\)](#page-2-1) admits a unique non-negative solution $u(x, t; u_0)$. Note that a non-negative solution $\omega(x)$ of [\(1.1\)](#page-0-0) is (globally asymptotically) stable if

$$
\lim_{t \to \infty} ||u(\cdot, t; u_0) - \omega(\cdot)||_{C(\bar{\Omega})} = 0.
$$

We are ready to give the longtime behavior of the solutions to (1.6) .

Theorem 1.6. Assume that $g(x, s) > g(x, 0)$ for $x \in \overline{\Omega}$ and $s \in (0, M]$.

- (a) If $\lambda[L+g(x,0);B,\Omega] \geq 0$, then the trivial solution 0 is stable.
- (b) If $\lambda[L+g(x,0);B,\Omega]<0$, then [\(1.1\)](#page-0-0) has a positive solution and it is stable.

The rest of this paper is organized as follows. Section 2 contains the existence problem of [\(1.1\)](#page-0-0). Then we devote to Section 3 the uniqueness results on the positive solutions of (1.1) . In Section 4, we study the parabolic problem (1.6) and prove Theorem [1.6.](#page-2-2)

2. Existence of positive solutions

In this section, we study the semilinear equation

$$
\begin{cases} Lu + g(x, u)u = 0 & \text{in } \Omega, \\ Bu = 0 & \text{on } \partial\Omega. \end{cases}
$$
 (2.1)

It is known that various methods are widely used in the study of existence problem to (2.1) , e.g. Amann $[4]$, and Crandall and Rabinowitz $[11]$. Here we prove that there exists a positive solution to [\(2.1\)](#page-3-0) by employing the upper-lower solutions.

Definition 2.1. The function $u \in C^{2+\mu}(\bar{\Omega})$ is an upper-solution to ([2.1\)](#page-3-0) if

$$
\begin{cases} Lu + g(x, u)u \ge 0 & \text{in } \Omega, \\ Bu \ge 0 & \text{on } \partial\Omega. \end{cases}
$$

The lower-solution is defined similarly by reversing the inequalities.

We then have the following lemma, see [\[2,](#page-8-14) Theorem A].

Lemma 2.1. Let $\hat{v} \geq \bar{v}$ be a pair of upper-lower solutions to [\(2.1\)](#page-3-0). Then there exist a maximum solution \hat{u} and a minimum solution \bar{u} of [\(2.1\)](#page-3-0) in the sense that, for every solution u of (2.1) , the inequality

$$
\bar{u} \leq u \leq \hat{u}
$$

holds.

Proposition 2.1. Suppose that [\(1.2\)](#page-1-1) holds and $g(x, 0) < -\lambda[L; B, \Omega]$. Then [\(1.1\)](#page-0-0) admits a positive solution ω such that

$$
\omega(x) > 0 \text{ for } x \in \Omega \cup \Gamma_1 \tag{2.2}
$$

and

$$
\frac{\partial \omega}{\partial \nu} < 0 \text{ for } x \in \Gamma_0. \tag{2.3}
$$

Proof. Let $\phi(x)$ be a positive eigenfunction associated with $\lambda[L; B, \Omega]$. Then we know that

$$
\phi(x) > 0 \text{ for } x \in \Omega \cup \Gamma_1.
$$

Given $\varepsilon > 0$ and set $\hat{u}(x) = \varepsilon \phi(x)$, we can see

$$
L\hat{u} + g(x, \hat{u})\hat{u} = (\lambda[L; B, \Omega] + g(x, \varepsilon \phi(x)))\varepsilon \phi(x).
$$

But $g(x, 0) < -\lambda[L; B, \Omega]$, we can take $\varepsilon_0 > 0$ such that

$$
L\hat{u} + g(x, \hat{u})\hat{u} \le 0,
$$

provided $0 < \varepsilon \leq \varepsilon_0$ and $x \in \Omega$. Therefore \hat{u} is a lower-solution.

Note that $a_0(x) + g(x, M) \geq 0$ for $x \in \overline{\Omega}$. We obtain that $v(x) \equiv M$ satisfies

$$
Lv + g(x, v)v = a_0(x)M + g(x, M)M \ge 0.
$$

This implies that M is an upper-solution of [\(2.1\)](#page-3-0). Thus we obtain that there is a positive solution by Lemma [2.1.](#page-3-1)

 \Box

 \Box

Now let $\omega(x)$ be a positive solution of [\(2.1\)](#page-3-0). We get

$$
\lambda[L + g(x, \omega); B, \Omega] = 0.
$$

This together with Hopf's Lemma implies that [\(2.2\)](#page-3-2) and [\(2.3\)](#page-3-3) hold.

We then give a sufficient and necessary condition on the existence of positive solutions to (2.1) .

Proposition 2.2. Assume that $g(x, s) > g(x, 0)$ for $x \in \overline{\Omega}$ and $s \in (0, M]$. Then [\(1.1\)](#page-0-0) exists a positive solution if and only if

$$
\lambda[L+g(x,0);B,\Omega]<0
$$

for $x \in \overline{\Omega}$.

Proof. Let $\phi(x) > 0$ be an eigenfunction of $\lambda[L + g(x, 0); B, \Omega]$. We have

$$
\phi(x) > 0 \text{ for } x \in \Omega \cup \Gamma_1.
$$

For $\varepsilon > 0$, denote $\hat{u}(x) = \varepsilon \phi(x)$, then we get

$$
L\hat{u} + g(x, \hat{u})\hat{u} = (\lambda [L + g(x, 0); B, \Omega] - g(x, 0) + g(x, \varepsilon \phi(x)))\varepsilon \phi(x).
$$

This implies that we can take $\varepsilon_0 > 0$ such that

$$
L\hat{u} + g(x, \hat{u})\hat{u} \le 0
$$

for $0 < \varepsilon \leq \varepsilon_0$ and $x \in \Omega$. We know that \hat{u} is a lower-solution to [\(2.1\)](#page-3-0). Since M is an upper-solution of (2.1) , we obtain that there exists a positive solution u to (2.1) such that

$$
u(x) > 0 \text{ for } x \in \Omega \cup \Gamma_1,
$$

and

$$
\frac{\partial u}{\partial \nu} < 0 \text{ for } x \in \Gamma_0.
$$

Note that $u(x)$ is a positive eigenfunction of $\lambda[L+g(x,u);B,\Omega]$. We get

$$
0 = \lambda [L + g(x, u); B, \Omega] > \lambda [L + g(x, 0); B, \Omega].
$$

The proof is thus complete.

Our main results Theorems [1.1](#page-1-2) and [1.2](#page-2-3) are followed by Propositions [2.1-](#page-3-4)[2.2.](#page-4-0)

3. Uniqueness of positive solution

In this section, we analyze the uniqueness problem on the positive solutions of [\(1.1\)](#page-0-0). Let us begin to consider the case that $g(x, s)$ is increasing in s.

Proposition 3.1. Suppose that $g(x, s)$ is increasing with respect to $s \in [0, M]$ for $x \in \Omega$. If there exists a subset Ω_0 of Ω with the positive measure such that $g(x, s)$ is strictly increasing with respect to $s \in [0, M]$ for $x \in \Omega_0$, then there exists at most one positive solution to [\(1.1\)](#page-0-0).

Proof. Let $u(x)$ and $v(x)$ be two positive solutions of [\(1.1\)](#page-0-0). We may assume that

 $u(x) \geq v(x)$

for $x \in \overline{\Omega}$. Otherwise, note that the constant M is an upper-solution, while $\max\{u(x), v(x)\}\$ is a lower-solution to [\(1.1\)](#page-0-0). We can obtain new ordered two solutions. Using the uniqueness of principal eigenvalues, we must have

$$
\lambda[L + g(x, u); B, \Omega] = \lambda[L + g(x, v); B, \Omega] = 0.
$$

Since $g(x, s)$ is strictly increasing for $s \in [0, M]$ and $x \in \Omega_0$, we get

$$
\lambda[L+g(x,u);B,\Omega] > \lambda[L+g(x,v);B,\Omega]
$$

if $u(x) \neq v(x)$ for $x \in Ω$. This also shows the uniqueness of positive solutions. \Box Following a similar argument as above, we can show the following result.

Corollary 3.1. Suppose that $g(x, s)$ is decreasing with respect to $s \in [0, M]$ for every $x \in \Omega$. If there exists a subset Ω_0 of Ω with the positive measure such that $g(x, s)$ is strictly decreasing with $s \in [0, M]$ for $x \in \Omega_0$, then there exists at most one positive solution to [\(1.1\)](#page-0-0).

The strictly monotone condition of function g is added in the study of uniqueness problem to the Dirichlet problem [\(1.3\)](#page-1-0) by Hess [\[13\]](#page-8-9).

Proposition 3.2. Suppose that $g(x, s)$ is non-negative and increasing with respect to s > 0 for every $x \in \overline{\Omega}$. If $a_0(x) \ge 0$ for $x \in \overline{\Omega}$, then there exists at most one positive solution to [\(1.1\)](#page-0-0).

Proof. If there exist two positive solutions u and v of (1.1) such that

$$
u(x) \not\equiv v(x)
$$

for $x \in \overline{\Omega}$. We may assume that

$$
\Omega^* = \{ x \in \bar{\Omega} : u(x) > v(x) \}
$$
\n(3.1)

is not empty. We can see that $u(x) = v(x)$ for $x \in \partial \Omega^*$. Then a direct computation gives that

$$
L(u - v) + [g(x, u) - g(x, v)]u + g(x, v)(u - v) = 0
$$

for $x \in \Omega$. By the monotone property of g, we have

$$
L(u - v) \le 0
$$

for $x \in \Omega^*$. By the maximum principle,

$$
u(x) < v(x) \text{ or } u(x) \equiv v(x)
$$

for $x \in \Omega^*$. This contradicts [\(3.1\)](#page-5-1) and the proof follows.

Remark 3.1. In the proof of Proposition [3.2,](#page-5-2) we do not need the assumption [\(1.2\)](#page-1-1). In fact, Proposition [3.2](#page-5-2) is a general unique result to the positive solutions of (1.1) .

At the end of this section, we investigate the initial equation

$$
\begin{cases} \Delta u = g(x, u)u & \text{in } \Omega, \\ Bu = 0 & \text{on } \partial\Omega. \end{cases}
$$
 (3.2)

 \Box

Proposition 3.3. Suppose that there exists $l > 0$ such that

$$
g(x, s_1) - g(x, s_2) < l(s_1 - s_2) \tag{3.3}
$$

for $x \in \overline{\Omega}$, $s_1 > s_2 \geq 0$. Then [\(3.2\)](#page-5-3) admits at most one positive solution.

Proof. Let u, v be two different positive solutions of (3.2) . We still assume that

$$
\Omega^* = \{ x \in \overline{\Omega} : u(x) > v(x) \}
$$

is not empty and $u(x) = v(x)$ for $x \in \partial \Omega^*$. Note that

$$
\begin{cases} \Delta u = g(x, u)u & \text{in } \Omega, \\ Bu = 0 & \text{on } \partial\Omega, \end{cases}
$$

and

$$
\begin{cases} \Delta v = g(x, v)v & \text{in } \Omega, \\ Bv = 0 & \text{on } \partial\Omega, \end{cases}
$$

we obtain

$$
\int_{\Omega^*} v(x)[\Delta u + g(x, u)u]dx = \int_{\Omega^*} u(x)[\Delta v + g(x, v)v]dx.
$$

This implies that

$$
\int_{\Omega^*} [g(x,u) - l]u(x)v(x)dx = \int_{\Omega^*} [g(x,v) - l]u(x)v(x)dx.
$$

By [\(3.3\)](#page-6-0) we get a contradiction.

Corollary 3.2. Suppose that there exists $l > 0$ such that $g(x, s)$ satisfies

$$
g(x, s_1) - g(x, s_2) > l(s_1 - s_2)
$$

for $x \in \overline{\Omega}$, $s_1 > s_2 \geq 0$. Then [\(3.2\)](#page-5-3) has at most one positive solution.

By the above conclusions, we know that Theorems [1.3-](#page-2-4)[1.5](#page-2-5) hold.

4. Stability of positive solutions

In this section, we study the initial value problem

$$
\begin{cases}\n u_t + Lu + g(x, u)u = 0 & \text{in } \Omega \times (0, \infty), \\
Bu = 0 & \text{on } \partial\Omega \times (0, \infty), \\
u(x, 0) = u_0(x) & \text{on } \overline{\Omega},\n\end{cases}
$$
\n(4.1)

where $u_0 \in C^{2+\mu}(\overline{\Omega})$ is nontrivial and

$$
0 \le u_0(x) \le M \tag{4.2}
$$

for $x \in \overline{\Omega}$. If follows that ([4.1\)](#page-6-1) has a unique global solution $u(x, t; u_0)$.

Let us begin to show that the trivial stationary solution zero of (4.1) is stable if $\lambda[L + g(x, 0); B, \Omega] \geq 0$.

 \Box

Lemma 4.1. Suppose that $g(x, s) > g(x, 0)$ for $x \in \overline{\Omega}$ and $s \in (0, M]$. If

$$
\lambda[L+g(x,0);B,\Omega] \ge 0,
$$

then zero is globally asymptotically stable.

Proof. Let $\phi(x)$ be a positive eigenfunction associated with $\lambda[L + g(x, 0); B, \Omega]$. Since $\lambda[L+g(x,0);B,\Omega]\geq 0$, we can see that $\hat{u}(x)=\varepsilon\phi(x)$ satisfies

$$
\hat{u}_t + L\hat{u} + g(x, \hat{u})\hat{u} = (\lambda[L + g(x, 0); B, \Omega] - g(x, 0) + g(x, \varepsilon\phi(x)))\varepsilon\phi(x) \ge 0
$$

for $\varepsilon > 0$ and $x \in \Omega$. We obtain that \hat{u} is an upper-solution of [\(4.1\)](#page-6-1) provided

$$
\varepsilon\phi(x) \ge u_0(x)
$$

 $x \in \Omega$. Note that $u(x, t; \varepsilon \phi(x))$ is decreasing and converges to a stationary solution of (1.1) , see [\[4\]](#page-8-1). By Proposition [2.2,](#page-4-0) the positive solution only exists when

$$
\lambda[L+g(x,0);B,\Omega]<0.
$$

Note also that $u(x, t; \varepsilon \phi(x))$ is non-negative, we know that

$$
\lim_{t \to \infty} ||u(\cdot, t; u_0)||_{C(\bar{\Omega})} = 0.
$$

 \Box

Lemma 4.2. Suppose that $g(x, s) > g(x, 0)$ for $x \in \overline{\Omega}$ and $s \in (0, M]$. If $\lambda[L +$ $g(x, 0); B, \Omega] < 0$, then the unique positive stationary solution ω of [\(4.1\)](#page-6-1) is globally asymptotically stable.

Proof. Since we consider the longtime behavior of [\(4.1\)](#page-6-1), we may assume that $u_0(x) > 0$ for $x \in \overline{\Omega}$. Let $\phi(x)$ be a positive eigenfunction associated with $\lambda[L +$ $g(x, 0); B, \Omega$. For $\varepsilon > 0$, denote $\hat{u}(x) = \varepsilon \phi(x)$. Then

$$
\hat{u}_t + L\hat{u} + g(x, \hat{u})\hat{u} = (\lambda[L + g(x, 0); B, \Omega] - g(x, 0) + g(x, \varepsilon\phi(x)))\varepsilon\phi(x)
$$

and we can take $\varepsilon_0 > 0$ such that

$$
\hat{u}_t + L\hat{u} + g(x, \hat{u})\hat{u} \le 0,
$$

provided $0 < \varepsilon \leq \varepsilon_0$. In this case, we get \hat{u} is a lower-solution of [\(2.1\)](#page-3-0). Note that M is an upper-solution to [\(4.1\)](#page-6-1). We can see that $u(x, t; M)$ is decreasing and $u(x, t; \varepsilon \phi(x))$ is increasing with respect to t, such that

$$
0 < u(x, t; \varepsilon \phi(x)) \le u(x, t; u_0) \le u(x, t; M) \tag{4.3}
$$

for $x \in \Omega$. Since $\lambda[L+g(x,0);B,\Omega] < 0$, we know from [\(4.3\)](#page-7-0) that

$$
\lim_{t \to \infty} ||u(\cdot, t; u_0) - \omega(\cdot)||_{C(\bar{\Omega})} = 0
$$

for some positive solution ω of [\(1.1\)](#page-0-0).

According to Lemmas [4.1-](#page-7-1)[4.2,](#page-7-2) we obtain Theorem [1.6.](#page-2-2)

 \Box

References

- [1] P. Allegretto, Uniqueness of positive solutions of elliptic problems, Bull. London Math. Soc. 16 (1984) 39–42.
- [2] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971) 125–146.
- [3] H. Amann, A uniqueness theorem for nonlinear elliptic boundary value problems, Arch. Rational Mech. Anal. 44 (1972) 178–181.
- [4] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976) 620–709.
- [5] H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques, J. Functional Analysis 40 (1981) 1–29.
- [6] H. Berestycki, L. Nirenberg, S.R.S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994) 47–92.
- [7] N. Bazley, B. Zwahlen, A branch of positive solutions of nonlinear eigenvalue problems, Manuscripta Math. 2 (1970) 365–374.
- [8] H. Brezis, L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986) 55–64.
- [9] N.P. Cac, On the uniqueness of positive solutions of a nonlinear elliptic boundary value problem, J. London Math. Soc. 25 (1982) 347–354.
- [10] R.S. Cantrell, C. Cosner, R.B. Salako, Effects of dispersal rates in a two-stage reaction-diffusion system, J. Math. Biol. 86 (2023) Paper No. 41, 53 pp.
- [11] M. Crandall, P. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971) 321–340.
- [12] M. Fencl, J. López-Gómez, Nodal solutions of weighted indefinite problems, J. Evol. Equ. 21 (2021) 2815–2835.
- [13] P. Hess, On uniqueness of positive solutions of nonlinear elliptic boundary value problems, Math. Z. 154 (1977) 17–18.
- [14] W.-T. Li, J. López-Gómez, J.-W. Sun, *Sharp patterns of positive solutions* for some weighted semilinear elliptic problems, Calc. Var. Partial Differential Equations 60 (2021) Paper No. 85, 36 pp.
- [15] J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems, Comm. Partial Differential Equations 22 (1997) 1787– 1804.
- [16] J. López-Gómez, The boundary blow-up rate of large solutions, J. Differential Equations 195 (2003) 25–45.
- [17] J. L´opez-G´omez, Linear Second Order Elliptic Operators, World Scientific Publishing Company, Singapore 2013.